REINFORCEMENT LEARNING

CHAPTER 21, SECTIONS 14

Chapter 21, Sections 1-4 1



Outline

> Examples

> Learning a value function for a fixed policy

— temporal difference learning

¢ Q-learning

{> Function approximation

> Exploration

Chapter 21, Sections 1-4

2



Reinforcement learning

Agent is in an MDP or POMDP environment

Only feedback for learning is percept + reward

Agent must learn a

policy in some form:

— transition model 7'(s, a, s") plus value function U(s)

— Q(a, s) = expected utility if we do @ in s and then act optimally

— policy 7(s)

Chapter 21, Sections 1-4

3




START

Example: 4 x3 world

1-4

Chapter 21, Sections



Example: Backgammon

0 1 2 3 4 5 6 7 8 9 1011 12

VoY N N\ VY
'»4‘» 4‘»4‘» <<
000 0‘0

25 24 2322 21 20 19 18 17 16 15 14 13

Reward for win/loss only in terminal states, otherwise zero
TDGammon learns (7(5) represented as 3-layer neural network

Combined with depth 2 or 3 search, one of top three players in world

Chapter 21, Sections 1-4 5



Example: Animal learning

RL studied experimentally for more than 60 years in psychology
Rewards: food, pain, hunger, recreational pharmaceuticals, etc.

Example: bees learn near-optimal foraging plan in field of artificial flowers
with controlled nectar supplies

Bees have a direct neural connection from nectar intake measurement to
motor planning area

Chapter 21, Sections 1-4 6



Example: Autonomous helicopter

Reward = — squared deviation from desired state

Chapter 21, Sections 1-4 7



Example: Autonomous helicopter

Chapter 21, Sections 14 8



Temporal difference learning

Fix a policy 7, execute it, learn U7 (s)

Bellman equation:
U™(s) = R(s) + §T<S, w(s), s\ U™(s")

TD update adjusts utility estimate to agree with Bellman equation:
U™(s) — U"(s) + a(R(s) +yU"(s") = U"(s))

Essentially using sampling from the environment instead of exact summation

Chapter 21, Sections 1-4 9



TD performance

Utility estimates

0.6

0.5

0.4

0.3

0.2

RMS error in utility

0.1

100

200 300
Number of trials

400 500 0 20

40 60 80
Number of trials

Chapter 21, Sections 1-4

100

10



Q-learning

One drawback of learning U (s): still need T'(s, a, s’) to make decisions
()(a,s) = expected utility if we do @ in s and then act optimally
Bellman equation:
Qa,5) = R(s) +7 ST(s,(s), o) ma Qe )
Q-learning update:
Qla,5) — Qla,s) + a(R(s) + 7y maxQd, ) — Qla, )
Q-learning is a model-free method for learning and decision making

Q-learning is a model-free method for learning and decision making
(so cannot use model to constrain Q-values, do mental simulation, etc.)

Chapter 21, Sections 1-4 11



Function approximation

For real problems, cannot represent U or () as a table!!

Typically use linear function approximation:

UQ(S) = (91 f1<8) + (92 f2<8) + -0+ Hn fn<8) .
Use a gradient step to modify 6 parameters:

AUy(s)

0; — 0;+ o [R(s) + 7y Uy(s") — Up(s)] 90,

5’@9(&, s)
00,

Often very effective in practice, but convergence not guaranteed

62’ A HL T« [R(S> + 7 max Q9<CL/, S,> _ Q@(CL, 8)}

Chapter 21, Sections 1-4

12



Exploration

How should the agent behave? Choose action with highest expected utility?

15

RMS error, policy loss

0.5

;

RMS error

e +1

e

0

3 —

I

1 —
1

0O 50 100 150 200 250 300 350 400 450 500

Number of trials

Exploration vs. exploitation: occasionally try “suboptimal” actions!!

Chapter 21, Sections 1-4

13



Summary

Reinforcement learning methods find approximate solutions to MDPs
Work directly from experience in the environment

Need not be given transition model a priori

Q-learning is completely model-free

Function approximation (e.g., linear combination of features) helps RL scale
up to very large MDPs

Exploration is required for convergence to optimal solutions

Chapter 21, Sections 1-4 14



