
RHK.S96 1

Lecture 21: I/O—A Little Queuing
Theory and I/O Interfaces

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review—I/O Systems

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk Disk

I/O
Controller

I/O
Controller

Graphics Network

interruptsinterrupts

Time(workload) = Time(CPU) + Time(I/O) - Time(Overlap)

RHK.S96 3

Review—Disk I/O Performance

Response time = Queue + Device Service time

100%

Response
Time (ms)

Throughput
(% total BW)

0

100

200

300

0%

Proc

Queue

IOC Device

Metrics: Response Time
and Throughput

RHK.S96 4

Storage System Issues
• Historical Context of Storage I/O
• Storage I/O Performance Measures
• Secondary and Tertiary Storage Devices
• A Little Queuing Theory
• Processor Interface Issues
• I/O Buses
• Redundant Arrarys of Inexpensive Disks (RAID)
• ABCs of UNIX File Systems
• I/O Benchmarks
• Comparing UNIX File System Performance
• Tertiary Storage Systems

RHK.S96 5

Review: Devices—Magnetic Disks

Sector
Track

Cylinder

Head
Platter

• Purpose:
– Long-term, nonvolatile storage
– Large, inexpensive, slow level in the

storage hierarchy

• Characteristics:
– Seek Time (~20 ms avg, 1M cyc at

50MHz)
» Positional latency
» Rotational latency

• Transfer rate
– About a sector per ms (1-10 MB/s)
– Blocks

• Capacity
– Gigabytes
– Quadruples every 3 years

(aerodynamics)

3600 RPM = 60 RPS => 16 ms per rev
 ave rot. latency = 8 ms
32 sectors per track => 0.5 ms per sector
1 KB per sector => 2 MB / s
 32 KB per track
20 tracks per cyl => 640 KB per cyl
2000 cyl => 1.2 GB

Response time
 = Queue + Controller + Seek + Transfer

Service time

RHK.S96 6

Disk Time Example

• Disk Parameters:
– Transfer size is 8K bytes
– Advertised average seek is 12 ms
– Disk spins at 7200 RPM
– Transfer rate is 4 MB/sec

• Controller overhead is 2 ms
• Assume that disk is idle so no queuing delay
• What is Average Disk Access Time for a Sector?

– Ave seek + ave rot delay + transfer time + controller overhead
– 12 ms + 0.5/(7200 RPM/60) + 8 KB/4 MB/s + 2 ms
– 12 + 4.15 + 2 + 2 = 20 ms

• Advertised seek time assumes no locality: typically 1/4
to 1/3 advertised seek time: 20 ms => 12 ms

RHK.S96 7

A Little Queuing Theory

• Service time completions vs. waiting time for a busy
server when randomly arriving event joins a waiting
line of arbitrary length when server is busy, otherwise
serviced immediately

• A single server queue: combination of a servicing
facilty that accomodates 1 customer at a time (server)
+ waiting area (waiting line): together called a queue

• Server spends a variable amount of time with
customers; how do you characterize variability?

Proc

Queue

IOC Device

waiting line server

RHK.S96 8

A Little Queuing Theory

• Server spends a variable amount of time with customers
– Weighted mean m1 = (f1 x T1 + f2 x T2 +...+ fn x Tn)/F (F=f1 + f2 +...)
– Squared coefficient of variance: C
C = variance/m12

variance = (f1 x T12 + f2 x T22 +...+ fn x Tn2)/F – m12

• Exponential distribution C = 1 : most short relative to average, few others
long; 90% < 2.3 x average, 63% < average

• Hypoexponential distribution C < 1 : most close to average,
C=0.5 => 90% < 2.0 x average, only 57% < average

• Hyperexponential distribution C > 1 : further from average
C=2.0 => 90% < 2.8 x average, 69% < average

Proc

Queue

IOC Device

waiting line server

RHK.S96 9

A Little Queuing Theory:
Variable Service Time

• Server spends a variable amount of time with customers
– Weighted mean m1 = (f1xT1 + f2xT2 +...+ fnXTn)/F (F=f1+f2+...)
– Squared coefficient of variance C

• Disk response times C ≈ 1.5 (majority seeks < average)
• Yet usually pick C = 1.0 for simplicity
• Another useful value is average time must wait for server

to complete task m1(z)
– Not just 1/2 x m1 because doesn’t capture variance
– Can derive m1(z) = 1/2 x m1 x (1 + C)
– No variance => C= 0 => m1(z) = 1/2 x m1

