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I Brains |

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

Axon from another cell

Synapse

Dendrite

Synapses

Cell body or Soma
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I McCulloch—Pitts “unit” |

Output is a “squashed” linear function of the inputs:

a; — gling) = g (3;Wj,a;)

) Bias Weight .
%= w\ & =g(in;)
\ g
Input Input  Activation Output
Links Funtion ' Fungion'  Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5 4

I Activation functions |

g(iny) g(iny)

+1 +1

ini | ini
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(a) is a step function or threshold function

(b) is a sigmoid function 1/(1+e¢ ")

Changing the bias weight 11, ; moves the threshold location
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I Implementing logical functions |

Wy=15 W,= 0.5

AND

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Section 5 6



I Network structures |

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = ;)
g(x)=sign(z), a; = + 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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I Feed-forward example |
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Feed-forward network = a parameterized family of nonlinear functions:

a; = (H - a3 U'Ym . Cl;)
= (H . ( say + ”723 . (12) + [’Vlj . .(](I'I’r]j cayp+ Woy - (12))

Adjusting weights changes the function: do learning this way!
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I Single-layer perceptrons |

Perceptron output
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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I Expressiveness of perceptrons |

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Z,l’i/"j,’l,', >0 or W-x>0

X1 X1
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(a) X and %o (b) X1 or X, (€) X1 xor X,

Minsky & Papert (1969) pricked the neural network balloon
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I Perceptron learning |

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is
1., 1 o
E= B =y - hw(x)
Perform optimization search by gradient descent:
oF OFErr
= Err = Err
ow, ~ g, T HET
= —Err x ¢'(in) x x;

0 < .
oW, (y — 9(X5_Wjzy))
j

Simple weight update rule:
W; — W;+ax Errx g'(in) x x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs
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I Perceptron learning contd. |

Perceptron learning rule converges to a consistent function
for any linearly separable data set

/' Perceptron ——
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Perceptron ——

Proportion correct on test set
o O O O O o
Proportion correct on test set

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it
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I Multilayer perceptrons |

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a
Wi

Hidden units X
Wej

Input units ay
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I Expressiveness of MLPs |

All continuous functions w/ 2 layers, all functions w/ 3 layers

% %)

0.; //’,"im\\
g.i [ﬂ,w \\
o:(z) ‘l’l’l’:',"".&

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)
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I Back-propagation learning |

Output layer: same as for single-layer perceptron,
Wii—Wii+axaj x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj = g¢'(inj) % WiiA; .

Update rule for weights in hidden layer:
Wij—Wij+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)
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I Back-propagation derivation |

The squared error on a single example is defined as
1 .
E= 52(1}/ - (11)2

where the sum is over the nodes in the output layer.

oE (i — ) da; (i — >(f)y(m,)
ow,, ~ Wl = W)y
;. Oing .o 0 R
= 7(1/1 - (1,).(] (ml)aﬂ'/, = 7(1/1 - (1,){] (an)auv// (z/: H’_[.za/)

= —(yi —a))g'(iny)a; = —a;A\;
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I Back-propagation derivation contd. |

oF - _ . da; ) g(in,;)
oW, YW g, = T W g
- 7 din; . 0 ( o )
= —2Wi—a ) = — XA Vi
%(U a;)g'(in;) oWy 2/‘ Wi, Z/,U/ a;
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= =S AW, g (ing)a, = —apA;
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I Back-propagation learning contd. |

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima
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I Back-propagation learning contd. |

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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I Handwritten digit recognition |
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3-nearest-neighbor = 2.4% error
400-300~10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Mo

Current best (kernel machines, vision algorithms) ~ 0.6% error
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[ Summary |

Most brains have lots of neurons; each neuron = linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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