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Latest NRC Rankings!!
  Quality of Faculty      Ranking         

                1982    1995    Change  1982    1995    Change
Stanford        5.0     4.97    -0.03   1       1       0
MIT             4.9     4.91    0.01    2       2       0
CMU             4.8     4.76    -0.04   3       4       -1
Berkeley        4.5     4.88    0.38    4       3       1
Cornell         4.3     4.64    0.34    5       5       0
Illinois        3.8     4.09    0.29    6       8       -2
UCLA            3.8     na              6       na      
Yale            3.5     na              8       na      
U.Wash.         3.4     4.04    0.64    9       9       0
USC             3.2     na              10      na      
UT/Austin       3.2     4.18    0.98    10      7       3
Wisconsin       3.2     4.00    0.80    10      10      0
Maryland        3.1     na              13      na      
Princeton       3.0     4.31    1.31    14      6       8
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Review: Instruction Set Evolution
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
          from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips, Sparc, HP PA, PowerPC, . . .1987-91)
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Review: 80x86 v. DLX 
Instruction Counts

SPEC pgm x86 DLX DLX÷86
gcc 3,771,327,742 3,892,063,460 1.03
espresso 2,216,423,413 2,801,294,286 1.26
spice 15,257,026,309 16,965,928,788 1.11
nasa7 15,603,040,963 6,118,740,321 0.39
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Review From Last Time
Intel Summary

• Archeology: history of instruction design in a single 
product

– Address size: 16 bit vs. 32-bit
– Protection: Segmentation vs. paged

– Temp. storage: accumulator vs. stack vs. registers

• “Golden Handcuffs” of binary compatibility affect 
design 20 years later, as Moore predicted

• Not too difficult to make faster, as Intel has shown
• HP/Intel announcement of common future instruction 

set by 2000 means end of 80x86???
• “Beauty is in the eye of the beholder”

– At 50M/year sold, it is a beautiful business
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Pipelining: Its Natural!

• Laundry Example
• Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D
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Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would  laundry take? 

A

B
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D

30 40 20 30 40 20 30 40 20 30 40 20
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Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads 

A
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D
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Pipelining Lessons
• Pipelining doesn’t help 

latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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5 Steps of DLX Datapath
Figure 3.1, Page 130

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D
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Pipelined DLX Datapath
Figure 3.4, page 137

Memory
Access

Write
Back

Instruction
Fetch Instr. Decode

Reg. Fetch
Execute

Addr. Calc.

•  Data stationary control
– local decode for each instruction phase / pipeline stage
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Visualizing Pipelining
Figure 3.3, Page 133
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Its Not That Easy for 
Computers

• Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

– Structural hazards: HW cannot support this combination of 
instructions

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Pipelining of branches & other instructions 
that change the PC

• Common solution is to stall the pipeline until the 
hazard is resolved, inserting one or more 
“bubbles” in the pipeline
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One Memory Port/Structural Hazards
Figure 3.6, Page 142
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One Memory Port/Structural Hazards
Figure 3.7, Page 143
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Speed Up Equation for 
Pipelining

Speedup from pipelining = Ave Instr Time unpipelined

                          Ave Instr Time pipelined

                        = CPIunpipelined x Clock Cycleunpipelined
                          CPIpipelined x Clock Cyclepipelined
                        = CPIunpipelined    Clock Cycleunpipelined  

                                      CPIpipelined        Clock Cyclepipelined

Ideal CPI = CPIunpipelined/Pipeline depth

Speedup = Ideal CPI x Pipeline depth   Clock Cycleunpipelined  

                         CPIpipelined                   Clock Cyclepipelined

x

x
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Speed Up Equation for 
Pipelining

CPIpipelined = Ideal CPI + Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth       Clock Cycleunpipelined
          Ideal CPI + Pipeline stall CPI   Clock Cyclepipelined

Speedup =     Pipeline depth       Clock Cycleunpipelined
          1 + Pipeline stall CPI   Clock Cyclepipelined

x

x
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed
            SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
               = Pipeline Depth

       SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 
    x (clockunpipe/(clockunpipe / 1.05)

          = (Pipeline Depth/1.4) x  1.05

          = 0.75 x Pipeline Depth

               SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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Data Hazard on R1
Figure 3.9, page 147
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB
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Three Generic Data Hazards
InstrI followed be InstrJ

• Read After Write (RAW) 
InstrJ tries to read operand before InstrI writes it
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Three Generic Data Hazards
InstrI followed be InstrJ

• Write After Read (WAR) 
InstrJ tries to write operand before InstrI reads it

• Can’t happen in DLX 5 stage pipeline because:
–  All instructions take 5 stages, 
–  Reads are always in stage 2, and 
–  Writes are always in stage 5
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Three Generic Data Hazards
InstrI followed be InstrJ

• Write After Write (WAW) 
InstrJ tries to write operand before InstrI writes it
–  Leaves wrong result ( InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because: 
–  All instructions take 5 stages, and 
–  Writes are always in stage 5

• Will see WAR and WAW in later more complicated 
pipes
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Forwarding to Avoid Data Hazard
Figure 3.10, Page 149
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HW Change for Forwarding
Figure 3.20, Page 161
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lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153
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Data Hazard Even with Forwarding
Figure 3.13, Page 154
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid 
Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd
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Compiler Avoiding Load Stalls

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled
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Pipelining Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: discuss next time

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined


