
RHK.S96  1

Lecture 13: Trace Scheduling, 
Conditional Execution, 

Speculation, Limits of ILP

Professor Randy H. Katz
Computer Science 252

Spring 1996



RHK.S96  2

Review: Getting CPI < 1
Multiple Instructions/Cycle

• Two variations:
– Superscalar: varying no. instructions/cycle (1 to 8), 

scheduled by compiler or by HW (Tomasulo)
» IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100

– Very Long Instruction Words (VLIW): fixed number of 
instructions (16) scheduled by the compiler

» Joint HP/Intel agreement in 1998?



RHK.S96  3

Loop Unrolling in SuperScalar

Integer instruction FP instruction Clock cycle
Loop: LD    F0,0(R1) 1

LD    F6,-8(R1) 2
LD    F10,-16(R1) ADDD F4,F0,F2 3
LD    F14,-24(R1) ADDD F8,F6,F2 4
LD    F18,-32(R1) ADDD F12,F10,F2 5
SD    0(R1),F4 ADDD F16,F14,F2 6
SD    -8(R1),F8 ADDD F20,F18,F2 7
SD    -16(R1),F12 8
SD    -24(R1),F16 9
SUBI   R1,R1,#40 10
BNEZ  R1,LOOP 11
SD    -32(R1),F20 12

Unrolled 5 times to avoid delays (+1 due to SS)
12 clocks, or 2.4 clocks per iteration



RHK.S96  4

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1  op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

  Unrolled 7 times to avoid delays
  7 results in 9 clocks, or 1.3 clocks per iteration
  Need more registers in VLIW



RHK.S96  5

Limits to Multi-Issue Machines

• Inherent limitations of ILP
– 1 branch in 5: How to keep a  5-way VLIW busy?
– Latencies of units: many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of independent 

operations to keep machines busy

• Difficulties in building HW
– Duplicate FUs to get parallel execution
– Increase ports to Register File 

» VLIW example needs 7 read and 3 write for Int. Reg. 
& 5 read and 3 write for FP reg

– Increase ports to memory
– Decoding SS and impact on clock rate, pipeline depth



RHK.S96  6

Limits to Multi-Issue Machines

• Limitations specific to either SS or VLIW 
implementation

– Decode issue in SS
– VLIW code size:  unroll loops + wasted fields in VLIW
– VLIW lock step => 1 hazard & all instructions stall
– VLIW & binary compatibility is practical weakness



RHK.S96  7

Software Pipelining Example
Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
 1 SD 0(R1),F4 ; Stores M[i]
 2 ADDD F4,F0,F2 ; Adds to M[i-1]
 3 LD F0,-16(R1);Loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
–  Less code space
–  Fill & drain pipe only once
     vs. each iteration in loop unrolling



RHK.S96  8

Review: Summary
• Branch Prediction

– Branch History Table: 2 bits for loop accuracy
– Correlation: Recently executed branches correlated with 

next branch
– Branch Target Buffer: include branch address & 

prediction

• SuperScalar and VLIW
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger the penalty 

of hazards

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with 

little code expansion, little overhead



RHK.S96  9

Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace) of (statically 

predicted) long sequence of straight-line code
– Trace Compaction

» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong 



RHK.S96  10

HW support for More ILP

• Avoid branch prediction by turning branches 
into conditionally executed instructions:

 if (x) then A = B op C else NOP
– If false, then neither store result or cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have 

conditional move; PA-RISC can annul any following instr.

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness; 

condition becomes known late in pipeline



RHK.S96  11

HW support for More ILP

• Speculation: allow an instruction to issue that is 
dependent on branch predicted to be taken without 
any consequences (including exceptions) if branch 
is not actually taken (“HW undo”)

• Often try to combine with dynamic scheduling
• Tomasulo: separate speculative bypassing of 

results from real bypassing of results
– When instruction no longer speculative, write results 

(instruction commit)
– execute out-of-order but commit in order



RHK.S96  12

HW support for More ILP

• Need HW buffer for results of 
uncommitted instructions: 
reorder buffer

– Reorder buffer can be operand 
source

– Once operand commits, result is 
found in register

– 3 fields: instr. type, destination, value
– Use reorder buffer number instead 

of reservation station
– Instructionscommit in order
– As a result, its easy to undo 

speculated instructions on 
mispredicted branches or on 
exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

Figure 4.34, page 311



RHK.S96  13

Four Steps of Speculative 
Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station or reorder buffer slot free, issue instr & 

send operands & reorder buffer no. for destination.

