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Review: Miss Rates for Snooping 
Protocol

• 4th C: Coherency Misses
• More processors: increase Coherency, decrease Capacity

Fast Fourier Transform (FFT): Matrix transposes + comp.
LU factorization of dense 2D matrix (linear algebra)
Barnes-Hut n-body algorithm solving galaxy evolution probem
Ocean simluates influence of eddy & boundary currents on 

large-scale flow in ocean: dynamic arrays per grid
VolRend is parallel volume rendering: scientific visualization
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Review: Block Size

• Since cache block hold 
multiple words, may get 
coherency traffic for 
unrelated variables in same 
block

• False sharing arises from the 
use of an invalidation-based 
coherency algorithm. False 
sharing occurs when a block 
is invalidated (and a 
subsequent reference causes 
a miss) because some word 
in the block, other than the 
one being read, is written 
into. 
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Review: % Misses Caused by 
Coherency Traffic vs. Block Size

• FFT communicates data in large 
blocks & communication adapts to the 
block size (it is a parameter to the 
code);  makes effective use of large 
blocks. 

• Ocean competing effects that favor 
different block size 

– accesses to the boundary of each 
subgrid, in one direction the 
accesses match the array layout, 
taking advantage of large blocks, 
while in the other dimension, they 
do not match. These two effects 
largely cancel each other out 
leading to an overall decrease in 
the coherency misses as well as 
the capacity misses.
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Review: Miss Rates for Snooping 
Protocol

– Cache size is 64KB, 2-way set 
associative, with 32B blocks. 

– With the exception of Volrend, the 
misses in these applications are 
generated by accesses to data that is 
potentially shared. 

– Except for Ocean, data is heavily 
shared; in Ocean only the boundaries 
of the subgrids are shared, though the 
entire grid is treated as a shared data 
object. Since the boundaries change as 
we increase the processor count (for a 
fixed size problem), different amounts 
of the grid become shared. The 
analmous increase in miss rate for 
Ocean in moving from 1 to 2 
processors arises because of conflict 
misses in accessing the subgrids.
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Processor Count
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% Misses Caused by Coherency 
Traffic vs. Processors

• % cache misses caused by 
coherency transactions typically 
rises when a fixed size problem is 
run on more processors. 

• The absolute number of coherency 
misses is increasing in all these 
benchmarks, including Ocean. In 
Ocean, however, it is difficult to 
separate out these misses from 
others, since the amount of 
sharing of the grid varies with 
processor count.

•  Invalidations increases 
significantly; FFT the miss rate 
arising from coherency misses 
increases from nothing to almost 
7%.
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Review: Bus Traffic as Increase 
Block Size

• Bus traffic climbs steadily as the block 
size is increased. 

• Volrend the increase is more than a 
factor of 10, although the low miss rate 
keeps the absolute traffic small. 

• The factor of 3 increase in traffic for 
Ocean is the best argument against 
larger block sizes. 

• Remember that our protocol treats 
ownership misses the same as other 
misses, slightly increasing the penalty 
for large cache blocks: in both Ocean 
and FFT this effect accounts for less 
than 10% of the traffic.



RHK.S96  8

Synchronization

• Why Synchronize? Need to know when it is safe for 
different processes to use shared data

• Issues for Syncronization:
– Uninterruptable instruction to fetch and update memory (atomic 

operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck; 

techniques to reduce contention and latency of synchronization
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Uninterruptable Instruction to 
Fetch and Update Memory

• Atomic exchange: interchange a value in a register for 
a value in memory

0 => synchronization variable is free 
1 => synchronization variable is locked and unavailable

– Set register to 1 & swap
– New value in register determines success in getting lock  

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value 
passes the test

• Fetch-and-increment: it returns the value of a memory 
location and atomically increments it

– 0 => synchronization variable is free 
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Uninterruptable Instruction to 
Fetch and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same 

memory location since preceeding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4   ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store
beqz R3,try  ; branch store fails
mov R4,R2  ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store
beqz R2,try  ; branch store fails
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User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire, 
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency

– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all 
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable; 
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?
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Steps for Invalidate Protocol

Step P0 $ P1 $ P2 $ Bus/Direct activity
1. Has lock Sh spins Sh spins Sh None
2. Lock<– 0 Ex Inv Inv P0 Invalidates lock
3. Sh miss Sh miss Sh WB P0; P2 gets bus
4. Sh waits Sh lock = 0 Sh P2 cache filled
5. Sh lock=0 Sh exch Sh P2 cache miss(WI)
6. Inv exch Inv r=0;l=1 Ex P2 cache filled; Inv
7. Inv r=1;l=1 Ex locked Inv WB P2; P1 cache
8. Inv spins Ex Inv None
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For Large Scale MPs, Synchronization 
Can Be a Bottleneck

• 20 procs spin on lock held by 1 proc, 50 cycles for bus
Read miss all waiting processors to fetch lock 1000
Write miss by releasing processor and invalidates 50
Read miss by all waiting processors 1000
Write miss by all waiting processors , 
one successful lock, & invalidate all copies 1000
Total time for 1 proc. to acquire & release lock 3050

– Each time one gets a lock, drops out of competition= 1525
– 20 x 1525 = 30,000 cycles for 20 processors to pass through the lock
– Problem is contention for lock and serialization of lock access: 

once lock is free, all compete to see who gets it

• Alternative: create a list of waiting processors, go 
through list: called a “queuing lock”

– Special HW to recognize 1st lock access & lock release

• Another mechanism: fetch-and-increment; can be used 
to create barrier; wait until everyone reaches same point
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Another MP Issue: Memory 
Consistency Models

• What is consistency? When must a processor see the 
new value? e.g., seems that
P1: A = 0; P2: B = 0;

 .....  .....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

•  Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models: what are the rules for 
such cases?

• Sequential consistency: result of any execution is the 
same as if the accesses of each processor were kept in 
order and the accesses among different processors 
were interleaved => assignments before ifs above

– SC: delay all memory accesses until all invalidates done
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Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not really an issue for most programs; they are 

synchronized
– A program is synchronized if all access to shared data are ordered by 

synchronization operations
 write (x)

...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are 
not synchronized

• Several Relaxed Models for Memory Consistency since 
most programs are synchronized: characterized by their 
attitude towards: RAR, WAR, RAW, WAW to different 
addresses
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Key Issues for MPs
• Measuring Performance

– Not just time on one size, but how performance scales with P
– For fixed size problem (same memory per processor) and scaled up 

problem (fixed execution time)
– Care to compare to best uniprocessor algorithm, not just parallel 

program on 1 processor (unless its best)

• Multilevel Caches, Coherency, and Inclusion
– Invalidation at L2 cache forces invalidation at higher levels if caches 

adher to the inclusion property
– But larger L2 blocks lead to several L1 blocks getting invalidated

• Nonblocking Caches and Prefetching
– More latency to hide, so nonblocking caches even more important
– Makes sense if there is available memory bandwidth;  must balance 

bus utilization, false sharing (conflict w/ other processors)
– Want prefetch to be coherent (“nonbinding” to local copy)

• Virtual Memory to get Shared Memory MP: Distributed 
VIrtual Memory (DVM); pages are units of coherency


