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Review—I/O Systems
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Time(workload) = Time(CPU) + Time(I/O) - Time(Overlap)
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Review—Disk I/O Performance

Response time = Queue + Device Service time
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Storage System Issues
• Historical Context of Storage I/O
• Storage I/O Performance Measures
• Secondary and Tertiary Storage Devices
• A Little Queuing Theory
• Processor Interface Issues
• I/O Buses
• Redundant Arrarys of Inexpensive Disks (RAID)
• ABCs of UNIX File Systems
• I/O Benchmarks
• Comparing UNIX File System Performance
• Tertiary Storage Systems
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Review: Devices—Magnetic Disks

Sector
Track

Cylinder

Head
Platter

• Purpose:
– Long-term, nonvolatile storage
– Large, inexpensive, slow level in the 

storage hierarchy

• Characteristics:
–  Seek Time (~20 ms avg, 1M cyc at 

50MHz)
» Positional latency
» Rotational latency

•  Transfer rate
– About a sector per ms (1-10 MB/s)
– Blocks

•  Capacity
– Gigabytes
– Quadruples every 3 years 

(aerodynamics)

3600 RPM = 60 RPS => 16 ms per rev
    ave rot. latency = 8 ms
32 sectors per track => 0.5 ms per sector
1 KB per sector => 2 MB / s
                                 32 KB per track
20 tracks per cyl => 640 KB per cyl
2000 cyl => 1.2 GB

Response time
 = Queue + Controller + Seek + Transfer

Service time
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Disk Time Example

• Disk Parameters:
– Transfer size is 8K bytes
– Advertised average seek is 12 ms
– Disk spins at 7200 RPM
– Transfer rate is 4 MB/sec

• Controller overhead is 2 ms
• Assume that disk is idle so no queuing delay
• What is Average Disk Access Time for a Sector?

– Ave seek + ave rot delay + transfer time + controller overhead
– 12 ms + 0.5/(7200 RPM/60) + 8 KB/4 MB/s + 2 ms
– 12 + 4.15 + 2 + 2 = 20 ms

• Advertised seek time assumes no locality: typically 1/4 
to 1/3 advertised seek time: 20 ms => 12 ms
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A Little Queuing Theory

• Service time completions vs. waiting time for a busy 
server when randomly arriving event joins a waiting 
line of arbitrary length when server is busy, otherwise 
serviced immediately

• A single server queue: combination of a servicing 
facilty that accomodates 1 customer at a time (server) 
+ waiting area (waiting line): together called a queue

• Server spends a variable amount of time with 
customers; how do you characterize variability?
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A Little Queuing Theory

• Server spends a variable amount of time with customers
– Weighted mean m1 = (f1 x T1 + f2 x T2 +...+ fn x Tn)/F  (F=f1 + f2 +...)
– Squared coefficient of variance: C
C = variance/m12

variance = (f1 x T12 + f2 x T22 +...+ fn x Tn2)/F – m12

• Exponential distribution C = 1 : most short relative to average, few others 
long; 90% < 2.3 x average, 63% < average

• Hypoexponential distribution C < 1 : most close to average, 
C=0.5 => 90% < 2.0 x average, only 57% < average

• Hyperexponential distribution C > 1 : further from average 
C=2.0 => 90% < 2.8 x average, 69% < average
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A Little Queuing Theory: 
Variable Service Time

• Server spends a variable amount of time with customers
– Weighted mean m1 = (f1xT1 + f2xT2 +...+ fnXTn)/F  (F=f1+f2+...)
– Squared coefficient of variance C

• Disk response times C ≈ 1.5  (majority seeks < average)
• Yet usually pick C = 1.0 for simplicity
• Another useful value is average time must wait for server 

to complete task m1(z)
– Not just 1/2 x m1 because doesn’t capture variance
– Can derive m1(z) = 1/2 x m1 x (1 + C)
– No variance => C= 0 => m1(z) = 1/2 x m1
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A Little Queuing Theory: 
Litttle’s Theorem

