Lecture 21: I/O—A Little Queuing
Theory and I/O Interfaces

Professor Randy H. Katz
Computer Science 252
Spring 1996

RHK.S96 1

Review—I/O Systems

Processor |-=

interrupts

Cache
Memory - I/O Bus
Main /O /O /O
Memory Controller || Controller Controller
bisk| [Disk | | Graphics | —Erwrork

Time(workload) = Time(CPU) + Time(l/O) - Time(Overlap)

RHK.S96 2

Review—Disk I/O Performance

Metrics: Response Time

and Throughput

Response time = Queue + Device Service time

Queue

300

200

100

Response
Time (ms)

0% 100%

Throughput
(% total BW)

Proc —»

IOC

Device

RHK.S96 3

Storage System Issues

Historical Context of Storage I/O

Storage I/O Performance Measures
Secondary and Tertiary Storage Devices
A Little Queuing Theory

Processor Interface Issues

/O Buses

Redundant Arrarys of Inexpensive Disks (RAID)
ABCs of UNIX File Systems

/O Benchmarks

Comparing UNIX File System Performance
Tertiary Storage Systems

RHK.S96 4

Review: Devices—Magnetic Disks

Purpose: Track

: Sector
— Long-term, nonvolatile storage

— Large, inexpensive, slow level in the
storage hierarchy

Characteristics: Cylinder
— Seek Time (~20 ms avg, 1M cyc at ond — Platter
50MHz) €a
» Positional latency
) 3600 RPM = 60 RPS => 16 ms per rev
» Rotational latency ave rot. latency = 8 ms
32 sectors per track => 0.5 ms per sector
Transfer rate 1 KB per sector =>2 MB / s
32 KB per track
— About a sector per ms (1'10 MB/S) 20 tracks per cyl => 640 KB per cyl
_ Blocks 2000 cyl => 1.2 GB
- Response time
CapaC|ty = Queue + Controller + Seek + Transfer
— Gigabytes T —
— Quadruples every 3 years Service time

(aerodynamics) RHK.S96 5

Disk Time Example

Disk Parameters:

— Transfer size is 8K bytes

— Advertised average seek is 12 ms
— Disk spins at 7200 RPM

— Transfer rate is 4 MB/sec

Controller overhead is 2 ms
Assume that disk is idle so no queuing delay

What is Average Disk Access Time for a Sector?
— Ave seek + ave rot delay + transfer time + controller overhead
— 12 ms + 0.5/(7200 RPM/60) + 8 KB/4 MB/s + 2 ms
—12+415+2+2=20ms

Advertised seek time assumes no locality: typically 1/4
to 1/3 advertised seek time: 20 ms => 12 ms

RHK.S96 6

A Little Queuing Theory

Proc

server

Queue
waiting line
- = |OC

Device

e Service time completions vs. waiting time for a busy
server when randomly arriving event joins a waiting
line of arbitrary length when server is busy, otherwise
serviced immediately

A single server queue: combination of a servicing
facilty that accomodates 1 customer at a time (server)
+ waiting area (waiting line): together called a queue

e Server spends a variable amount of time with
customers; how do you characterize variability?

RHK.S96 7

A Little Queuing Theory

Queue

waiting line server

Proc —» —= |OC

Server spends a variable amount of time with customers
— Weighted mean m1=(f1x T1+f2x T2 +...+fn x Tn)/F (F=f1 +f2 +..))
— Squared coefficient of variance: C

C =variance/m12
variance = (f1 x T12 +f2 x T22+...+ fn x Tn2)/F — m12

Exponential distribution C = 1 : most short relative to average, few others
long; 90% < 2.3 x average, 63% < average

Hypoexponential distribution C < 1 : most close to average,
C=0.5=>90% < 2.0 x average, only 57% < average

Hyperexponential distribution C > 1 : further from average

C=2.0=>90% < 2.8 x average, 69% < average RHK.S96 8

A Little Queuing Theory:
Variable Service Time

Proc

Queue
waiting line server
™ — |OC Device

Server spends a variable amount of time with customers
— Weighted mean m1 = (fAXT1 + f2xT2 +...+ fnXTn)/F (F=f1+f2+..))
— Squared coefficient of variance C

Disk response times C » 1.5 (majority seeks < average)

Yet usually pick C = 1.0 for simplicity

Another useful value is average time must wait for server
to complete task m1(z)
— Not just 1/2 x m1 because doesn’t capture variance
— Can derive m1(z) =1/2xml1x (1 + C)

— No variance =>C=0=>m1(z) =1/2x m1l

RHK.S96 9

A Little Queuing Theory:
Litttle’s Theorem

Queue

waiting line server

Proc —» — |[OC

 Queuing models assume state of equilibrium:
Input rate = output rate

 Notation:

average number of arriving customers/second
average time to service a customer

server utilization (0..1): u =r x T

average time/customer in waiting line

average time/customer in queue: T, =T, + Ty
average length of waiting line:L, =r x T,

¢ average length of queue:L,=rx T,

 Little’'s Law:r=L,/T,=L,/T,=u/T;
Mean number customers = arrival rate X mean service
time RHK.S96 10

S

W
q

=

r—r—4—Hc o

A Little Queuing Theory:
Average Wait Time

« Calculating average wait time T,
— If something at server, it takes to complete on average m1(z)

— Chance server is busy = u; average delay is u x m1(z)
— Afterward, all customers in line must complete; each avg T,

T,muxmli(z)+ L, xT,=12xux T¢ x(1+C)+ L, X T,
Ty=12xux Tgx(1+C)+ rxT,xTg a
T,=12xux T¢ x(Q+C)+ uxT,

Ty, X(@A=u) =T, xux(1+C)/2

T,=Toxux (1+C)/(2x(1—-u))

* Notation:
r average number of arriving customers/second
T, averagetime to service a customer
u server utilization (0..1): u =r x T,
T, average time/customer in waiting line
L, average length of waiting line:L, =rx T,

RHK.S96 11

A Little Queuing Theory:
M/G/1 and M/M/1

Assumptions so far:
— System in equilibrium
— Time between two successive arrivals in line are random
— Server can start on next customer immediately after prior finishes
— No limit to the waiting line: works First-In-First-Out
— Afterward, all customers in line must complete; each avg T,

Described “memoryless” Markovian request arrival (M
for C=1 exponentially random), General service
distribution (no restrictions), 1 server: M/G/1 queue

When Service times have C =1, M/M/1 queue
T,=Taxux(1+C)/2x(1—-u))=T,xu/(d-u

T, average time to service a customer
u server utilization (0..1): u =r x T
T, average time/customer in waiting line

Note distinction between waiting time and queue dela

RHK.S96 12

A Little Queuing Theory:
An Example

e Suppose processor sends 10 x 8KB disk I/Os per second,
requests exponentially distrib., disk service time = 20 ms

« On average, how utilized is the disk?
— What is the number of requests in the waiting line?
— What is the average time spent in the waiting line?
— What is the average response time for a disk request?

 Notation:

r average number of arriving customers/second = 10

T, averagetime to service a customer =20 ms

u server utilization (0..1): u =r x T,=10/s x .02s = 0.2

T, average time/customer in waiting line=T, x u /(1 —u)
=20x0.2/(1-0.2) =20 x 0.25 =5 ms

T, average time/customer in queue: T, =T, +T;=25ms

L, average length of waiting line:L,=rx T,
= 10/s x .005s = 0.05 requests in wait line

L, averagelength of “queue”:L,=r x T,=10/s x .025s = 0.25

RHK.S96 13

A Little Queuing Theory:
Another Example

e Suppose processor sends 20 x 8KB disk I/Os per sec,
requests exponentially distrib., disk service time =12 ms

« On average, how utilized is the disk?
— What is the number of requests in the waiting line?
— What is the average time a spent in the waiting line?
— What is the average response time for a disk request?

 Notation:

r average number of arriving customers/second= 20
T, averagetime to service a customer=12 ms
u server utilization (0..1): u =r x T,=20/s x .012s = 0.24
T, average time/customer in waiting line=T, x u /(1 —-u)
=12 x 0.24/(1-0.24) =12 x 0.32 = 3.8 ms

T, average time/customer in queue: T, =T, +T;=16 ms
L, average length of waiting line:L, =rx T,

= 20/s x .0038s = 0.016 requests in wait line
L, average length of “queue”:L,=r x T,=20/s x .016s = 0.32 RHK.S96 14

A Little Queuing Theory:
Yet Another Example

e Suppose processor sends 10 x 8KB disk I/Os per second,
req. squared coef. var. = 1.5, disk service time = 20 ms

 On average, how utilized is the disk?
— What is the number of requests in the waiting line?
— What is the average time a spent in the waiting line?
— What is the average response time for a disk request?

