[Example: Travelling Salesperson Problem |

Start with any complete tour, perform pairwise exchanges

LOCAL SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 3-4

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities

Chapter 4, Sections 34 1 Chapter 4, Sections 34 4

I Outline | I Example: n-queens |

¢ Hill-climbing Put n queens on an n x n board with no two queens on the same

. . row, column, or diagonal
¢ Simulated annealing

. . . Local search: start with all n, move a queen to reduce conflicts
¢ Genetic algorithms (briefly) g

¢ Local search in continuous spaces (very briefly)

h=5 h=2 h=0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1 million

(Why? Perhaps because choices for queen & are made wrt all others)

Chapter 4, Sections 34 2 Chapter 4, Sections 34

I Tterative improvement algorithms | | Hill-climbing (or gradient ascent/descent) |

In many optimization problems, path is irrelevant; “Like climbing Everest in thick fog with amnesia”
the goal state itself is the solution

" N . . function HILL-CLIMBING(problem) returns a state that is a local maximum
Then state space = set of “complete” configurations inputs: problem, a problem

(complete—state formulation vs. incremental formulation) local variables: current, a node

. N . neighbor, a node
In such cases, can use iterative improvement algorithms;

. u " . . current — MAKE-NODE(INITIAL-STATE[problem])
keep a single “current” state, try to improve it

loop do

neighbor«— a highest-valued successor of current

if VALUE[neighbor] < VALUE[current] then return STATE[current]
Often want to find optimal configuration, e.g., TSP, current < neighbor
but also works for constraint satisfaction problems, e.g. nqueens, timetabling end

Constant space, suitable for online as well as offline search

Chapter 4, Sections 34 3 Chapter 4, Sections 34 6

I Hill-climbing contd. |

Useful to consider state space landscape

objective function lobal maximum

shoulder

local maximum
"flat" local maximum

tate space
current

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves @escape from shoulders @Ioop on flat maxima

Chapter 4, Sections 34 T

I Simulated annealing |

Idea: escape local maxima by allowing some "bad” moves
but gradually decrease their size and frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do

T — schedule[t]

if 7= 0 then return current

next«— a randomly selected successor of current

AE«— VALUE[nezt] = VALUE[current]

if AE > 0 then current«— next

else current — next only with probability e® £/T

Chapter 4, Sections 34 8

I Properties of simulated annealing |

At fixed “temperature” T, state occupation probability reaches
Boltzman distribution

T decreased slowly enough = always reach best state 2*
E@*) | E(x) B(z*)—E(x)
because e i1 Je 7T =e T > 1 for small T

Is this necessarily an interesting guarantee??
Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Chapter 4, Sections 34 9

I Local beam search |

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all % states end up on same local hill
Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Chapter 4, Sections 34 10

I Genetic algorithms |

= stochastic local beam search + generate successors from pairs of states

24 1% _, [32752411 32748[p2

23 20% [24748552 [24752411 || 24752411 |

20 26% [32752411 [32752124 | [32262124]

11 14% ~[24415124 2441541[]
Fitness Selection Pairs Cross—Over

I Genetic algorithms contd. |

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs # evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 34 12

I Continuous state spaces

Suppose we want to site three airports in Romania:
— 6-D state space defined by (x1,42), (22, 12), (23,y3)
— objective function f(x1,vo, 2, Yo, T3, Y3) =

sum of squared distances from each city to nearest airport

[Vaslui

o
Urziceni

0 Hirsova

|
Eforie

Chapter 4, Sections 34

L

Search methods

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers £J change in each coordinate

Gradient methods compute

_(of of of of of of

0 Oyy Oxy Oyy” Dy’ Dys

to increase/reduce f, e.g., x — x + aV f(x)

Locally, f(x1,ys, 22,2, @3, Y3) = (21 — Tarad)” + (U1 — Yaraa)® + -+

of _
817]7

2(21 — Tavad) + 2(21 — i) + -

Sometimes can solve for V f(x) = 0 exactly (e.g., with one airport).
Newton—Raphson (1664, 1690) iterates x « x — Hfl(x)Vf(x)
to solve V f(x) = 0, where H;; =0 f /0x;0x;

Chapter 4, Sections 34

-, SO