• Queuing models assume state of equilibrium: 
input rate = output rate

• Notation:
 r average number of arriving customers/second

Ts average time to service a customer
u server utilization (0..1): u = r x Ts
Tw average time/customer in waiting line
Tq average time/customer in queue: Tq =Tw + Ts
Lw average length of waiting line:Lw = r x Tw
Lq average length of queue:Lq = r x Tq

• Little’s Law: r = Lq / Tq = Lw / Tw = u / Ts 
Mean number customers = arrival rate x mean service 
time
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A Little Queuing Theory:
Average Wait Time

• Calculating average wait time Tw
– If something at server, it takes to complete on average m1(z)
– Chance server is busy = u; average delay is u x m1(z)
– Afterward, all customers in line must complete; each avg Ts

 Tw = u x m1(z) +  Lw x Ts = 1/2 x u x  Ts  x (1 + C) +  Lw x Ts
Tw = 1/2 x u x  Ts  x (1 + C) +  r x Tw x Ts
Tw = 1/2 x u x  Ts  x (1 + C) +  u x Tw
Tw x (1 – u)  = Ts  x  u  x (1 + C) /2
Tw = Ts  x  u  x  (1 + C) / (2 x (1 – u))

• Notation:
 r average number of arriving customers/second

Ts average time to service a customer
u server utilization (0..1): u = r x Ts
Tw average time/customer in waiting line
Lw average length of waiting line:Lw = r x Tw
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A Little Queuing Theory: 
M/G/1 and M/M/1

• Assumptions so far:
– System in equilibrium
– Time between two successive arrivals in line are random
– Server can start on next customer immediately after prior finishes
– No limit to the waiting line: works First-In-First-Out
– Afterward, all customers in line must complete; each avg Ts

• Described “memoryless” Markovian request arrival (M 
for C=1 exponentially random), General service 
distribution (no restrictions), 1 server: M/G/1 queue

• When Service times have C = 1, M/M/1 queue
Tw = Ts  x  u  x (1 + C) /(2 x (1 – u)) =  Ts  x  u  / (1 – u)

 Ts average time to service a customer
u server utilization (0..1): u = r x Ts
Tw average time/customer in waiting line

• Note distinction between waiting time and queue delay
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A Little Queuing Theory: 
An Example

• Suppose processor sends 10 x 8KB disk I/Os per second,  
requests exponentially distrib., disk service time = 20 ms

• On average, how utilized is the disk?
– What is the number of requests in the waiting line?
– What is the average time spent in the waiting line?

– What is the average response time for a disk request?

• Notation:
 r average number of arriving customers/second = 10

Ts average time to service a customer = 20 ms
u server utilization (0..1): u = r x Ts= 10/s x .02s = 0.2
Tw average time/customer in waiting line = Ts  x  u  / (1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms
Tq average time/customer in queue: Tq =Tw +Ts= 25 ms
Lw average length of waiting line:Lw = r x Tw

 = 10/s x .005s = 0.05 requests in wait line
Lq average length of “queue”:Lq = r x Tq= 10/s x .025s = 0.25
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A Little Queuing Theory: 
Another Example

• Suppose processor sends 20 x 8KB disk I/Os per sec,  
requests exponentially distrib., disk service time = 12 ms

• On average, how utilized is the disk?
– What is the number of requests in the waiting line?
– What is the average time a spent in the waiting line?

– What is the average response time for a disk request?

• Notation:
 r average number of arriving customers/second= 20

Ts average time to service a customer= 12 ms
u server utilization (0..1): u = r x Ts= 20/s x .012s = 0.24
Tw average time/customer in waiting line = Ts  x  u  / (1 – u) 

= 12 x 0.24/(1-0.24) = 12 x 0.32 = 3.8 ms
Tq average time/customer in queue: Tq =Tw +Ts= 16 ms
Lw average length of waiting line:Lw = r x Tw

 = 20/s x .0038s = 0.016 requests in wait line
Lq average length of “queue”:Lq = r x Tq= 20/s x .016s = 0.32



RHK.S96  15

A Little Queuing Theory:
Yet Another Example

• Suppose processor sends 10 x 8KB disk I/Os per second,  
req. squared coef. var. = 1.5, disk service time = 20 ms

• On average, how utilized is the disk?
– What is the number of requests in the waiting line?

