
RHK.SP96  1

Lecture 7: Introduction to 
Pipelining, Structural Hazards, and 

Forwarding

Professor Randy H. Katz
Computer Science 252

Spring 1996



RHK.SP96  2

Latest NRC Rankings!!
  Quality of Faculty      Ranking         

                1982    1995    Change  1982    1995    Change
Stanford        5.0     4.97    -0.03   1       1       0
MIT             4.9     4.91    0.01    2       2       0
CMU             4.8     4.76    -0.04   3       4       -1
Berkeley        4.5     4.88    0.38    4       3       1
Cornell         4.3     4.64    0.34    5       5       0
Illinois        3.8     4.09    0.29    6       8       -2
UCLA            3.8     na              6       na      
Yale            3.5     na              8       na      
U.Wash.         3.4     4.04    0.64    9       9       0
USC             3.2     na              10      na      
UT/Austin       3.2     4.18    0.98    10      7       3
Wisconsin       3.2     4.00    0.80    10      10      0
Maryland        3.1     na              13      na      
Princeton       3.0     4.31    1.31    14      6       8



RHK.SP96  3

Review: Instruction Set Evolution
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
          from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips, Sparc, HP PA, PowerPC, . . .1987-91)



RHK.SP96  4

Review: 80x86 v. DLX 
Instruction Counts

SPEC pgm x86 DLX DLX÷86
gcc 3,771,327,742 3,892,063,460 1.03
espresso 2,216,423,413 2,801,294,286 1.26
spice 15,257,026,309 16,965,928,788 1.11
nasa7 15,603,040,963 6,118,740,321 0.39



RHK.SP96  5

Review From Last Time
Intel Summary

• Archeology: history of instruction design in a single 
product

– Address size: 16 bit vs. 32-bit
– Protection: Segmentation vs. paged

– Temp. storage: accumulator vs. stack vs. registers

• “Golden Handcuffs” of binary compatibility affect 
design 20 years later, as Moore predicted

• Not too difficult to make faster, as Intel has shown
• HP/Intel announcement of common future instruction 

set by 2000 means end of 80x86???
• “Beauty is in the eye of the beholder”

– At 50M/year sold, it is a beautiful business



RHK.SP96  6

Pipelining: Its Natural!

• Laundry Example
• Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D



RHK.SP96  7

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would  laundry take? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time



RHK.SP96  8

Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads 

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20



RHK.SP96  9

Pipelining Lessons
• Pipelining doesn’t help 

latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20



RHK.SP96  10

5 Steps of DLX Datapath
Figure 3.1, Page 130

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D



RHK.SP96  11

Pipelined DLX Datapath
Figure 3.4, page 137

Memory
Access

Write
Back

Instruction
Fetch Instr. Decode

Reg. Fetch
Execute

Addr. Calc.

•  Data stationary control
– local decode for each instruction phase / pipeline stage



RHK.SP96  12

Visualizing Pipelining
Figure 3.3, Page 133

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)



RHK.SP96  13

Its Not That Easy for 
Computers

• Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

– Structural hazards: HW cannot support this combination of 
instructions

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Pipelining of branches & other instructions 
that change the PC

• Common solution is to stall the pipeline until the 
hazard is resolved, inserting one or more 
“bubbles” in the pipeline



RHK.SP96  14

One Memory Port/Structural Hazards
Figure 3.6, Page 142

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4



RHK.SP96  15

One Memory Port/Structural Hazards
Figure 3.7, Page 143

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

stall

Instr 3



RHK.SP96  16

Speed Up Equation for 
Pipelining

Speedup from pipelining = Ave Instr Time unpipelined

                          Ave Instr Time pipelined

                        = CPIunpipelined x Clock Cycleunpipelined
                          CPIpipelined x Clock Cyclepipelined
                        = CPIunpipelined    Clock Cycleunpipelined  

                                      CPIpipelined        Clock Cyclepipelined

Ideal CPI = CPIunpipelined/Pipeline depth

Speedup = Ideal CPI x Pipeline depth   Clock Cycleunpipelined  

                         CPIpipelined                   Clock Cyclepipelined

x

x



RHK.SP96  17

Speed Up Equation for 
Pipelining

CPIpipelined = Ideal CPI + Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth       Clock Cycleunpipelined
          Ideal CPI + Pipeline stall CPI   Clock Cyclepipelined

Speedup =     Pipeline depth       Clock Cycleunpipelined
          1 + Pipeline stall CPI   Clock Cyclepipelined

x

x



RHK.SP96  18

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed
            SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
               = Pipeline Depth

       SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 
    x (clockunpipe/(clockunpipe / 1.05)

          = (Pipeline Depth/1.4) x  1.05

          = 0.75 x Pipeline Depth

               SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 



RHK.SP96  19

Data Hazard on R1
Figure 3.9, page 147

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB



RHK.SP96  20

Three Generic Data Hazards
InstrI followed be InstrJ

• Read After Write (RAW) 
InstrJ tries to read operand before InstrI writes it



RHK.SP96  21

Three Generic Data Hazards
InstrI followed be InstrJ

• Write After Read (WAR) 
InstrJ tries to write operand before InstrI reads it

• Can’t happen in DLX 5 stage pipeline because:
–  All instructions take 5 stages, 
–  Reads are always in stage 2, and 
–  Writes are always in stage 5



RHK.SP96  22

Three Generic Data Hazards
InstrI followed be InstrJ

• Write After Write (WAW) 
InstrJ tries to write operand before InstrI writes it
–  Leaves wrong result ( InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because: 
–  All instructions take 5 stages, and 
–  Writes are always in stage 5

• Will see WAR and WAW in later more complicated 
pipes



RHK.SP96  23

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11



RHK.SP96  24

HW Change for Forwarding
Figure 3.20, Page 161



RHK.SP96  25

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153



RHK.SP96  26

Data Hazard Even with Forwarding
Figure 3.13, Page 154

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9



RHK.SP96  27

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid 
Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd



RHK.SP96  28

Compiler Avoiding Load Stalls

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled



RHK.SP96  29

Pipelining Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: discuss next time

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined


