
RHK.S96  1

Lecture 16: Memory Hierarchy— 
Misses, 3 Cs and 7 Ways to 

Reduce Misses

Professor Randy H. Katz
Computer Science 252

Spring 1996
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Review: Who Cares About the 
Memory Hierarchy?

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache, 60% trans. 
on Alpha 21164  µproc (150 clock cycles for a miss!)
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Review: Four Questions for 
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level? 
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
 (Block identification)

– Tag/Block

• Q3: Which block should be replaced on a miss? 
(Block replacement)

– Random, LRU

• Q4: What happens on a write? 
(Write strategy)

– Write Back or Write Through (with Write Buffer)
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Review: Cache Performance

CPU time = (CPU execution clock cycles + 
Memory stall clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss 
rate x Read miss penalty + Writes x Write 
miss rate x Write miss penalty)

Memory stall clock cycles = Memory accesses x 
Miss rate x Miss penalty
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Review: Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per 
instruction x Miss rate x Miss penalty) x Clock 
cycle time

Misses per instruction = Memory accesses per 
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per 
instruction x Miss penalty) x Clock cycle time



RHK.S96  6

Review: Improving Cache 
Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, 
so the block must be brought into the cache. These are also 
called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur due 
to blocks being discarded and later retrieved.
(Misses in Size X Cache)

– Conflict—If the block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory and 
capacity misses) will occur because a block can be discarded 
and later retrieved if too many blocks map to its set. These are 
also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)
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Cache Size (KB)   
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Cache Size (KB)   
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3Cs Relative Miss Rate
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How Can Reduce Misses?

• Change Block Size? Which of 3Cs affected?

• Change Associativity? Which of 3Cs affected?

• Change Compiler? Which of 3Cs affected?
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Block Size (bytes)   
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2. Reduce Misses via Higher 
Associativity

• 2:1 Cache Rule: 
– Miss Rate DM cache size N ≈ Miss Rate FA cache size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%, 

internal + 2% for 2-way vs. 1-way
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Example: Avg. Memory Access 
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 
1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
       (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01
 2 1.98 1.86 1.76 1.68
 4 1.72 1.67 1.61 1.53
 8 1.46 1.48 1.47 1.43
 16 1.29 1.32 1.32 1.32
 32 1.20 1.24 1.25 1.27
 64 1.14 1.20 1.21 1.23
 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)
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3. Reducing Misses via 
Victim Cache

• How to combine fast hit 
time of Direct Mapped 
yet still avoid conflict 
misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry 
victim cache removed 
20% to 95% of conflicts 
for a 4 KB direct mapped 
data cache
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4. Reducing Misses via Pseudo-
Associativity

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see 
if there, if so have a pseudo-hit  (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor

Hit Time

Pseudo Hit Time Miss Penalty

Time
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5. Reducing Misses by HW 
Prefetching of Instruction & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB 

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 

streams got 50% to 70% of misses from 2 64KB, 4-way set 
associative caches

• Prefetching relies on extra memory bandwidth 
that can be used without penalty
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6. Reducing Misses by 
SW Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
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7. Reducing Misses by 
Compiler Optimizations

• Instructions
– Reorder procedures in memory so as to reduce misses
– Profiling to look at conflicts
– McFarling [1989] reduced caches misses by 75% on 8KB direct 

mapped cache with 4 byte blocks

• Data
– Merging Arrays: improve spatial locality by single array of 

compound elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in 
order stored in memory

– Loop Fusion: Combine 2 independent loops that have same 
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows
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Merging Arrays Example

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key
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Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses Instead of striding through 
memory every 100 words
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Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access
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Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 3 NxN => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• B called Blocking Factor
• Conflict Misses Too? 
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Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 

48 despite both fit in cache
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Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses
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Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses
• Reducing Miss Rate

1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one 
parameter when evaluating performance

• Next lecture: reducing Miss penalty

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time


