
RHK.S96 1

Lecture 30: Multiprocessors—
Flynn Categories, Large vs. Small

Scale, Cache Coherency

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Flynn Categories

• SISD (Single Instruction Single Data)
– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

» Simple programming model
» Low overhead
» Flexibility
» All custom

• MIMD (Multiple Instruction Multiple Data)
– Examples: SPARCCenter, T3D

» Flexible
» Use off-the-shelf micros

RHK.S96 3

Small-Scale MIMD Designs
• Memory: centralized with uniform access time

(“uma”) and bus interconnect
• Examples: SPARCCenter, Challenge, SystemPro

RHK.S96 4

Large-Scale MIMD Designs
• Memory: distributed with nonuniform access time

(“numa”) and scalable interconnect (distributed memory)
• Examples: T3D, Exemplar, Paragon, CM-5

Low Latency
High Reliability

1 cycle

40 cycles 100 cycles

RHK.S96 5

Communication Models

• Shared Memory
– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

» Model of choice for uniprocessors, small-scale MPs
» Ease of programming
» Lower latency
» Easier to use hardware controlled caching

• Message passing
– Processors have private memories, communicate via messages
– Advantages:

» Less hardware, easier to design
» Focuses attention on costly non-local operations

• Can support either model on either HW base

RHK.S96 6

Important Communication
Properties

• Bandwidth
– Need high bandwidth in communication
– Cannot scale, but stay close
– Make limits in network, memory, and processor
– Overhead to communicate is a problem in many machines

• Latency
– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to

overlap communication and computation

• Latency Hiding
– How can a mechanism help hide latency?
– Examples: overlap message send with computation, prefetch

RHK.S96 7

Small-Scale—Shared Memory

• Caches serve to:
– Increase bandwidth

versus bus/memory
– Reduce latency of

access
– Valuable for both private

data and shared data

• What about cache
consistency?

RHK.S96 8

The Problem of Cache Coherency

RHK.S96 9

What Does Coherency Mean?

• Informally:
– Any read must return the most recent write
– Too strict and very difficult to implement

• Better:
– Any write must eventually be seen by a read
– All writes are seen in order (“serialization”)

• Two rules to ensure this:
– If P writes x and P1 reads it, P’s write will be seen if the

read and write are sufficiently far apart
– Writes to a single location are serialized:

seen in one order
» Latest write will be seen
» Otherewise could see writes in illogical order

 (could see older value after a newer value)

RHK.S96 10

Potential Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for data to all processors
– Processors snoop to see if they have a copy and respond accordingly
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes
– Keep track of what is being shared in one centralized place
– Distributed memory => distributed directory (avoids bottlenecks)
– Send point-to-point requests to processors
– Scales better than Snoop
– Actually existed BEFORE Snoop-based schemes

RHK.S96 11

Basic Snoopy Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches which

snoop and invalidate any copies
– Read Miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol:
– Write to shared data: broadcast on bus, processors snoop, and

update copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests
– Bus is single point of arbitration

RHK.S96 12

Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate uses spatial locality: one transaction per block
– Broadcast has lower latency between write and read
– Broadcast: BW (increased) vs. latency (decreased) tradeoff

Name Protocol Type Memory-write policy Machines using

Write Once Write invalidate Write back First snoopy protocol.
after first write

Synapse N+1 Write invalidate Write back 1st cache-coherent MPs

Berkeley Write invalidate Write back Berkeley SPUR

Illinois Write invalidate Write back SGI Power and Challenge

“Firefly” Write broadcast Write back private,
Write through shared SPARCCenter 2000

RHK.S96 13

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory
– OR Dirty in exactly one cache
– OR Not in any caches

• Each cache block is in one state:
– Shared: block can be read
– OR Exclusive: cache has only copy, its writeable, and dirty
– OR Invalid: block contains no data

• Read misses: cause all caches to snoop
• Writes to clean line are treated as misses

RHK.S96 14

Snoopy-Cache State Machine-I

• State machine
for CPU requests

Invalid
Shared

(read/only)

Exclusive
(read/
write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place write miss
on bus

CPU read miss
Write back block

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

RHK.S96 15

Snoopy-Cache State Machine-II

• State machine
for bus requests

Invalid
Shared

(read/only)

Exclusive
(read/
write)

Write Back
Block

Write miss for
this block

Read miss for
this block

Write miss for
the block

Write Back
Block

RHK.S96 16

Snoop Cache: State Machine
Extensions:

– Fourth State: Ownership
– Clean-> dirty, need

invalidate only (upgrade
request)
Berkeley Protocol

– Clean exclusive state (no
miss for private data on
write)
Illinois Protocol

RHK.S96 17

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

RHK.S96 18

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

RHK.S96 19

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

RHK.S96 20

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

RHK.S96 21

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

RHK.S96 22

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

Assumes A1 and A2 map to same cache block

RHK.S96 23

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, and write the
same cache block

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, handle miss (invalidate
may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: can have multiple outstanding

transactions for a block
» Multiple misses can interleave, allowing two caches to grab block

in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

