
RHK.S96  1

Lecture 6: Instruction Set Architecture 
and the 80x86

Professor Randy H. Katz
Computer Science 252

Spring 1996



RHK.S96  2

Review From Last Time

• Given sales a function of performance relative to 
competition, tremendous investment in improving 
product as reported by performance summary

• Good products created when have:
– Good benchmarks
– Good ways to summarize performance

• If not good benchmarks and summary, then choice 
between improving product for real programs vs. 
improving product to get more sales=> sales almost 
always wins

• Time is the measure of computer performance!
• What about cost?
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IC cost  =  Die cost   +   Testing cost   +   Packaging cost
                                         Final test yield
Die cost  =                   Wafer cost
                         Dies per Wafer  *  Die yield

Dies per wafer   =  π * ( Wafer_diam /  2)2   –  π * Wafer_diam     –  Test dies
                                           Die Area                       √ 2 * Die Area     

Die Yield  =  Wafer yield  *   1 + 
                                    

Defects_per_unit_area  *  Die_Area

                               

Review: Integrated Circuits Costs

Die Cost is goes roughly with area4

{ }
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Review From Last Time
Price vs. Cost
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Today: Instruction Set 
Architecture

• 1950s to 1960s: Computer Architecture Course 
Computer Arithmetic

• 1970 to mid 1980s:  Computer Architecture Course 
Instruction Set Design, especially ISA appropriate 
for compilers

• 1990s: Computer Architecture Course
Design of CPU, memory system, I/O system, 
Multiprocessors
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Computer Architecture?

. . . the attributes of a [computing] system as seen 
by the programmer, i.e. the conceptual structure 
and functional behavior, as distinct from the 
organization of the data flows and controls the 
logic design, and the physical implementation.

                Amdahl, Blaaw, and Brooks,  1964

SOFTWARESOFTWARE
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Towards Evaluation of ISA and 
Organization

instruction set

software

hardware
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Interface Design

A good interface:

• Lasts through many implementations (portability, 
compatability)

• Is used in many differeny ways (generality)

• Provides convenient  functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time
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Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
          from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,88000,IBM RS6000, . . .1987)
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Evolution of Instruction Sets

• Major advances in computer architecture are 
typically associated with landmark instruction 
set designs

– Ex: Stack vs GPR (System 360)

• Design decisions must take into account:
– technology
– machine organization
– programming langauges
– compiler technology
– operating systems

• And they in turn influence these
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Design Space of ISA

Five Primary Dimensions
• Number of explicit operands ( 0, 1,  2, 3 )
• Operand Storage Where besides memory?
• Effective Address How is memory location 

specified?
• Type & Size of Operands byte, int, float, vector, . . .

How is it specified?
• Operations add, sub, mul, . . .

How is it specifed?

Other Aspects
• Successor How is it specified?
• Conditions How are they determined?
• Encodings Fixed or variable? Wide?
• Parallelism
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ISA Metrics
Aesthetics:
• Orthogonality

– No special registers, few special cases, all operand modes 
available with any data type or instruction type

• Completeness
– Support for a wide range of operations and target 

applications

• Regularity
– No overloading for the meanings of instruction fields

• Streamlined
– Resource needs easily determined

Ease of compilation (programming?)
Ease of implementation
Scalability
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Basic ISA Classes

Accumulator:
1 address add A acc acc + mem[A]
1+x address addx A acc acc + mem[A + x]

Stack:
0 address add tos tos + next

General Purpose Register:
2 address add A B EA(A) EA(A) + EA(B)
3 address add A B C EA(A) EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra Rb + Rc

load Ra Rb Ra mem[Rb]
store Ra Rb mem[Rb] Ra
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Stack Machines
• Instruction set: 

+, -, *, /, . . .
push A, pop A

• Example: a*b - (a+c*b)
push a
push b
*
push a
push c
push b
*
+
-

A B
A

A*B

-

+

aa b

*

b

*

c

A*B
A*B

A*B

A
A
C

A*B
A A*B
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The Case Against Stacks

• Performance is derived from the existence of several 
fast registers, not from the way they are organized

• Data does not always “surface” when needed
– Constants, repeated operands, common subexpressions

     so TOP and Swap instructions are required
• Code density is about equal to that of GPR 

instruction sets
– Registers have short addresses
– Keep things in registers and reuse them

• Slightly simpler to write a poor compiler, but not an 
optimizing compiler
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Variable format, 2 and 3 address instruction

• 32-bit word size, 16 GPR (four reserved)
• Rich set of addressing modes (apply to any operand)
• Rich set of operations 

– bit field, stack, call, case, loop, string, poly, system
• Rich set of data types (B, W, L, Q, O, F, D, G, H)
• Condition codes

VAX-11

OpCode A/M A/M A/M

Byte 0 1 n m
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Kinds of Addressing Modes

• Register direct Ri
• Immediate (literal) v
• Direct (absolute) M[v]

• Register indirect M[Ri]
• Base+Displacement M[Ri + v]
• Base+Index M[Ri + Rj]
• Scaled Index M[Ri + Rj*d + v]
• Autoincrement M[Ri++]
• Autodecrement M[Ri - -]

• Memory Indirect M[ M[Ri] ]

• [Indirection Chains] Ri   Rj      v

memory

reg. file
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A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store: 

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, i960, i860
        PARisc, DEC Alpha, Clipper, 
        CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Most Popular ISA of All Time:
The Intel 80x86

