
RHK.SP96 1

Lecture 8: Pipeline Complications—
Control Hazards, Branches and

Interrupts

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.SP96 2

Review From Last Time
Pipelining Lessons

• Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

RHK.SP96 3

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f
in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Review From Last Time:
Software Scheduling to Avoid

Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

RHK.SP96 4

Review From Last Time:
Pipelining Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: discuss next time

• Today Branches and Other Difficulties

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

RHK.SP96 5

Pipelined DLX Datapath
Figure 3.4, page 134

Memory
Access

Write
Back

Instruction
Fetch Instr. Decode

Reg. Fetch
Execute

Addr. Calc.

• Data stationary control
– Local decode for each instruction phase / pipeline stage

RHK.SP96 6

Control Hazard on Branches
Three Stage Stall

RHK.SP96 7

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• DLX branch tests if register = 0 or ≠ 0
• DLX Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

RHK.SP96 8

Pipelined DLX Datapath
Figure 3.22, page 163

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.

ERROR IN TEXTBOOK!!

RHK.SP96 9

Pipelined DLX Datapath
Figure 3.22, page 163

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.

This is the correct 1 cycle
latency implementation!

RHK.SP96 10

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

RHK.SP96 11

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– DLX uses this

Branch delay of length n

RHK.SP96 12

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful

in computation
– About 50% (60% x 80%) of slots usefully filled

RHK.SP96 13

Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

RHK.SP96 14

Compiler “Static” Prediction of
Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot
• Two strategies

– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch

based on prior run

F
re

q
u
e
n
c
y
 o

f
M

is
p
re

d
ic

ti
o
n

0%

10%

20%

30%

40%

50%

60%

70%

a
lv

in
n

co
m

p
re

ss

do
du

c

es
p
re

ss
o

gc
c

hy
d
ro

2
d

m
d
lj
sp

2

o
ra

sw
m

2
5

6

to
m

ca
tv

M
is

p
re

d
ic

ti
o
n
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

a
lv

in
n

co
m

p
re

ss

do
du

c

es
p
re

ss
o

gc
c

hy
d
ro

2
d

m
d
lj
sp

2

o
ra

sw
m

2
5

6

to
m

ca
tv

Always taken Taken backwards
Not Taken Forwards

RHK.SP96 15

Evaluating Static Branch
PredictionStrategies

• Misprediction
ignores frequency
of branch

• “Instructions
between
mispredicted
branches” is a
better metric

In
s
tr

u
c
ti

o
n
s
 p

e
r

m
is

p
re

d
ic

te
d
 b

ra
n
c
h

1

10

100

1000

10000

100000

a
lv

in
n

co
m

p
re

ss

do
du

c

es
p
re

ss
o

gc
c

hy
d
ro

2
d

m
d
ljs

p
2

o
ra

sw
m

2
5

6

to
m

ca
tv

Profile-based Direction-based

RHK.SP96 16

Pipelining Complications

• Interrupts: 5 instructions executing in 5 stage pipeline
– How to stop the pipeline?
– How to restart the pipeline?
– Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation

RHK.SP96 17

Pipelining Complications

• Simultaneous exceptions in more than one
pipeline stage, e.g.,

– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage

– Add fault will happen BEFORE load fault

• Solution #1
– Interrupt status vector per instruction
– Defer check til last stage, kill state update if exception

• Solution #2
– Interrupt ASAP
– Restart everything that is incomplete

Another advantage for state update late in pipeline!

RHK.SP96 18

Pipelining Complications

• Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register

change during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes no longer last stage

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes

RHK.SP96 19

Pipelining Complications
• Floating Point: long execution time
• Also, may pipeline FP execution unit so they can

initiate new instructions without waiting full
latency

FP Instruction Latency Initiation Rate (MIPS R4000)
Add, Subtract 4 3
Multiply 8 4
Divide 36 35
Square root 112 111
Negate 2 1
Absolute value 2 1
FP compare 3 2

Cycles before
use result

Cycles before issue
instr of same type

RHK.SP96 20

Pipelining Complications
• Divide, Square Root take ≈10X to ≈30X longer

than Add
– Interrupts?
– Adds WAR and WAW hazards since pipelines are no longer

same length

RHK.SP96 21

Summary of Pipelining Basics

• Hazards limit performance
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards;
pipelining helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder
• Compilers reduce cost of data and control hazards

– Load delay slots
– Bbranch delay slots
– Branch prediction

• Next time: Longer pipelines (R4000) => Better branch
prediction, more instruction parallelism?

