
RHK.S96  1

Lecture 16: Memory Hierarchy— 
Misses, 3 Cs and 7 Ways to 

Reduce Misses

Professor Randy H. Katz
Computer Science 252

Spring 1996



RHK.S96  2

Review: Who Cares About the 
Memory Hierarchy?

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache, 60% trans. 
on Alpha 21164  µproc (150 clock cycles for a miss!)

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU



RHK.S96  3

Review: Four Questions for 
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level? 
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
 (Block identification)

– Tag/Block

• Q3: Which block should be replaced on a miss? 
(Block replacement)

– Random, LRU

• Q4: What happens on a write? 
(Write strategy)

– Write Back or Write Through (with Write Buffer)



RHK.S96  4

Review: Cache Performance

CPU time = (CPU execution clock cycles + 
Memory stall clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss 
rate x Read miss penalty + Writes x Write 
miss rate x Write miss penalty)

Memory stall clock cycles = Memory accesses x 
Miss rate x Miss penalty



RHK.S96  5

Review: Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per 
instruction x Miss rate x Miss penalty) x Clock 
cycle time

Misses per instruction = Memory accesses per 
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per 
instruction x Miss penalty) x Clock cycle time



RHK.S96  6

Review: Improving Cache 
Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 



RHK.S96  7

Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, 
so the block must be brought into the cache. These are also 
called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur due 
to blocks being discarded and later retrieved.
(Misses in Size X Cache)

– Conflict—If the block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory and 
capacity misses) will occur because a block can be discarded 
and later retrieved if too many blocks map to its set. These are 
also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)



RHK.S96  8
Cache Size (KB)   

M
is

s 
R
a
te

 p
e
r 

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity    

Compulsory    

3Cs Absolute Miss Rate

Conflict



RHK.S96  9
Cache Size (KB)   

M
is

s 
R
a
te

 p
e
r 

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity    

Compulsory    

2:1 Cache Rule

Conflict



RHK.S96  10

3Cs Relative Miss Rate

Cache Size (KB)   

M
is

s 
R
a
te

 p
e
r 

T
y
p
e

0%

20%

40%

60%

80%

100%
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way
4-way

8-way

Capacity   

Compulsory    

Conflict



RHK.S96  11

How Can Reduce Misses?

• Change Block Size? Which of 3Cs affected?

• Change Associativity? Which of 3Cs affected?

• Change Compiler? Which of 3Cs affected?



RHK.S96  12

Block Size (bytes)   

Miss 
Rate 

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2
8

2
5
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger 
Block Size



RHK.S96  13

2. Reduce Misses via Higher 
Associativity

• 2:1 Cache Rule: 
– Miss Rate DM cache size N ≈ Miss Rate FA cache size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%, 

internal + 2% for 2-way vs. 1-way



RHK.S96  14

Example: Avg. Memory Access 
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 
1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
       (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01
 2 1.98 1.86 1.76 1.68
 4 1.72 1.67 1.61 1.53
 8 1.46 1.48 1.47 1.43
 16 1.29 1.32 1.32 1.32
 32 1.20 1.24 1.25 1.27
 64 1.14 1.20 1.21 1.23
 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)



RHK.S96  15

3. Reducing Misses via 
Victim Cache

• How to combine fast hit 
time of Direct Mapped 
yet still avoid conflict 
misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry 
victim cache removed 
20% to 95% of conflicts 
for a 4 KB direct mapped 
data cache



RHK.S96  16

4. Reducing Misses via Pseudo-
Associativity

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see 
if there, if so have a pseudo-hit  (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor

Hit Time

Pseudo Hit Time Miss Penalty

Time



RHK.S96  17

5. Reducing Misses by HW 
Prefetching of Instruction & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB 

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 

streams got 50% to 70% of misses from 2 64KB, 4-way set 
associative caches

• Prefetching relies on extra memory bandwidth 
that can be used without penalty



RHK.S96  18

6. Reducing Misses by 
SW Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?



RHK.S96  19

7. Reducing Misses by 
Compiler Optimizations

• Instructions
– Reorder procedures in memory so as to reduce misses
– Profiling to look at conflicts
– McFarling [1989] reduced caches misses by 75% on 8KB direct 

mapped cache with 4 byte blocks

• Data
– Merging Arrays: improve spatial locality by single array of 

compound elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in 
order stored in memory

– Loop Fusion: Combine 2 independent loops that have same 
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows



RHK.S96  20

Merging Arrays Example

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key



RHK.S96  21

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses Instead of striding through 
memory every 100 words



RHK.S96  22

Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access



RHK.S96  23

Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 3 NxN => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits



RHK.S96  24

Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• B called Blocking Factor
• Conflict Misses Too? 



RHK.S96  25

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 

48 despite both fit in cache

Blocking Factor   

M
is

s 
R
a
te

0

0.05

0.1

0 50 100 150

Fully Associative Cache    

Direct Mapped Cache   



RHK.S96  26

Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses



RHK.S96  27

Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses
• Reducing Miss Rate

1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one 
parameter when evaluating performance

• Next lecture: reducing Miss penalty

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time


