
RHK.S96 1

Lecture 31: Multiprocessors—
Directory Schemes

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review: Small-Scale MIMD Designs

• Memory: centralized with uniform access time
and bus interconnect

• Examples: SPARCCenter, Challenge, SystemPro

Centralized
Memory

RHK.S96 3

Review: Large-Scale MIMD Designs

• Memory: distributed with nonuniform access
time and scalable interconnect (distributed
memory)

• Examples: T3D, Exemplar, Paragon, CM-5

Distributed
Memory

RHK.S96 4

Review: Communication Models

• Shared Memory
– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

» Model of choice for uniprocessors, small-scale MPs
» Ease of programming
» Lower latency
» Easier to use hardware controlled caching

• Message passing
– Processors have private memories communicate with messages
– Advantages:

» less hardware, easier to design
» focuses attention on costly operations

• Can support either model on either HW base

RHK.S96 5

Review: Basic Snoopy Protocols

• Write Invalidate Protocol:
– Write to shared data: an invalidate is sent to all caches

which snoop and invalidate any copies
– Read miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol:
– Write to shared data: broadcast on bus, processors

snoop, and update copies
– Read miss: memory is always up-to-date

• Write Serialization: bus serializes requests

RHK.S96 6

Snoop Cache: State Machine
Extensions:

– Fourth State
– Clean-> dirty, need

invalidate only
(upgrade request)
Berkeley Protocol

– Clean exclusive state
(no miss for private
data on write)
Illinois Protocol

RHK.S96 7

Snoop Cache Variations

Berkeley Protocol
Owned Exclusive

Owned Shared
Shared
Invalid

Basic Protocol
Exclusive

Shared
Invalid

Illinois Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

RHK.S96 8

Implementing Snooping Caches
• Multiple processors must be on bus, access to both

addresses and data
• Add a few new commands to perform coherency, in

addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update

RHK.S96 9

Implementing Snooping Caches
• Bus serializes writes, getting bus ensures no one else

can perform operation
• On a miss in a write back cache, may have the desired

copy and its dirty, so must reply
• Add extra state bit to cache to determine shared or not
• Since every bus transaction checks cache tags, could

interfere with CPU just to check: solution is a duplicate
set of tags just to allow checks in parallel with CPU or
second level cache that obeys inclusion

RHK.S96 10

Larger MPs

• Separate Memory per Processor
• Local or Remote access via memory controller
• Cache Coherency solution: non-cached pages
• Alternative: directory per cache that tracks state of

every block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

• Prevent directory as bottleneck: distribute directory
entries with memory, each keeping track of which
Procs have copies of their blocks

RHK.S96 11

Distributed Directory MPs

RHK.S96 12

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached
– Exclusive: 1 processor (owner) has data; memory out-of-date

• In addition to cache state, must track which
processors have data when in the shared state

• Terms:
– Local node is the node where a request originates
– Home node is the node where the memory location of an

address resides
– Remote node is the node that has a copy of a cache block,

whether exclusive or shared.

RHK.S96 13

Directory Protocol Messages
Message type Source Destination Msg
Read miss Local processor Home directory P, A

– Processor P reads data at address A; send data and make P a
read sharer

Write miss Local processor Home directory P, A
– Processor P writes data at address A; send data and make P the

exclusive owner
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data
– Return a data value from the home memory

Data write-back Remote cache Home directory A, Data
– Write-back a data value for address A

RHK.S96 14

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value & only possible requests for that block are:

– Read miss: requesting processor is sent back the data from memory and
the requestor is the only sharing node. The state of the block is made
Shared.

– Write miss: requesting processor is sent the value and becomes the
Sharing node. The block is made Exclusive to indicate that the only valid
copy is cached. Sharers indicates the identity of the owner.

• Block is Shared, the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in the

set Sharers are sent invalidate messages, & Sharers is set to identity of
requesting processor. The state of the block is made Exclusive.

RHK.S96 15

Example Directory Protocol

• Block is Exclusive: current value of the block is held in
the cache of the processor identified by the set Sharers
(the owner) & three possible directory requests:

– Read miss: owner processor is sent a data fetch message, which
causes state of block in owner’s cache to transition to Shared and
causes owner to send data to directory, where it is written to memory
and sent back to the requesting processor. Identity of requesting
processor is added to set Sharers, which still contains the identity of
the processor that was the owner (since it still has a readable copy).

– Data write-back: owner processor is replacing the block and hence
must write it back. This makes the memory copy up-to-date (the home
directory essentially becomes the owner), the block is now uncached,
and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory from
which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to identity of new owner, and state of block is
made Exclusive.

RHK.S96 16

State Transition Diagram for an
Individual Cache Block in a

Directory Based System

• The states are identical to
those in the snoopy case,
and the transactions are
very similar with explicit
invalidate and write-back
requests replacing the
write misses that were
formerly broadcast on the
bus.

Invalid Shared

Exclusive

RHK.S96 17

State Transition Diagram for the
Directory

• The same states and
structure as the
transition diagram for
an individual cache

– All actions are in color
since they all are
externally caused. Italics
indicates the action taken
the directory in response
to the request. Bold italics
indicate an action that
updates the sharing set,
Sharers, as opposed to
sending a message.

Uncached Shared

Exclusive

WrMs

WrBk

WrMs

RdMs

RdMs

Data Value
Reply

Sharers =
Sharers+{P}

Fetch/Invalidate
Sharers={P}

Sharers={}

Data Value Reply
Sharers = Sharers+{P}

RHK.S96 18

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

RHK.S96 19

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

RHK.S96 20

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

RHK.S96 21

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10

10
10

P2: Write 40 to A2 10

RHK.S96 22

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

RHK.S96 23

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

