NEURAL NETWORKS

CHAPTER 20, SECTION 5

Chapter 20, Section 5 1

I Outline |

¢ Brains

& Neural networks

{ Perceptrons

¢ Multilayer perceptrons

{ Applications of neural networks

Chapter 20, Section 5 2

I Brains |

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

Axon from another cell

Synapse

Dendrite

Synapses

Cell body or Soma

Chapter 20, Section 5 3

I McCulloch—Pitts “unit” |

Output is a “squashed” linear function of the inputs:

a; — gling) = g (3;Wj,a;)

) Bias Weight .
%= w\ & =g(in;)
\ g
Input Input Activation Output
Links Funtion ' Fungion' Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5 4

I Activation functions |

g(iny) g(iny)

+1 +1

ini | ini
@ (b)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1+e¢ ")

Changing the bias weight 11, ; moves the threshold location

Chapter 20, Section 5

I Implementing logical functions |

Wy=15 W,= 0.5

AND

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Section 5 6

I Network structures |

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = ;)
g(x)=sign(z), a; = + 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

Chapter 20, Section 5 T

I Feed-forward example |

1 \/\4,3
V\i4 V\é,S
)
Vs W,
2w

Feed-forward network = a parameterized family of nonlinear functions:

a; = (H - a3 U'Ym . Cl;)
= (H . (say + ”723 . (12) + [’Vlj . .(](I'I’r]j cayp+ Woy - (12))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

I Single-layer perceptrons |

Perceptron output
1

0.8
0.6
0.4
0.2

Wiz
///H/,//u,
h
/!// // //////"’
i 10 / 1

) ////«,/////// ’Wr
// //// i

«,59///0//4’//////
’/ / ,

/ /
7

Input W, OUFput
Units I units

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Chapter 20, Section 5 9

I Expressiveness of perceptrons |

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Z,l’i/"j,’l,', >0 or W-x>0

X1 X1
1 [1 @)
?
0 0
0 1 X 0 1 X
(a) X and %o (b) X1 or X, (€) X1 xor X,

Minsky & Papert (1969) pricked the neural network balloon

Chapter 20, Se

I Perceptron learning |

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is
1., 1 o
E= B =y - hw(x)
Perform optimization search by gradient descent:
oF OFErr
= Err = Err
ow, ~ g, T HET
= —Err x ¢'(in) x x;

0 < .
oW, (y — 9(X5_Wjzy))
j

Simple weight update rule:
W; — W;+ax Errx g'(in) x x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5 11

I Perceptron learning contd. |

Perceptron learning rule converges to a consistent function
for any linearly separable data set

/' Perceptron ——

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training set size - MAJORITY on 11 inputs Training set size - RESTAURANT data

Perceptron ——

Proportion correct on test set
o O O O O o
Proportion correct on test set

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Chapter 20, Section 5 12

I Multilayer perceptrons |

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a
Wi

Hidden units X
Wej

Input units ay

Chapter 20, Section 5 13

I Expressiveness of MLPs |

All continuous functions w/ 2 layers, all functions w/ 3 layers

% %)

0.; //’,"im\\
g.i [ﬂ,w \\
o:(z) ‘l’l’l’:',"".&

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

Chapter 20, Section 5 14

I Back-propagation learning |

Output layer: same as for single-layer perceptron,
Wii—Wii+axaj x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj = g¢'(inj) % WiiA; .

Update rule for weights in hidden layer:
Wij—Wij+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapter 20, Section 5 15

I Back-propagation derivation |

The squared error on a single example is defined as
1 .
E= 52(1}/ - (11)2

where the sum is over the nodes in the output layer.

oE (i —) da; (i — >(f)y(m,)
ow,, ~ Wl = W)y
;. Oing .o 0 R
= 7(1/1 - (1,).(] (ml)aﬂ'/, = 7(1/1 - (1,){] (an)auv// (z/: H’_[.za/)

= —(yi —a))g'(iny)a; = —a;A\;

Chapter 20, Section 5 16

I Back-propagation derivation contd. |

oF - _ . da;) g(in,;)
oW, YW g, = T W g
- 7 din; . 0 (o)
= —2Wi—a) = — XA Vi
%(U a;)g'(in;) oWy 2/‘ Wi, Z/,U/ a;
~ Oa g(in;)
= —SAW, —t = S AW,
T T TR

= - ; A,I/V/J.q/(in,)d

= > AW, g/ (in;) 5

= =S AW, g (ing)a, = —apA;

Chapter 20, Section 5 17

I Back-propagation learning contd. |

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

B e e
[SERNEES

Total error on training set

o N M O

0 50 100 150 200 250 300 350 400
Number of epochs

Typical problems: slow convergence, local minima

Chapter 20, Section 5 18

I Back-propagation learning contd. |

Learning curve for MLP with 4 hidden units:

1
0.9
0.8
0.7

0.6 Decision tree

0.5

Proportion correct on test set

0.4

0 10 20 30 40 50 60 70 80 90 100
Training set size - RESTAURANT data

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

Chapter 20, Section 5 10

I Handwritten digit recognition |

O/ HIM|s5\e|7|8
2011271417678

3-nearest-neighbor = 2.4% error
400-300~10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Mo

Current best (kernel machines, vision algorithms) ~ 0.6% error

Chapter 20, Section 5 20

[Summary |

Most brains have lots of neurons; each neuron = linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

Chapter 20, Section 5 21