– What is the average time a spent in the waiting line?
– What is the average response time for a disk request?

• Notation:
 r average number of arriving customers/second= 10

Ts average time to service a customer= 20 ms
u server utilization (0..1): u = r x Ts= 10/s x .02s = 0.2
Tw average time/customer in waiting line = Ts  x  u  x (1 + C) /(2 x (1 – u)) 

= 20 x 0.2(2.5)/2(1 – 0.2) = 20 x 0.32 = 6.25 ms
Tq average time/customer in queue: Tq =Tw +Ts= 26 ms
Lw average length of waiting line:Lw = r x Tw

 = 10/s x .006s = 0.06 requests in wait line
Lq average length of “queue”:Lq = r x Tq= 10/s x .026s = 0.26
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Processor Interface Issues

•  Interconnections
– Busses

•  Processor interface
– Interrupts
– Memory mapped I/O

•  I/O Control Structures
– Polling
– Interrupts
– DMA
– I/O Controllers
– I/O Processors

• Capacity, Access Time, Bandwidth



RHK.S96  17

I/O Interface

Independent I/O Bus
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memory
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Memory

Lines distinguish between
      I/O and memory transferscommon memory

& I/O bus

VME bus
Multibus-II
Nubus

40 Mbytes/sec
optimistically

10 MIP processor
completely
saturates the bus!
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Memory Mapped I/O

Single Memory & I/O Bus 
No Separate I/O Instructions
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Programmed I/O (Polling)

CPU

IOC

device

Memory

Is the
data

ready?

read
data

store
data

yes
no

done? no
yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O 
completion can be
dispersed among
computationally
intensive code
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Interrupt Driven Data Transfer
CPU

IOC

device

Memory

add
sub
and
or
nop

read
store
...
rti

memory

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)

Device xfer rate = 10 MBytes/sec => 0 .1 x 10   sec/byte => 0.1 µsec/byte 
                                                         => 1000 bytes = 100 µsec 
1000 transfers x 100 µsecs = 100 ms = 0.1 CPU seconds

-6

User program progress only halted during 
      actual transfer

1000 transfers at 1 ms each:
      1000 interrupts @ 2 µsec per interrupt
      1000 interrupt service @ 98 µsec each = 0.1 CPU seconds

Still far from device transfer rate! 1/2 in interrupt overhead
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Direct Memory Access

CPU

IOC

device

Memory DMAC

Time to do 1000 xfers at 1 msec each:
1 DMA set-up sequence @ 50 µsec
1 interrupt @ 2 µsec
1 interrupt service sequence @ 48 µsec

.0001 second of CPU time

CPU sends a starting address, 
direction,  and length count to 
DMAC. Then issues "start".

DMAC provides handshake signals for Peripheral
Controller, and Memory Addresses and handshake
signals for Memory.

0
ROM

RAM

Peripherals

DMAC
n

Memory 
Mapped I/O
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Input/Output Processors
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Relationship to Processor Architecture

• I/O instructions and busses have largely 
disappeared

• Interrupt vectors have been replaced by jump tables
PC <- M [ IVA + interrupt number ]
PC <- IVA + interrupt number

• Interrupts:
– Stack replaced by shadow registers
– Handler saves registers and re-enables higher priority int's
– Interrupt types reduced in number; handler must query interrupt 

controller
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Relationship to Processor Architecture

• Caches required for processor performance cause 
problems for I/O

– Flushing is expensive, I/O polutes cache
– Solution is borrowed from shared memory multiprocessors 

"snooping"

• Virtual memory frustrates DMA
• Load/store architecture at odds with atomic 

operations
–  load locked, store conditional

• Stateful processors hard to context switch