• 1971: Intel invents microprocessor 4004/8008, 
8080 in 1975

• 1975: Gordon Moore realized one more chance for 
new ISA before ISA locked in for decades
– Hired CS people in Oregon
– Weren’t ready in 1977 (CS people did 432 in 

1980)
– Started crash effort for 16-bit microcomputer

• 1978: 8086 dedicated registers, segmented 
address, 16 bit 
– 8088; 8-bit external bus version of 8086; 

added as after thought
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Most Popular ISA of All Time:
The Intel 80x86

• 1980: IBM selects 8088 as basis for IBM PC  
• 1980: 8087 floating point coprocessor: 

adds 60 instructions using hybrid stack/register 
scheme

• 1982: 80286 24-bit address, protection, memory 
mapping

• 1985: 80386 32-bit address, 32-bit GP registers, 
paging

• 1989: 80486 & Pentium in 1992: faster + MP few 
instructions
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Intel 80x86 Integer Registers
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Intel 80x86 Floating Point 
Registers
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Usage of Intel 80x86 Floating 
Point Registers

NASA 7 Spice
Stack (2nd operand ST(1)) 0.3% 2.0%
Register (2nd operand ST(i), i>1) 23.3% 8.3%
Memory 76.3% 89.7%

Above are dynamic instruction percentages 
(i.e., based on counts of executed 
instructions)

Stack unused by Solaris compilers for fastest 
execution
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80x86 Addressing/Protection
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80x86 Instruction Format

• 8086 in black; 80386 extensions in color

(Base reg + 2Scale x Index reg)
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80x86 Instruction Encoding: 
Mod, Reg, R/M Field

r w=0   w=1     r/m        mod=0      mod=1     mod=2              mod=3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same        same
1 CL CX ECX 1 addr=BX+DI =ECX addr  addr addr addr  as
2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0        reg
3 BL BX EBX 3 addr=BP+SI =EBX +d8 +d8 +d16 +d32          field
4 AH SP ESP 4 addr=SI =(sib) SI+d8 (sib)+d8 SI+d8 (sib)+d32 “

5 CH BP EBP 5 addr=DI =d32 DI+d8 EBP+d8 DI+d16 EBP+d32 “
6 DH SI ESI 6 addr=d16 =ESI BP+d8 ESI+d8 BP+d16 ESI+d32 “
7 BH DI EDI 7 addr=BX =EDI BX+d8 EDI+d8 BX+d16 EDI+d32 “ 

First address specifier: Reg=3 bits, 
R/M=3 bits, Mod=2 bits 

w  from 
opcode

r/m field depends on mod and machine mode
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80x86 Instruction Encoding
Sc/Index/Base field

  Index Base
0 EAX EAX
1 ECX ECX
2 EDX EDX
3 EBX EBX
4 no index ESP
5 EBP if mod=0, d32

if mod≠0, EBP
6 ESI ESI
7 EDI EDI

Base + Scaled Index Mode
Used when: 
   mod = 0,1,2
   in 32-bit mode
   AND r/m = 4!

2-bit Scale Field
3-bit Index Field
3-bit Base Field
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80x86 Addressing Mode Usage 
for 32-bit Mode

Addressing Mode GccEspr. NASA7 Spice Avg.
Register indirect 10% 10% 6% 2% 7%
Base + 8-bit disp 46% 43% 32% 4% 31%
Base + 32-bit disp 2% 0% 24% 10% 9%
Indexed 1% 0% 1% 0% 1%
Based indexed + 8b disp 0% 0% 4% 0% 1%
Based indexed + 32b disp 0% 0% 0% 0% 0%
Base + Scaled Indexed 12% 31% 9% 0% 13%
Base + Scaled Index + 8b disp 2% 1% 2% 0% 1%
Base + Scaled Index + 32b disp 6% 2% 2% 33% 11%
32-bit Direct 19% 12% 20% 51% 26%
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80x86 Length Distribution
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Instruction Counts: 80x86 v. DLX

SPEC pgm x86 DLX DLX÷86
gcc 3,771,327,742 3,892,063,460 1.03
espresso 2,216,423,413 2,801,294,286 1.26
spice 15,257,026,309 16,965,928,788 1.11
nasa7 15,603,040,963 6,118,740,321 0.39
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Intel Compiler vs. Compilers 
YOU Can Buy

• 66 MHz Pentium Comparison SpecInt92 SpecFP92
Intel Internal Optimizing Compiler 64.6 59.7
Best 486 Compiler (June 1993) 57.6 39.9
Typical 486 Compiler in 1990, 41.0 32.5
   when Intel started project

• Integer Intel 1.1X faster, FP 1.5X faster

• 486 Comparison SpecInt92 SpecFP92
Intel Internal Optimizing Compiler 35.5 17.5
Best 486 Compiler (June 1993) 32.2 16.0
Typical 486 Compiler in 1990, 23.0 12.8
   when Intel started project

• Integer: Intel 1.1X faster, FP 1.1X faster
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Intel Summary

• Archeology: history of instruction design in a 
single product

– Address size: 16 bit vs. 32-bit
– Protection: Segmentation vs. paged
– Temp. storage: accumulator vs. stack vs. registers

• “Golden Handcuffs” of binary compatibility affect 
design 20 years later, as Moore predicted

• Not too difficult to make faster, as Intel has shown
• HP/Intel announcement of common future 

instruction set by 2000 means end of 80x86???
• “Beauty is in the eye of the beholder”

– At 50M/year sold, it is a beautiful business