2.Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, watch 

CDB for result; when both in reservation station, execute

3.Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs & reorder 

buffer; mark reservation station available.

4.Commit—update register with reorder result
 When instr. at head of reorder buffer & result present, update 

register with result (or store to memory) and remove instr 
from reorder buffer.



RHK.S96  14

Limits to ILP
• Conflicting studies of amount of parallelism 

available in late 1980s and early 1990s. Different 
assumptions about:

– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication



RHK.S96  15

Limits to ILP

Initial HW Model here; MIPS compilers
1. Register renaming–infinite virtual registers and all 
WAW & WAR hazards are avoided
2. Branch prediction–perfect; no mispredictions 
3. Jump prediction–all jumps perfectly predicted => 
machine with perfect speculation & an unbounded 
buffer of instructions available
4. Memory-address alias analysis–addresses are 
known & a store can be moved before a load 
provided addresses not equal

1 cycle latency for all instructions



RHK.S96  16

Upper Limit to ILP
(Figure 4.38, page 319)

Programs

In
s
tr

u
c
ti

o
n
 I

s
s
u
e
s
 p

e
r 

c
y
c
le

0

20

40

60

80

100

120

140

160

gcc espresso l i fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1



RHK.S96  17

Program

In
st

ru
c
ti

o
n
 i
ss

u
e
s 

p
e
r 

c
y
c
le

0

10

20

30

40

50

60

gcc espresso l i fpppp doducd tomcatv

35

41

16

61

58
60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 4.40, Page 323

Change from Infinite 
window to examine to 
2000 and maximum 
issue of 64 instructions 
per clock cycle

ProfileBHT (512)Pick Cor. or BHTPerfect



RHK.S96  18

Program

In
st

ru
c
ti

o
n
 i
ss

u
e
s 

p
e
r 

c
y
c
le

0

10

20

30

40

50

60

gcc espresso l i fpppp doducd tomcatv

11

15

12

29

54

10

15

12

49

16

10

13
12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

Infinite 256 128 64 32 None

More Realistic HW: Register Impact
Figure 4.42, Page 325

Change  2000 instr 
window, 64 instr 
issue, 8K 2 level 
Prediction

64 None256Infinite 32128



RHK.S96  19

Program

In
st

ru
c
ti

o
n
 i
ss

u
e
s 

p
e
r 

c
y
c
le

0

5

10

15

20

25

30

35

40

45

50

gcc espresso l i fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4
5 4 4

6 5
3

5
3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW: Alias Impact
Figure 4.44, Page 328

Change  2000 instr 
window, 64 instr 
issue, 8K 2 level 
Prediction, 256 
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.



RHK.S96  20

Program

In
st

ru
c
ti

o
n
 i
ss

u
e
s 

p
e
r 

c
y
c
le

0

10

20

30

40

50

60

gcc expresso l i fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW for ‘9X: Window Impact
(Figure 4.48, Page 332)

Perfect disambiguation 
(HW), 1K Selective 
Prediction, 16 entry 
return, 64 registers, 
issue as many as 
window

64 16256Infinite 32128 8 4



RHK.S96  21

• 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe) 
vs. 2-scalar Alpha @ 200 MHz (7 stage pipe)

Braniac vs. Speed Demon

Benchmark

S
P
E
C
M

a
rk

s

0

100

200

300

400

500

600

700

800

900

es
p
re

ss
o li

eq
nt

ot
t

co
m

p
re

ss sc gc
c

sp
ic

e

do
du

c

m
d
ljd

p
2

w
av

e5

to
m

ca
tv

o
ra

a
lv

in
n

ea
r

m
d
lj
sp

2

sw
m

2
5

6

su
2

co
r

hy
d
ro

2
d

na
sa

fp
p
p
p


