
RHK.S96 1

Lecture 17: Memory Hierarchy—
Five Ways to Reduce Miss Penalty

(Second Level Cache)

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review: Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses
• Reducing Miss Rate

1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

• Remember danger of concentrating on just one
parameter when evaluating performance

• Today: reducing Miss penalty & Hit time

CPUtime = IC x (CPIexecution +
 Mem Access per instruction x Miss Rate x Miss penalty) x clock cycle time

RHK.S96 3

1. Reducing Miss Penalty: Read
Priority over Write on Miss

• Write back with write buffers offer RAW conflicts
with main memory reads on cache misses

• If simply wait for write buffer to empty might
increase read miss penalty by 50% (old MIPS 1000)

• Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read,

and then do the write
– CPU stall less since restarts as soon as do read

RHK.S96 4

2. Subblock Placement to
Reduce Miss Penalty

• Don’t have to load full block on a miss
• Have bits per subblock to indicate valid
• (Originally invented to reduce tag storage)

Valid Bits

RHK.S96 5

3. Early Restart and Critical
Word First

• Don’t wait for full block to be loaded before restarting
CPU

– Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

– Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

• Generally useful only in large blocks,
• Spatial locality a problem; tend to want next

sequential word, so not clear if benefit by early restart

RHK.S96 6

4. Non-blocking Caches to
reduce stalls on misses

• Non-blocking cache or lockup-free cache allowing the
data cache to continue to supply cache hits during a
miss

• “hit under miss” reduces the effective miss penalty
by being helpful during a miss instead of ignoring the
requests of the CPU

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses

– Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

RHK.S96 7

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

A
vg

.
M

e
m

.
A
cc

e
ss

 T
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
p
re

ss
o

x
li
sp

co
m

p
re

ss

m
d
lj
sp

2

ea
r

fp
p
p
p

to
m

ca
tv

sw
m

2
5

6

do
du

c

su
2

co
r

w
av

e5

m
d
ljd

p
2

hy
d
ro

2
d

a
lv

in
n

na
sa

7

sp
ic

e2
g
6

o
ra

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

RHK.S96 8

5th Miss Penalty Reduction:
Second Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 +
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total

number of memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total

number of memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

RHK.S96 9

Comparing Local and Global
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock

cycle
• Cost & A.M.A.T.
• Generally Fast Hit Times

and fewer misses
• Since hits are few, target

miss reduction

Linear

Log

Cache Size

Cache Size

RHK.S96 10

Reducing Misses: Which apply
to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

RHK.S96 11

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory

RHK.S96 12

Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss
– Subblock placement
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit Under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in

between

RHK.S96 13

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

RHK.S96 14

1. Fast Hit times via Small and
Simple Caches

• Why Alpha 21164 has 8KB Instruction and
8KB data cache + 96KB second level cache

• Direct Mapped, on chip

RHK.S96 15

2. Fast hits by Avoiding
Address Translation

• Send virtual address to cache? Called Virtually Addressed
Cache or just Virtual Cache vs. Physical Cache

– Every time process is switched logically must flush the cache; otherwise
get false hits

» Cost is time to flush + “compulsory” misses from empty cache
– Dealing with aliases (sometimes called synonyms);

Two different virtual addresses map to same physical address
– I/O must interact with cache, so need virtual address

• Solution to aliases
– HW that guarantees that every cache block has unique physical address
– SW guarantee: lower n bits must have same address; as long as covers

index field & direct mapped, they must be unique;
called page coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address within

process: can’t get a hit if wrong process

RHK.S96 16

2. Avoiding Translation:
Process ID impact

• Black is uniprocess
• Light Gray is multiprocess

when flush cache
• Dark Gray is multiprocess

when use Process ID tag
• Y axis: Miss Rates up to 20%
• X axis: Cache size from 2 KB

to 1024 KB

RHK.S96 17

2. Avoiding Translation: Index
with Physical Portion of Address

• If index is physical part of address, can start
tag access in parallel with translation so that
can compare to physical tag

• Limits cache to page size: what if want bigger
caches and uses same trick?

– Higher associativity
– Page coloring

Page Address Page Offset

Address Tag Index Block Offset

RHK.S96 18

• Pipeline Tag Check and Update Cache as separate stages;
current write tag check & previous write cache update

• Only Write in the pipeline; empty during a miss

• In color is Delayed Write Buffer; must be checked on
reads; either complete write or read from buffer

3. Fast Hit Times Via Pipelined Writes

RHK.S96 19

4. Fast Writes on Misses Via
Small Subblocks

• If most writes are 1 word, subblock size is 1 word, & write
through then always write subblock & tag immediately

– Tag match and valid bit already set: Writing the block was proper, &
nothing lost by setting valid bit on again.

– Tag match and valid bit not set: The tag match means that this is the
proper block; writing the data into the subblock makes it appropriate to
turn the valid bit on.

– Tag mismatch: This is a miss and will modify the data portion of the
block. As this is a write-through cache, however, no harm was done;
memory still has an up-to-date copy of the old value. Only the tag to the
address of the write and the valid bits of the other subblock need be
changed because the valid bit for this subblock has already been set

• Doesn’t work with write back due to last case

RHK.S96 20

Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

RHK.S96 21

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1995
– Pipelined

Execution &
Fast Clock Rate

– Out-of-Order
completion

– Superscalar
Instruction Issue

• 1995: Speed =
ƒ(non-cached memory accesses)

• What does this mean for
– Compilers?,Operating Systems?, Algorithms? Data Structures?

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