Proc

Queue

IOC Device

waiting line server

RHK.S96 10

A Little Queuing Theory:
Litttle’s Theorem

• Queuing models assume state of equilibrium:
input rate = output rate

• Notation:
 r average number of arriving customers/second

Ts average time to service a customer
u server utilization (0..1): u = r x Ts
Tw average time/customer in waiting line
Tq average time/customer in queue: Tq =Tw + Ts
Lw average length of waiting line:Lw = r x Tw
Lq average length of queue:Lq = r x Tq

• Little’s Law: r = Lq / Tq = Lw / Tw = u / Ts
Mean number customers = arrival rate x mean service
time

Proc

Queue

IOC Device

waiting line server

RHK.S96 11

A Little Queuing Theory:
Average Wait Time

• Calculating average wait time Tw
– If something at server, it takes to complete on average m1(z)
– Chance server is busy = u; average delay is u x m1(z)
– Afterward, all customers in line must complete; each avg Ts

 Tw = u x m1(z) + Lw x Ts = 1/2 x u x Ts x (1 + C) + Lw x Ts
Tw = 1/2 x u x Ts x (1 + C) + r x Tw x Ts
Tw = 1/2 x u x Ts x (1 + C) + u x Tw
Tw x (1 – u) = Ts x u x (1 + C) /2
Tw = Ts x u x (1 + C) / (2 x (1 – u))

• Notation:
 r average number of arriving customers/second

Ts average time to service a customer
u server utilization (0..1): u = r x Ts
Tw average time/customer in waiting line
Lw average length of waiting line:Lw = r x Tw

RHK.S96 12

A Little Queuing Theory:
M/G/1 and M/M/1

• Assumptions so far:
– System in equilibrium
– Time between two successive arrivals in line are random
– Server can start on next customer immediately after prior finishes
– No limit to the waiting line: works First-In-First-Out
– Afterward, all customers in line must complete; each avg Ts

• Described “memoryless” Markovian request arrival (M
for C=1 exponentially random), General service
distribution (no restrictions), 1 server: M/G/1 queue

• When Service times have C = 1, M/M/1 queue
Tw = Ts x u x (1 + C) /(2 x (1 – u)) = Ts x u / (1 – u)

 Ts average time to service a customer
u server utilization (0..1): u = r x Ts
Tw average time/customer in waiting line

• Note distinction between waiting time and queue delay

RHK.S96 13

A Little Queuing Theory:
An Example

• Suppose processor sends 10 x 8KB disk I/Os per second,
requests exponentially distrib., disk service time = 20 ms

• On average, how utilized is the disk?
– What is the number of requests in the waiting line?
– What is the average time spent in the waiting line?

– What is the average response time for a disk request?

• Notation:
 r average number of arriving customers/second = 10

Ts average time to service a customer = 20 ms
u server utilization (0..1): u = r x Ts= 10/s x .02s = 0.2
Tw average time/customer in waiting line = Ts x u / (1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms
Tq average time/customer in queue: Tq =Tw +Ts= 25 ms
Lw average length of waiting line:Lw = r x Tw

 = 10/s x .005s = 0.05 requests in wait line
Lq average length of “queue”:Lq = r x Tq= 10/s x .025s = 0.25

RHK.S96 14

A Little Queuing Theory:
Another Example

• Suppose processor sends 20 x 8KB disk I/Os per sec,
requests exponentially distrib., disk service time = 12 ms

• On average, how utilized is the disk?
– What is the number of requests in the waiting line?
– What is the average time a spent in the waiting line?

– What is the average response time for a disk request?

• Notation:
 r average number of arriving customers/second= 20

Ts average time to service a customer= 12 ms
u server utilization (0..1): u = r x Ts= 20/s x .012s = 0.24
Tw average time/customer in waiting line = Ts x u / (1 – u)

= 12 x 0.24/(1-0.24) = 12 x 0.32 = 3.8 ms
Tq average time/customer in queue: Tq =Tw +Ts= 16 ms
Lw average length of waiting line:Lw = r x Tw

 = 20/s x .0038s = 0.016 requests in wait line
Lq average length of “queue”:Lq = r x Tq= 20/s x .016s = 0.32

RHK.S96 15

A Little Queuing Theory:
Yet Another Example

• Suppose processor sends 10 x 8KB disk I/Os per second,
req. squared coef. var. = 1.5, disk service time = 20 ms

• On average, how utilized is the disk?
– What is the number of requests in the waiting line?

– What is the average time a spent in the waiting line?
– What is the average response time for a disk request?