 Notation:

average number of arriving customers/second= 10
average time to service a customer= 20 ms
server utilization (0..1): u =r x T,=10/s x .02s =0.2
average time/customer in waiting line=T, x u x (L +C)/(2x (1 —u))
=20x0.2(2.5)/2(1 - 0.2) =20x 0.32 =6.25 ms
average time/customer in queue: T, =T, +T;=26 ms
average length of waiting line:L, =r x T,
= 10/s x .006s = 0.06 requests in wait line
average length of “queue™:L, =r x T,= 10/s x .026s = 0.26

A Ac AT

=

RHK.S96 15

—

Processor Interface Issues

Interconnections
— Busses

Processor interface

— Interrupts
— Memory mapped I/O

/O Control Structures
— Polling

— Interrupts

— DMA

— /O Controllers

— 1/O Processors

Capacity, Access Time, Bandwidth

RHK.S96 16

/O Interface

CPU

]

Memory

Independent 1/O Bus ¢

bus

¢

¢

Inte(face Interface
Peripheral | | Peripheral
CPU
common memory
& 110 bu; t f
Memory Interface | |Interface

3

¢

Peripheral | | Peripheral

memory

Seperate /O instructions (in,out)

Lines distinguish between
I/O and memory transfers

/40 Mbytes/sec

VME bus optimistically
Multibus-I

Nubus 10 MIP processor
\ completely
saturates the bus!
RHK.S96 17

Memory Mapped I/O

CPU

Single Memory & I/O Bus
¢ No Separate I/O Instructions

'

:

:

ROM

Memory Interface | |Interface
Peripheral | | Peripheral
CPU
$
L2 $
Memory Bus 1/O bus
Memory Bus Adaptor

RAM

/O

RHK.S96 18

Programmed 1/O (Polling)

CPU

Memory

10C

device

k—

Is the
data
ready?

no

vesV_

read
data

store
data

done’?# no

yes Y

busy wait loop
not an efficient
way to use the CPU
unless the device
Is very fast!

but checks for I/O

completion can be

dispersed among
computationally
intensive code

RHK.S96 19

Interrupt Driven Data Transfer

CPU } add \
sub
¢ 1) 10 K and user
\ program
interrupt or
: t / nop /
Memory IOC (2) save PC
e. (3) interrupt
device service addr_|
™ read .
User program progress only halted during store isnetrevrircuept
actual transfer (4)\ , S Utine
1000 transfers at 1 ms each: memory

1000 interrupts @ 2 pysec per interrupt
1000 interrupt service @ 98 psec each = 0.1 CPU seconds

Device xfer rate = 10 MBytes/sec => 0.1 x 1()_6 sec/byte => 0.1 usec/byte
=> 1000 bytes = 100 psec
1000 transfers x 100 psecs = 100 ms = 0.1 CPU seconds

Still far from device transfer rate! 1/2 in interrupt overhead RrHk.s96 20

Direct Memory Access

Time to do 1000 xfers at 1 msec each:

1 DMA set-up sequence @ 50 usec
1 interrupt @ 2 psec

CPU sends a starting address, 1 interrupt service sequence @ 48 pysec
direction, and length count to
DMAC. Then issues "start". .0001 second of CPU time
\ 0
CPU ROM

¢

ooy emory

Memory | [DMAC| [10C Mapped I/O RAM
device
DMAC provides handshake signals for Peripheral Peripherals

Controller, and Memory Addresses and handshake

signals for Memory.
DMAC

RAK.OY0 /]

Input/Output Processors

CPU IOP —|D1
* main memory — D2
Mem bus
—| Dn
1/O
bus

CPU Issues instruction to IOP
R X0

IOP@\interrupts when done
730\ memory

Device to/from memory
transfers are controlled
by the IOP directly.

|OP steals memory cycles.

target device

/ where cmnds are

OP | Device | Address
looks in memory for commands

Addr | Cnt| Other

what / / \ \specia

to do requests

where how
to put much
data

RHK.S96 22

Relationship to Processor Architecture

e |/O instructions and busses have largely
disappeared

* Interrupt vectors have been replaced by jump tables

PC <- M [IVA + interrupt number]
PC <- IVA + interrupt number

e Interrupts:
— Stack replaced by shadow registers
— Handler saves registers and re-enables higher priority int's

— Interrupt types reduced in number; handler must query interrupt
controller

RHK.S96 23

Relationship to Processor Architecture

e Caches required for processor performance cause
problems for I/O

— Flushing is expensive, I/O polutes cache

— Solution is borrowed from shared memory multiprocessors
"snooping"

 Virtual memory frustrates DMA

e Load/store architecture at odds with atomic
operations
— load locked, store conditional

o Stateful processors hard to context switch

RHK.S96 24

