
Propositional inference, propositional agents

Chapter 7.5–7.7

Chapter 7.5–7.7 1

Outline

♦ Inference rules and theorem proving
– forward chaining
– backward chaining
– resolution

♦ Efficient model checking algorithms

♦ Boolean circuit agents

Chapter 7.5–7.7 2

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as “actions” in a standard search alg.
– Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

Chapter 7.5–7.7 3

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
♦ proposition symbol; or
♦ (conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧D ⇒ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

Chapter 7.5–7.7 4

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA

Chapter 7.5–7.7 5

Forward chaining algorithm

function PL-FC-Entails?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses

q, the query, a proposition symbol

local variables: count, a table, indexed by clause, initially the number of premises

inferred, a table, indexed by symbol, each entry initially false

agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do

p←Pop(agenda)

unless inferred[p] do

inferred[p]← true

for each Horn clause c in whose premise p appears do

decrement count[c]

if count[c] = 0 then do

if Head[c] = q then return true

Push(Head[c],agenda)

return false

Chapter 7.5–7.7 6



Forward chaining example

Q

P

M

L

BA

2 2

2

2

1

Chapter 7.5–7.7 7

Forward chaining example

Q

P

M

L

B

2

1

A

1 1

2

Chapter 7.5–7.7 8

Forward chaining example

Q

P

M

2

1

A

1

B

0

1
L

Chapter 7.5–7.7 9

Forward chaining example

Q

P

M

1

A

1

B

0

L
0

1

Chapter 7.5–7.7 10

Forward chaining example

Q

1

A

1

B

0

L
0

M

0

P

Chapter 7.5–7.7 11

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

Chapter 7.5–7.7 12



Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

Chapter 7.5–7.7 13

Forward chaining example

A B

0

L
0

M

0

P

0

0

Q

Chapter 7.5–7.7 14

Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final state as a model m, assigning true/false to symbols

3. Every clause in the original KB is true in m

Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m

Then a1 ∧ . . . ∧ ak is true in m and b is false in m

Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α

Chapter 7.5–7.7 15

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

Chapter 7.5–7.7 16

Backward chaining example

Q

P

M

L

A B

Chapter 7.5–7.7 17

Backward chaining example

P

M

L

A

Q

B

Chapter 7.5–7.7 18



Backward chaining example

M

L

A

Q

P

B

Chapter 7.5–7.7 19

Backward chaining example

M

A

Q

P

L

B

Chapter 7.5–7.7 20

Backward chaining example

M

L

A

Q

P

B

Chapter 7.5–7.7 21

Backward chaining example

M

A

Q

P

L

B

Chapter 7.5–7.7 22

Backward chaining example

M

A

Q

P

L

B

Chapter 7.5–7.7 23

Backward chaining example

A

Q

P

L

B

M

Chapter 7.5–7.7 24



Backward chaining example

A

Q

P

L

B

M

Chapter 7.5–7.7 25

Backward chaining example

A

Q

P

L

B

M

Chapter 7.5–7.7 26

Backward chaining example

A

Q

P

L

B

M

Chapter 7.5–7.7 27

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB

Chapter 7.5–7.7 28

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

︸ ︷︷ ︸

clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF):

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. E.g.,

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic

Chapter 7.5–7.7 29

Conversion to CNF

B1,1⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

Chapter 7.5–7.7 30



Resolution algorithm

Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α

new←{}

loop do

for each Ci, Cj in clauses do

resolvents←PL-Resolve(Ci,Cj)

if resolvents contains the empty clause then return true

new← new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪new

Chapter 7.5–7.7 31

Resolution example

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1
P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2

Chapter 7.5–7.7 32

DPLL: backtracking++

Backtracking applied to SAT problems:
– variables are proposition symbols, clauses are constraints

Several key improvements:

1. Early termination: stop if all clauses true or any clause false
e.g., {A = true} satisfies (A ∨B) ∧ (A ∨ C)

2. Pure symbols: symbol has same sign in all as-yet-unsatisfied clauses
e.g., A and B are pure in (A ∨ ¬B) ∧ (¬B ∨ ¬C) ∧ (C ∨ A)
⇒ assign symbol to make literals true

3. Unit clauses: clause has exactly one as-yet-unfalsified literal
e.g., if {A = true} already, (¬A ∨ ¬B) is a unit clause
⇒ assign symbol to make clause true (cf. forward chaining, MRV)

Chapter 7.5–7.7 33

DPLL algorithm

function DPLL(clauses, symbols,model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return true

P, value←Find-Pure-Symbol(symbols, clauses,model)

if P is non-null then return DPLL(clauses, symbols–P, [P = value|model ])

P, value←Find-Unit-Clause(clauses,model)

if P is non-null then return DPLL(clauses, symbols–P, [P = value|model ])

P←First(symbols); rest←Rest(symbols)

return DPLL(clauses, rest, [P = true|model ]) or

DPLL(clauses, rest, [P = false|model ])

Highly optimized implementation + caching unsolvable subassignments
⇒ modern solvers handle tens of millions of clauses
⇒ practical for large hardware and medium software verification

Chapter 7.5–7.7 34

Propositions and time

Suppose the wumpus-world agent wants to keep track of its location

A sentence such as L1,1 ∧ FacingRight ∧ Forward ⇒ L2,1

doesn’t work: after one inference step, L1,1 and L2,1 are in KB!!

Changeable aspects of world need separate symbols for each time step
e.g., L1

1,1 means “Agent is at [1,1] at time step 1”, and

L1

1,1 ∧ FacingRight 1 ∧ Forward 1 ⇒ L2

2,1

Reflex rules: for every t, we have, e.g., Glittert ⇒ Grabt

Need copies of all axioms involving temporal symbols
for every time step (might be infinitely many!)

Chapter 7.5–7.7 35

Tracking changes in the world

State estimation is the general task of keeping track of environment state
given a stream of percepts

For logic-based systems: maintain a representation of the set of all logically
possible world states, given axioms and percepts

Basic trick: successor-state axioms define truth of proposition at t+1 from
propositions at t

E.g., Alive t ⇔ ¬Scream t ∧ Alive t−1

Lt
1,1 ⇔ (Lt−1

1,1 ∧ (¬Forward t−1 ∨ Bumpt))

∨(Lt−1
1,2 ∧ (FacingDown t−1 ∧ Forward t−1))

∨(Lt−1
2,1 ∧ (FacingLeft t−1 ∧ Forward t−1))

Chapter 7.5–7.7 36



Boolean circuit agents

Alive

Stench

Scream

Forward

Bump

Glitter

Breeze

Shoot

Grab

TurnRight

TurnLeft

∧¬

Chapter 7.5–7.7 37

Boolean circuit agents contd.

FacingLeft

L2,1

FacingDown
∧

¬

Forward

Shoot

Grab

TurnRight

TurnLeftStench

Scream

Bump

Glitter

Breeze

∨

L1,2


∧

∧∨ L1,1

Chapter 7.5–7.7 38

Summary

Inference methods work by theorem proving or model checking

Forward, backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic

DPLL is an efficient, complete model checker;
WalkSAT is incomplete but often very fast in practice

Circuit-based agents provide a simple way to handle time
but are usually less complete than inference-based agents

Chapter 7.5–7.7 39