• Notation:
 r average number of arriving customers/second= 10

Ts average time to service a customer= 20 ms
u server utilization (0..1): u = r x Ts= 10/s x .02s = 0.2
Tw average time/customer in waiting line = Ts x u x (1 + C) /(2 x (1 – u))

= 20 x 0.2(2.5)/2(1 – 0.2) = 20 x 0.32 = 6.25 ms
Tq average time/customer in queue: Tq =Tw +Ts= 26 ms
Lw average length of waiting line:Lw = r x Tw

 = 10/s x .006s = 0.06 requests in wait line
Lq average length of “queue”:Lq = r x Tq= 10/s x .026s = 0.26

RHK.S96 16

Processor Interface Issues

• Interconnections
– Busses

• Processor interface
– Interrupts
– Memory mapped I/O

• I/O Control Structures
– Polling
– Interrupts
– DMA
– I/O Controllers
– I/O Processors

• Capacity, Access Time, Bandwidth

RHK.S96 17

I/O Interface

Independent I/O Bus

CPU

Interface Interface

Peripheral Peripheral

Memory

memory
bus

Seperate I/O instructions (in,out)

CPU

Interface Interface

Peripheral Peripheral

Memory

Lines distinguish between
 I/O and memory transferscommon memory

& I/O bus

VME bus
Multibus-II
Nubus

40 Mbytes/sec
optimistically

10 MIP processor
completely
saturates the bus!

RHK.S96 18

Memory Mapped I/O

Single Memory & I/O Bus
No Separate I/O Instructions

CPU

Interface Interface

Peripheral Peripheral

Memory

ROM

RAM

I/O$

CPU

L2 $

Memory Bus

Memory Bus Adaptor

I/O bus

RHK.S96 19

Programmed I/O (Polling)

CPU

IOC

device

Memory

Is the
data

ready?

read
data

store
data

yes
no

done? no
yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O
completion can be
dispersed among
computationally
intensive code

RHK.S96 20

Interrupt Driven Data Transfer
CPU

IOC

device

Memory

add
sub
and
or
nop

read
store
...
rti

memory

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)

Device xfer rate = 10 MBytes/sec => 0 .1 x 10 sec/byte => 0.1 µsec/byte
 => 1000 bytes = 100 µsec
1000 transfers x 100 µsecs = 100 ms = 0.1 CPU seconds

-6

User program progress only halted during
 actual transfer

1000 transfers at 1 ms each:
 1000 interrupts @ 2 µsec per interrupt
 1000 interrupt service @ 98 µsec each = 0.1 CPU seconds

Still far from device transfer rate! 1/2 in interrupt overhead

RHK.S96 21

Direct Memory Access

CPU

IOC

device

Memory DMAC

Time to do 1000 xfers at 1 msec each:
1 DMA set-up sequence @ 50 µsec
1 interrupt @ 2 µsec
1 interrupt service sequence @ 48 µsec

.0001 second of CPU time

CPU sends a starting address,
direction, and length count to
DMAC. Then issues "start".

DMAC provides handshake signals for Peripheral
Controller, and Memory Addresses and handshake
signals for Memory.

0
ROM

RAM

Peripherals

DMAC
n

Memory
Mapped I/O

RHK.S96 22

Input/Output Processors

CPU IOP

Mem

D1

D2

Dn

. . .
main memory

bus

I/O
bus

CPU

IOP

issues instruction to IOP

interrupts when done
(1)

memory

(2)

(3)

(4)

Device to/from memory
transfers are controlled
by the IOP directly.

IOP steals memory cycles.

OP Device Address

target device
where cmnds are

looks in memory for commands

OP Addr Cnt Other

what
to do

where
to put
data

how
much

special
requests

RHK.S96 23

Relationship to Processor Architecture

• I/O instructions and busses have largely
disappeared

• Interrupt vectors have been replaced by jump tables
PC <- M [IVA + interrupt number]
PC <- IVA + interrupt number

• Interrupts:
– Stack replaced by shadow registers
– Handler saves registers and re-enables higher priority int's
– Interrupt types reduced in number; handler must query interrupt

controller

RHK.S96 24

Relationship to Processor Architecture

• Caches required for processor performance cause
problems for I/O

– Flushing is expensive, I/O polutes cache
– Solution is borrowed from shared memory multiprocessors

"snooping"

• Virtual memory frustrates DMA
• Load/store architecture at odds with atomic

operations
– load locked, store conditional

• Stateful processors hard to context switch

