
RHK.SP96 1

Lecture 9: Case Study—
MIPS R4000 and

Introduction to Advanced Pipelining

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.SP96 2

Review: Evaluating Branch
Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Pipeline speedup = Pipeline depth
1 + Branch frequency×Branch penalty

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

RHK.SP96 3

Review: Evaluating Branch
Prediction Strategies

• Two strategies
– Backward branch predict

taken, forward branch not
taken

– Profile-based prediction:
record branch behavior,
predict branch based on
prior run

• “Instructions between
mispredicted
branches” a better
metric than
misprediction

In
s
tr

u
c
ti

o
n
s
 p

e
r

m
is

p
re

d
ic

te
d
 b

ra
n
c
h

1

10

100

1000

10000

100000

a
lv

in
n

co
m

p
re

ss

do
du

c

es
p
re

ss
o

gc
c

hy
d
ro

2
d

m
d
lj
sp

2

o
ra

sw
m

2
5

6

to
m

ca
tv

Profile-based Direction-based

RHK.SP96 4

Review: Summary of Pipelining Basics

• Hazards limit performance
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards;
pipelining helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder
• Compilers reduce cost of data and control hazards

– Load delay slots
– Branch delay slots
– Branch prediction

• Today: Longer pipelines (R4000) => Better branch
prediction, more instruction parallelism?

RHK.SP96 5

Case Study: MIPS R4000
(100 MHz to 200 MHz)

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here

as well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and

also instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU

operation, and branch target computation and condition
evaluation.

– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch
delay? Why?

RHK.SP96 6

Case Study: MIPS R4000
IF IS

IF
RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
 during EX phase)

Delay slot plus two stalls
Branch likely cancels delay slot if not taken

RHK.SP96 7

MIPS R4000 Floating Point

• FP Adder, FP Multiplier, FP Divider
• Last step of FP Multiplier/Divider uses FP Adder HW
• 8 kinds of stages in FP units:

Stage Functional unit Description
A FP adder Mantissa ADD stage
D FP divider Divide pipeline stage
E FP multiplier Exception test stage
M FP multiplier First stage of multiplier
N FP multiplier Second stage of multiplier
R FP adder Rounding stage
S FP adder Operand shift stage
U Unpack FP numbers

RHK.SP96 8

MIPS FP Pipe Stages
FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A, R
Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier
R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage
D Divide pipeline stage
E Exception test stage

RHK.SP96 9

R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

eq
nt

ot
t

es
p
re

ss
o

gc
c li

do
du

c

na
sa

7

o
ra

sp
ic

e2
g
6

su
2

co
r

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural
stalls

RHK.SP96 10

Advanced Pipelining and
Instruction Level Parallelism

• gcc 17% control transfer
– 5 instructions + 1 branch
– Beyond single block to get more instruction level parallelism

• Loop level parallelism one opportunity, SW and HW
• Do examples and then explain nomenclature
• DLX Floating Point as example

– Measurements suggests R4000 performance FP execution has room
for improvement

RHK.SP96 11

FP Loop: Where are the Hazards?

Loop: LD F0,0(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar in F2

 SD 0(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 BNEZ R1,Loop ;branch R1!=zero

 NOP ;delayed branch slot

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

RHK.SP96 12

FP Loop Hazards

• Where are the stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

Loop: LD F0,0(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar in F2

 SD 0(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 BNEZ R1,Loop ;branch R1!=zero

 NOP ;delayed branch slot

RHK.SP96 13

FP Loop Showing Stalls

• Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: LD F0,0(R1) ;F0=vector element

 2 stall
 3 ADDD F4,F0,F2 ;add scalar in F2

 4 stall
 5 stall
 6 SD 0(R1),F4 ;store result

 7 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 8 BNEZ R1,Loop ;branch R1!=zero

 9 stall ;delayed branch slot

RHK.SP96 14

Revised FP Loop Minimizing Stalls

 Unroll loop 4 times code to make faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: LD F0,0(R1)

 2 stall
 3 ADDD F4,F0,F2

 4 SUBI R1,R1,8

 5 BNEZ R1,Loop ;delayed branch

 6 SD 8(R1),F4 ;altered when move past SUBI

RHK.SP96 15

Unroll Loop Four Times
 Rewrite loop to

minimize stalls?
 1 Loop:LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 ;drop SUBI & BNEZ
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 ;drop SUBI & BNEZ
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12 ;drop SUBI & BNEZ
 10 LD F14,-24(R1)
 11 ADDD F16,F14,F2
 12 SD -24(R1),F16
 13 SUBI R1,R1,#32 ;alter to 4*8
 14 BNEZ R1,LOOP
 15 NOP

 15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
 Assumes R1 is multiple of 4

RHK.SP96 16

Unrolled Loop That Minimizes Stalls

• What assumptions
made when moved
code?

– OK to move store past
SUBI even though changes
register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

 14 clock cycles, or 3.5 per iteration

RHK.SP96 17

Compiler Perspectives on Code
Movement

• Definitions: compiler concerned about dependencies
in program, whether or not a HW hazard depends on
a given pipeline

• (True) Data dependencies (RAW if a hazard for HW)
– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k, and instruction k

is data dependent on instruction i.

• Easy to determine for registers (fixed names)
• Hard for memory:

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

RHK.SP96 18

Compiler Perspectives on Code
Movement

• Another kind of dependence called name dependence:
two instructions use same name but don’t exchange
data

• Antidependence (WAR if a hazard for HW)
– Instruction j writes a register or memory location that instruction i

reads from and instruction i is executed first

• Output dependence (WAW if a hazard for HW)
– Instruction i and instruction j write the same register or memory

location; ordering between instructions must be preserved.

RHK.SP96 19

Compiler Perspectives on Code
Movement

• Again Hard for Memory Accesses
– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1
doesn’t change then:

0(R1) ≠ -8(R1) ≠ -16(R1) ≠ -24(R1)

 There were no dependencies between some loads and
stores so they could be moved by each other

RHK.SP96 20

Compiler Perspectives on Code
Movement

• Final kind of dependence called control dependence
• Example

if p1 {S1;};

if p2 {S2;}

 S1 is control dependent on p1 and S2 is control
dependent on p2 but not on p1.

RHK.SP96 21

Compiler Perspectives on Code
Movement

• Two (obvious) constraints on control dependences:
– An instruction that is control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled by the
branch.

– An instruction that is not control dependent on a branch cannot be
moved to after the branch so that its execution is controlled by the
branch.

• Control dependencies relaxed to get parallelism; get
same effect if preserve order of exceptions and data
flow

RHK.SP96 22

When Safe to Unroll Loop?

• Example: Where are data dependencies?
(A,B,C distinct & nonoverlapping)
for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same
is true of S2 for B[i] and B[i+1].
This is a “loop-carried dependence”: between iterations

• Implies that iterations are dependent, and can’t be
executed in parallel

• Not the case for our example; each iteration was
distinct

RHK.SP96 23

Summary

• Instruction Level Parallelism in SW or HW

• Loop level parallelism is easiest to see

• SW parallelism dependencies defined for program,
hazards if HW cannot resolve

• SW dependencies/compiler sophistication determine if
compiler can unroll loops

