
RHK.S96 1

Lecture 33: Multiprocessors—
Synchronization and Consistency

Professor Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

fft lu barnes ocean volrend

8%

2%

1%

14%

1%

8%

2%

1%

18%

1%

8%

2%

1%

15%

1%

8%

2%

1%

13%

1%

8%

2%

1%

9%

1%

1 2 4 8 16

Review: Miss Rates for Snooping
Protocol

• 4th C: Coherency Misses
• More processors: increase Coherency, decrease Capacity

Fast Fourier Transform (FFT): Matrix transposes + comp.
LU factorization of dense 2D matrix (linear algebra)
Barnes-Hut n-body algorithm solving galaxy evolution probem
Ocean simluates influence of eddy & boundary currents on

large-scale flow in ocean: dynamic arrays per grid
VolRend is parallel volume rendering: scientific visualization

RHK.S96 3

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

fft lu barnes ocean volrend

13%

4%

1%

13%

1%

8%

2%

1%

9%

1%

5%

1%
1%

6%

1%

4%

0% 1%

5%

1%

16 32 64 128

Review: Block Size

• Since cache block hold
multiple words, may get
coherency traffic for
unrelated variables in same
block

• False sharing arises from the
use of an invalidation-based
coherency algorithm. False
sharing occurs when a block
is invalidated (and a
subsequent reference causes
a miss) because some word
in the block, other than the
one being read, is written
into.

RHK.S96 4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

16 32 64 128

fft lu barnes

ocean volrend

Review: % Misses Caused by
Coherency Traffic vs. Block Size

• FFT communicates data in large
blocks & communication adapts to the
block size (it is a parameter to the
code); makes effective use of large
blocks.

• Ocean competing effects that favor
different block size

– accesses to the boundary of each
subgrid, in one direction the
accesses match the array layout,
taking advantage of large blocks,
while in the other dimension, they
do not match. These two effects
largely cancel each other out
leading to an overall decrease in
the coherency misses as well as
the capacity misses.

RHK.S96 5

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

fft lu barnes ocean volrend

8%

2%

1%

14%

1%

8%

2%

1%

18%

1%

8%

2%

1%

15%

1%

8%

2%

1%

13%

1%

8%

2%

1%

9%

1%

1 2 4 8 16

Review: Miss Rates for Snooping
Protocol

– Cache size is 64KB, 2-way set
associative, with 32B blocks.

– With the exception of Volrend, the
misses in these applications are
generated by accesses to data that is
potentially shared.

– Except for Ocean, data is heavily
shared; in Ocean only the boundaries
of the subgrids are shared, though the
entire grid is treated as a shared data
object. Since the boundaries change as
we increase the processor count (for a
fixed size problem), different amounts
of the grid become shared. The
analmous increase in miss rate for
Ocean in moving from 1 to 2
processors arises because of conflict
misses in accessing the subgrids.

RHK.S96 6

Processor Count

M
is

s
 R

a
te

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 4 8 16

fft lu barnes

ocean volrend

% Misses Caused by Coherency
Traffic vs. Processors

• % cache misses caused by
coherency transactions typically
rises when a fixed size problem is
run on more processors.

• The absolute number of coherency
misses is increasing in all these
benchmarks, including Ocean. In
Ocean, however, it is difficult to
separate out these misses from
others, since the amount of
sharing of the grid varies with
processor count.

• Invalidations increases
significantly; FFT the miss rate
arising from coherency misses
increases from nothing to almost
7%.

RHK.S96 7

B
y
te

s
 p

e
r

d
a
ta

 r
e
fe

re
n
c
e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

16 32 64 128

fft lu barnes

ocean volrend

Review: Bus Traffic as Increase
Block Size

• Bus traffic climbs steadily as the block
size is increased.

• Volrend the increase is more than a
factor of 10, although the low miss rate
keeps the absolute traffic small.

• The factor of 3 increase in traffic for
Ocean is the best argument against
larger block sizes.

