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Mobile Robots
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Manipulators
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Configuration of robot specified by 6 numbers
⇒ 6 degrees of freedom (DOF)

6 is the minimum number required to position end-effector arbitrarily.
For dynamical systems, add velocity for each DOF.
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Non-holonomic robots
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A car has more DOF (3) than controls (2), so is non-holonomic;
cannot generally transition between two infinitesimally close configurations
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Sensors

Range finders: sonar (land, underwater), laser range finder, radar (aircraft),
tactile sensors, GPS

Imaging sensors: cameras (visual, infrared)
Proprioceptive sensors: shaft decoders (joints, wheels), inertial sensors,
force sensors, torque sensors
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Localization—Where Am I?

Compute current location and orientation (pose) given observations:
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Localization contd.
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Assume Gaussian noise in motion prediction, sensor range measurements
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Localization contd.

Can use particle filtering to produce approximate position estimate

Robot position
Robot position

Robot position
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Localization contd.

Can also use extended Kalman filter for simple cases:

robot

landmark

Assumes that landmarks are identifiable—otherwise, posterior is multimodal
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Mapping

Localization: given map and observed landmarks, update pose distribution

Mapping: given pose and observed landmarks, update map distribution

SLAM: given observed landmarks, update pose and map distribution

Probabilistic formulation of SLAM:
add landmark locations L1, . . . , Lk to the state vector,
proceed as for localization
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Mapping contd.

Chapter 25 12



3D Mapping example
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Motion Planning

Idea: plan in configuration space defined by the robot’s DOFs
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Solution is a point trajectory in free C-space
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Configuration space planning

Basic problem: ∞d states! Convert to finite state space.

Cell decomposition:
divide up space into simple cells,
each of which can be traversed “easily” (e.g., convex)

Skeletonization:
identify finite number of easily connected points/lines
that form a graph such that any two points are connected
by a path on the graph
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Cell decomposition example
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goal

Problem: may be no path in pure freespace cells
Solution: recursive decomposition of mixed (free+obstacle) cells
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Skeletonization: Voronoi diagram

Voronoi diagram: locus of points equidistant from obstacles

Problem: doesn’t scale well to higher dimensions
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Skeletonization: Probabilistic Roadmap

A probabilistic roadmap is generated by generating random points in C-space
and keeping those in freespace; create graph by joining pairs by straight lines

Problem: need to generate enough points to ensure that every start/goal
pair is connected through the graph
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Motor control

Can view the motor control problem as a search problem
in the dynamic rather than kinematic state space:

– state space defined by x1, x2, . . . , ẋ1, ẋ2, . . .

– continuous, high-dimensional (Sarcos humanoid: 162 dimensions)

Deterministic control: many problems are exactly solvable
esp. if linear, low-dimensional, exactly known, observable

Simple regulatory control laws are effective for specified motions

Stochastic optimal control: very few problems exactly solvable
⇒ approximate/adaptive methods
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Biological motor control

Motor control systems are characterized by massive redundancy

Infinitely many trajectories achieve any given task

E.g., 3-link arm moving in plane throwing at a target
simple 12-parameter controller, one degree of freedom at target
11-dimensional continuous space of optimal controllers

Idea: if the arm is noisy, only “one” optimal policy minimizes error at target

I.e., noise-tolerance might explain actual motor behaviour

Harris & Wolpert (Nature, 1998): signal-dependent noise
explains eye saccade velocity profile perfectly
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Setup

Suppose a controller has “intended” control parameters θ0

which are corrupted by noise, giving θ drawn from Pθ0

Output (e.g., distance from target) y = F (θ);
y
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Simple learning algorithm: Stochastic gradient

Minimize Eθ[y
2] by gradient descent:
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Given samples (θj, yj), j = 1, . . . , N , we have
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For Gaussian noise with covariance Σ, i.e., Pθ0
(θ) = N(θ0, Σ), we obtain
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What the algorithm is doing
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Results for 2–D controller
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Results for 2–D controller
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Results for 2–D controller
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Summary

The rubber hits the road

Mobile robots and manipulators

Degrees of freedom to define robot configuration

Localization and mapping as probabilistic inference problems
(require good sensor and motion models)

Motion planning in configuration space
requires some method for finitization

Chapter 25 27


