
RHK.S96 1

Lecture 6: Instruction Set Architecture
and the 80x86

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review From Last Time

• Given sales a function of performance relative to
competition, tremendous investment in improving
product as reported by performance summary

• Good products created when have:
– Good benchmarks
– Good ways to summarize performance

• If not good benchmarks and summary, then choice
between improving product for real programs vs.
improving product to get more sales=> sales almost
always wins

• Time is the measure of computer performance!
• What about cost?

RHK.S96 3

IC cost = Die cost + Testing cost + Packaging cost
 Final test yield
Die cost = Wafer cost
 Dies per Wafer * Die yield

Dies per wafer = π * (Wafer_diam / 2)2 – π * Wafer_diam – Test dies
 Die Area √ 2 * Die Area

Die Yield = Wafer yield * 1 +

Defects_per_unit_area * Die_Area

Review: Integrated Circuits Costs

Die Cost is goes roughly with area4

{ }

RHK.S96 4

Review From Last Time
Price vs. Cost

0%

20%

40%

60%

80%

100%

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

0

1

2

3

4

5

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

4.7
3.8

1.8

3.5
2.5

1.5

RHK.S96 5

Today: Instruction Set
Architecture

• 1950s to 1960s: Computer Architecture Course
Computer Arithmetic

• 1970 to mid 1980s: Computer Architecture Course
Instruction Set Design, especially ISA appropriate
for compilers

• 1990s: Computer Architecture Course
Design of CPU, memory system, I/O system,
Multiprocessors

RHK.S96 6

Computer Architecture?

. . . the attributes of a [computing] system as seen
by the programmer, i.e. the conceptual structure
and functional behavior, as distinct from the
organization of the data flows and controls the
logic design, and the physical implementation.

 Amdahl, Blaaw, and Brooks, 1964

SOFTWARESOFTWARE

RHK.S96 7

Towards Evaluation of ISA and
Organization

instruction set

software

hardware

RHK.S96 8

Interface Design

A good interface:

• Lasts through many implementations (portability,
compatability)

• Is used in many differeny ways (generality)

• Provides convenient functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

RHK.S96 9

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,88000,IBM RS6000, . . .1987)

RHK.S96 10

Evolution of Instruction Sets

• Major advances in computer architecture are
typically associated with landmark instruction
set designs

– Ex: Stack vs GPR (System 360)

• Design decisions must take into account:
– technology
– machine organization
– programming langauges
– compiler technology
– operating systems

• And they in turn influence these

RHK.S96 11

Design Space of ISA

Five Primary Dimensions
• Number of explicit operands (0, 1, 2, 3)
• Operand Storage Where besides memory?
• Effective Address How is memory location

specified?
• Type & Size of Operands byte, int, float, vector, . . .

How is it specified?
• Operations add, sub, mul, . . .

How is it specifed?

Other Aspects
• Successor How is it specified?
• Conditions How are they determined?
• Encodings Fixed or variable? Wide?
• Parallelism

RHK.S96 12

ISA Metrics
Aesthetics:
• Orthogonality

– No special registers, few special cases, all operand modes
available with any data type or instruction type

• Completeness
– Support for a wide range of operations and target

applications

• Regularity
– No overloading for the meanings of instruction fields

• Streamlined
– Resource needs easily determined

Ease of compilation (programming?)
Ease of implementation
Scalability

RHK.S96 13

Basic ISA Classes

Accumulator:
1 address add A acc acc + mem[A]
1+x address addx A acc acc + mem[A + x]

Stack:
0 address add tos tos + next

General Purpose Register:
2 address add A B EA(A) EA(A) + EA(B)
3 address add A B C EA(A) EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra Rb + Rc

load Ra Rb Ra mem[Rb]
store Ra Rb mem[Rb] Ra

RHK.S96 14

Stack Machines
• Instruction set:

+, -, *, /, . . .
push A, pop A

• Example: a*b - (a+c*b)
push a
push b
*
push a
push c
push b
*
+
-

A B
A

A*B

-

+

aa b

*

b

*

c

A*B
A*B

A*B

A
A
C

A*B
A A*B

RHK.S96 15

The Case Against Stacks

• Performance is derived from the existence of several
fast registers, not from the way they are organized

• Data does not always “surface” when needed
– Constants, repeated operands, common subexpressions

 so TOP and Swap instructions are required
• Code density is about equal to that of GPR

instruction sets
– Registers have short addresses
– Keep things in registers and reuse them

• Slightly simpler to write a poor compiler, but not an
optimizing compiler

RHK.S96 16

Variable format, 2 and 3 address instruction

• 32-bit word size, 16 GPR (four reserved)
• Rich set of addressing modes (apply to any operand)
• Rich set of operations

– bit field, stack, call, case, loop, string, poly, system
• Rich set of data types (B, W, L, Q, O, F, D, G, H)
• Condition codes

VAX-11

OpCode A/M A/M A/M

Byte 0 1 n m

RHK.S96 17

Kinds of Addressing Modes

• Register direct Ri
• Immediate (literal) v
• Direct (absolute) M[v]

• Register indirect M[Ri]
• Base+Displacement M[Ri + v]
• Base+Index M[Ri + Rj]
• Scaled Index M[Ri + Rj*d + v]
• Autoincrement M[Ri++]
• Autodecrement M[Ri - -]

• Memory Indirect M[M[Ri]]

• [Indirection Chains] Ri Rj v

memory

reg. file

RHK.S96 18

A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store:

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, i960, i860
 PARisc, DEC Alpha, Clipper,
 CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

RHK.S96 19

Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

RHK.S96 20

Most Popular ISA of All Time:
The Intel 80x86

• 1971: Intel invents microprocessor 4004/8008,
8080 in 1975

• 1975: Gordon Moore realized one more chance for
new ISA before ISA locked in for decades
– Hired CS people in Oregon
– Weren’t ready in 1977 (CS people did 432 in

1980)
– Started crash effort for 16-bit microcomputer

• 1978: 8086 dedicated registers, segmented
address, 16 bit
– 8088; 8-bit external bus version of 8086;

added as after thought

RHK.S96 21

Most Popular ISA of All Time:
The Intel 80x86

• 1980: IBM selects 8088 as basis for IBM PC
• 1980: 8087 floating point coprocessor:

adds 60 instructions using hybrid stack/register
scheme

• 1982: 80286 24-bit address, protection, memory
mapping

• 1985: 80386 32-bit address, 32-bit GP registers,
paging

• 1989: 80486 & Pentium in 1992: faster + MP few
instructions

RHK.S96 22

Intel 80x86 Integer Registers

RHK.S96 23

Intel 80x86 Floating Point
Registers

RHK.S96 24

Usage of Intel 80x86 Floating
Point Registers

NASA 7 Spice
Stack (2nd operand ST(1)) 0.3% 2.0%
Register (2nd operand ST(i), i>1) 23.3% 8.3%
Memory 76.3% 89.7%

Above are dynamic instruction percentages
(i.e., based on counts of executed
instructions)

Stack unused by Solaris compilers for fastest
execution

RHK.S96 25

80x86 Addressing/Protection

RHK.S96 26

80x86 Instruction Format

• 8086 in black; 80386 extensions in color

(Base reg + 2Scale x Index reg)

RHK.S96 27

80x86 Instruction Encoding:
Mod, Reg, R/M Field

r w=0 w=1 r/m mod=0 mod=1 mod=2 mod=3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same
1 CL CX ECX 1 addr=BX+DI =ECX addr addr addr addr as
2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg
3 BL BX EBX 3 addr=BP+SI =EBX +d8 +d8 +d16 +d32 field
4 AH SP ESP 4 addr=SI =(sib) SI+d8 (sib)+d8 SI+d8 (sib)+d32 “