• Remember that our protocol treats
ownership misses the same as other
misses, slightly increasing the penalty
for large cache blocks: in both Ocean
and FFT this effect accounts for less
than 10% of the traffic.

RHK.S96 8

Synchronization

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Syncronization:
– Uninterruptable instruction to fetch and update memory (atomic

operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck;

techniques to reduce contention and latency of synchronization

RHK.S96 9

Uninterruptable Instruction to
Fetch and Update Memory

• Atomic exchange: interchange a value in a register for
a value in memory

0 => synchronization variable is free
1 => synchronization variable is locked and unavailable

– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value
passes the test

• Fetch-and-increment: it returns the value of a memory
location and atomically increments it

– 0 => synchronization variable is free

RHK.S96 10

Uninterruptable Instruction to
Fetch and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceeding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store
beqz R3,try ; branch store fails
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store
beqz R2,try ; branch store fails

RHK.S96 11

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire,
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency

– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable;
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

RHK.S96 12

Steps for Invalidate Protocol

Step P0 $ P1 $ P2 $ Bus/Direct activity
1. Has lock Sh spins Sh spins Sh None
2. Lock<– 0 Ex Inv Inv P0 Invalidates lock
3. Sh miss Sh miss Sh WB P0; P2 gets bus
4. Sh waits Sh lock = 0 Sh P2 cache filled
5. Sh lock=0 Sh exch Sh P2 cache miss(WI)
6. Inv exch Inv r=0;l=1 Ex P2 cache filled; Inv
7. Inv r=1;l=1 Ex locked Inv WB P2; P1 cache
8. Inv spins Ex Inv None

RHK.S96 13

For Large Scale MPs, Synchronization
Can Be a Bottleneck

• 20 procs spin on lock held by 1 proc, 50 cycles for bus
Read miss all waiting processors to fetch lock 1000
Write miss by releasing processor and invalidates 50
Read miss by all waiting processors 1000
Write miss by all waiting processors ,
one successful lock, & invalidate all copies 1000
Total time for 1 proc. to acquire & release lock 3050

– Each time one gets a lock, drops out of competition= 1525
– 20 x 1525 = 30,000 cycles for 20 processors to pass through the lock
– Problem is contention for lock and serialization of lock access:

once lock is free, all compete to see who gets it

• Alternative: create a list of waiting processors, go
through list: called a “queuing lock”

– Special HW to recognize 1st lock access & lock release

• Another mechanism: fetch-and-increment; can be used
to create barrier; wait until everyone reaches same point

RHK.S96 14

Another MP Issue: Memory
Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models: what are the rules for
such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved => assignments before ifs above

– SC: delay all memory accesses until all invalidates done

RHK.S96 15

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not really an issue for most programs; they are

synchronized
– A program is synchronized if all access to shared data are ordered by

synchronization operations
 write (x)

...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are
not synchronized

• Several Relaxed Models for Memory Consistency since
most programs are synchronized: characterized by their
attitude towards: RAR, WAR, RAW, WAW to different
addresses

RHK.S96 16

Key Issues for MPs
• Measuring Performance

– Not just time on one size, but how performance scales with P
– For fixed size problem (same memory per processor) and scaled up

problem (fixed execution time)
– Care to compare to best uniprocessor algorithm, not just parallel

program on 1 processor (unless its best)

• Multilevel Caches, Coherency, and Inclusion
– Invalidation at L2 cache forces invalidation at higher levels if caches

adher to the inclusion property
– But larger L2 blocks lead to several L1 blocks getting invalidated

• Nonblocking Caches and Prefetching
– More latency to hide, so nonblocking caches even more important
– Makes sense if there is available memory bandwidth; must balance

bus utilization, false sharing (conflict w/ other processors)
– Want prefetch to be coherent (“nonbinding” to local copy)

• Virtual Memory to get Shared Memory MP: Distributed
VIrtual Memory (DVM); pages are units of coherency

