
RHK.S96 1

Lecture 18: Memory Hierarchy—
Main Memory and Enhancing its

Performance

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review: Reducing Miss Penalty
Summary

• Five techniques
– Read priority over write on miss
– Subblock placement
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit Under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in

between

RHK.S96 3

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

Fast hit times by small and simple caches

Fast hits via avoiding virtual address translation
Fast hits via pipelined writes
Fast writes on misses via small subblocks

RHK.S96 4

Review: Cache Optimization
Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

RHK.S96 5

Review: What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1995
– Pipelined

Execution &
Fast Clock Rate

– Out-of-Order
completion

– Superscalar
Instruction Issue

• 1995: Speed =
ƒ(non-cached memory accesses)

• What does this mean to
– Compilers?,Operating Systems?, Algorithms? Data Structures?

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

RHK.S96 6

Main Memory Background

• Performance of Main Memory:
– Latency: Cache Miss Penalty

» Access Time: time between request and word arrives
» Cycle Time: time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms)
– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe
» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor/bit)
– Address not divided

• Size: DRAM/SRAM ≈ 4-8,
Cost/Cycle time: SRAM/DRAM ≈ 8-16

RHK.S96 7

Main Memory Performance

• Simple:
– CPU, Cache, Bus, Memory

same width (32 bits)

• Wide:
– CPU/Mux 1 word; Mux/

Cache, Bus, Memory N
words (Alpha: 64 bits & 256
bits)

• Interleaved:
– CPU, Cache, Bus 1 word:

Memory N Modules
(4 Modules); example is
word interleaved

RHK.S96 8

Main Memory Performance
• Timing model

– 1 to send address,
– 6 access time, 1 to send data
– Cache Block is 4 words

• Simple M.P. = 4 x (1+6+1) = 32
• Wide M.P. = 1 + 6 + 1 = 8
• Interleaved M.P. = 1 + 6 + 4x1 = 11

RHK.S96 9

Independent Memory Banks

• Memory banks for independent accesses vs.
faster sequential accesses

– Multiprocessor
– I/O
– Miss under Miss, Non-blocking Cache

• Superbank: all memory active on one block
transfer

• Bank: portion within a superbank that is word
interleaved

Superbank Bank

RHK.S96 10

Independent Memory Banks

• How many banks?
number banks ≥ number clocks to access word in bank

– For sequential accesses, otherwise will return to original bank
before it has next word ready

• Increasing DRAM => fewer chips => harder to have
banks

RHK.S96 11

Avoiding Bank Conflicts

• Lots of banks
int x[256][512];

for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)

x[i][j] = 2 * x[i][j];

• Even with 128 banks, since 512 is multiple of 128,
conflict

• SW: loop interchange or declaring array not power of 2
• HW: Prime number of banks

– bank number = address mod number of banks
– address within bank = address / number of banks
– modulo & divide per memory access?
– address within bank = address mod number words in bank (3, 7, 31)
– bank number? easy if 2N words per bank

RHK.S96 12

• Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules

 and that ai and aj are co-prime if i ≠ j, then the integer x has only one
solution (unambiguous mapping):

– bank number = b0, number of banks = a0 (= 3 in example)
– address within bank = b1, number of words in bank = a1 (= 8 in example)
– N word address 0 to N-1, prime no. banks, words power of 2

bi = x modai,0 ≤ bi < ai, 0 ≤ x < a0 × a1 × a2×…

Fast Bank Number

 Seq. Interleaved Modulo Interleaved
Bank Number: 0 1 2 0 1 2

Address
within Bank: 0 0 1 2 0 16 8

1 3 4 5 9 1 17
2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23

RHK.S96 13

Fast Memory Systems: DRAM specific
• Multiple RAS accesses: several names (page mode)

– 64 Mbit DRAM: cycle time = 100 ns, page mode = 20 ns

• New DRAMs to address gap;
what will they cost, will they survive?

– Synchronous DRAM: Provide a clock signal to DRAM, transfer
synchronous to system clock

– RAMBUS: startup company; reinvent DRAM interface

» Each Chip a module vs. slice of memory
» Short bus between CPU and chips
» Does own refresh
» Variable amount of data returned
» 1 byte / 2 ns (500 MB/s per chip)

• Niche memory or main memory?
– e.g., Video RAM for frame buffers, DRAM + fast serial output

RHK.S96 14

Main Memory Summary

• Wider Memory
• Interleaved Memory: for sequential or independent

accesses
• Avoiding bank conflicts: SW & HW
• DRAM specific optimizations: page mode &

Specialty DRAM