5 CH BP EBP 5 addr=DI =d32 DI+d8 EBP+d8 DI+d16 EBP+d32 “
6 DH SI ESI 6 addr=d16 =ESI BP+d8 ESI+d8 BP+d16 ESI+d32 “
7 BH DI EDI 7 addr=BX =EDI BX+d8 EDI+d8 BX+d16 EDI+d32 “

First address specifier: Reg=3 bits,
R/M=3 bits, Mod=2 bits

w from
opcode

r/m field depends on mod and machine mode

RHK.S96 28

80x86 Instruction Encoding
Sc/Index/Base field

 Index Base
0 EAX EAX
1 ECX ECX
2 EDX EDX
3 EBX EBX
4 no index ESP
5 EBP if mod=0, d32

if mod≠0, EBP
6 ESI ESI
7 EDI EDI

Base + Scaled Index Mode
Used when:
 mod = 0,1,2
 in 32-bit mode
 AND r/m = 4!

2-bit Scale Field
3-bit Index Field
3-bit Base Field

RHK.S96 29

80x86 Addressing Mode Usage
for 32-bit Mode

Addressing Mode GccEspr. NASA7 Spice Avg.
Register indirect 10% 10% 6% 2% 7%
Base + 8-bit disp 46% 43% 32% 4% 31%
Base + 32-bit disp 2% 0% 24% 10% 9%
Indexed 1% 0% 1% 0% 1%
Based indexed + 8b disp 0% 0% 4% 0% 1%
Based indexed + 32b disp 0% 0% 0% 0% 0%
Base + Scaled Indexed 12% 31% 9% 0% 13%
Base + Scaled Index + 8b disp 2% 1% 2% 0% 1%
Base + Scaled Index + 32b disp 6% 2% 2% 33% 11%
32-bit Direct 19% 12% 20% 51% 26%

RHK.S96 30

80x86 Length Distribution

L
e
n
g
th

 i
n
 b

y
te

s

% instructions at each length

0% 10% 20% 30%

1

2

3

4

5

6

7

8

9

10

11

24%

23%

21%

3%

12%

13%

3%

0%

0%

1%

19%

17%

16%

1%

15%

27%

4%

0%

0%

1%

24%

24%

27%

4%

13%

6%

2%

0%

0%

0%

25%

24%

29%

3%

12%

4%

2%

0%

0%

0%

Espresso

Gcc

Spice

NASA7

RHK.S96 31

Instruction Counts: 80x86 v. DLX

SPEC pgm x86 DLX DLX÷86
gcc 3,771,327,742 3,892,063,460 1.03
espresso 2,216,423,413 2,801,294,286 1.26
spice 15,257,026,309 16,965,928,788 1.11
nasa7 15,603,040,963 6,118,740,321 0.39

RHK.S96 32

Intel Compiler vs. Compilers
YOU Can Buy

• 66 MHz Pentium Comparison SpecInt92 SpecFP92
Intel Internal Optimizing Compiler 64.6 59.7
Best 486 Compiler (June 1993) 57.6 39.9
Typical 486 Compiler in 1990, 41.0 32.5
 when Intel started project

• Integer Intel 1.1X faster, FP 1.5X faster

• 486 Comparison SpecInt92 SpecFP92
Intel Internal Optimizing Compiler 35.5 17.5
Best 486 Compiler (June 1993) 32.2 16.0
Typical 486 Compiler in 1990, 23.0 12.8
 when Intel started project

• Integer: Intel 1.1X faster, FP 1.1X faster

RHK.S96 33

Intel Summary

• Archeology: history of instruction design in a
single product

– Address size: 16 bit vs. 32-bit
– Protection: Segmentation vs. paged
– Temp. storage: accumulator vs. stack vs. registers

• “Golden Handcuffs” of binary compatibility affect
design 20 years later, as Moore predicted

• Not too difficult to make faster, as Intel has shown
• HP/Intel announcement of common future

instruction set by 2000 means end of 80x86???
• “Beauty is in the eye of the beholder”

– At 50M/year sold, it is a beautiful business

