Lecture 19: Case Study— Virtual Memory, Alpha 21064 Memory Hierarchy and Performance

Professor Randy H. Katz Computer Science 252 Spring 1996

Review: Main Memory Performance

- Simple: CPU, Cache, Bus, Memory same width (32 bits)
- Wide: CPU/Mux 1 word; Mux/Cache, Bus, Memory N words (Alpha: 64 bits & 256 bits)
- Interleaved: CPU, Cache, Bus 1 word: Memory N Modules (4 Modules); example is word interleaved

dre 11	Bank 0	Address	Bank I	Address	Bank C	Address	Bank S
0 [ے		\$	
+ [5		6		7	
* [9		10		11	
12 [13		14		15	

Timing model: 1 to send address, 6 access time, 1 to send data Cache Block is 4 words Simple M.P. = $4 \times (1+6+1) = 32$ Wide M.P. = 1+6+1 = 8Interleaved M.P. = 1+6+4x1 = 11

RHK.S96 2

Review: Independent Memory Banks

- Memory banks for independent accesses vs. faster sequential accesses
 - Multiprocessor
 - I/O
 - Miss under Miss, Non-blocking Cache
- Superbank: all memory active on one block transfer
- Bank: portion within a superbank that is word interleaved

RHK.S96 3

Review: Independent Memory Banks

• How many banks?

number banks number clocks to access word in bank

- For sequential accesses, otherwise will return to original bank before it has next word ready
- Increasing DRAM => fewer chips => harder to have banks

Review: Fast Memory Systems—DRAM specific

• Multiple RAS accesses: several names (page mode)

- 64 Mbit DRAM: cycle time = 100 ns, page mode = 20 ns

- New DRAMs to address gap; what will they cost, will they survive?
 - Synchronous DRAM: Provide a clock signal to DRAM, transfer synchronous to system clock
 - **RAMBUS**: startup company; reinvent DRAM interface
 - » Each Chip a module vs. slice of memory
 - » Short bus between CPU and chips
 - » does own refresh
 - » variable amount of data returned
 - » 1 byte / 2 ns (500 MB/s per chip)
- Niche memory or main memory?

- e.g., Video RAM for frame buffers, DRAM + fast serial output RHK.S96 5

Main Memory Review

- Wider Memory
- Interleaved Memory: sequential or independent accesses
- Avoiding bank conflicts: SW & HW
- DRAM specific optimizations
 - Page mode & Specialty DRAM
- Next: Virtual Memory Organization

Virtual Memory

- Virtual address (2³², 2⁶⁴) to Physical Address mapping (2²⁸)
- Virtual memory terms of cache terms:
 - Cache block?
 - Cache Miss?
- How is virtual memory different from caches?
 - What Controls Replacement
 - Size (transfer unit, mapping mechanisms)
 - Lower level use

Virtual Memory

- 4Qs for VM?
 - Q1: Where can a block be placed in the upper level?
 Fully Associative, Set Associative, Direct Mapped
 - Q2: How is a block found if it is in the upper level? Tag/Block
 - Q3: Which block should be replaced on a miss? Random, LRU
 - Q4: What happens on a write?
 Write Back or Write Through (with Write Buffer)

Fast Translation: Translation Buffer

- Cache of translated addresses
- Alpha 21064 TLB: 32 entry fully associative

Selecting a Page Size

• Reasons for larger page size

- Page table size is inversely proportional to the page size; therefore memory saved
- Fast cache hit time easy when cache page size (VA caches);
 bigger page makes it feasible as cache size grows
- Transferring larger pages to or from secondary storage, possibly over a network, is more efficient
- Number of TLB entries are restricted by clock cycle time, so a larger page size maps more memory, thereby reducing TLB misses

• Reasons for a smaller page size

- Fragmentation: don't waste storage; data must be contiguous within page
- Quicker process start for small processes(??)
- Hybrid solution: multiple page sizes
 - Alpha: 8KB, 16KB, 32 KB, 64 KB pages (43, 47, 51, 55 virt addr bits) RHK.S96 10

Alpha VM Mapping

- "64-bit" address divided into 3 segments
 - seg0 (bit 63=0) user code/heap
 - seg1 (bit 63 = 1, 62 = 1) user stack
 - kseg (bit 63 = 1, 62 = 0) kernel segment for OS
- Three level page table, each one page
 - Alpha only 43 unique bits of VA
 - (future min page size up to 64KB => 55 bits of VA)
- PTE bits; valid, kernel & user read & write enable (No reference, use, or dirty bit)
 - What do you do?

Cross Cutting Issues

- Superscalar CPU & Number Cache Ports
- Speculative Execution and non-faulting option on memory
- Parallel Execution vs. Cache locality
 - Want far separation to find independent operations vs. want reuse of data accesses to avoid misses
- I/O and consistency of data between cache and memory
 - Caches => multiple copies of data
 - Consistency by HW or by SW?
 - Where connect I/O to computer?

Alpha 21064

- Separate Instr & Data TLB & Caches
- TLBs fully associative
- TLB updates in SW ("Priv Arch Libr")
- Caches 8KB direct mapped
- Critical 8 bytes first
- Prefetch instr. stream buffer
- 2 MB L2 cache, direct mapped (off-chip)
- 256 bit path to main memory, 4 x 64-bit modules

Alpha Memory Performance: Miss Rates

Alpha CPI Components

Instruction stall: branch mispredict;
 Other: compute + reg conflicts, structural conflicts

Pitfall: Predicting Cache Performance from Different Prgrm (ISA, compiler, ...)

Pitfall: Simulating Too Small an Address Trace

RHK.S96 17