
CS 194-10, Fall 2011
Assignment 3 Solutions

1. Entropy and Information Gain

(a) To prove H(S) ≤ 1, we can find the global maximum of B(S) and show that it is at most 1. Since
B(q) is differentiable, we can set the derivative to 0,

0 =
∂B

∂q
= − log q − 1 + log(1− q) + 1

which yields q = 0.5. Noting that entropy is concave, we get a global maximum by plugging this
value. Therefore H(q) ≤ 1, and we have equality when q = p/(p + n) = 1, i.e., p = n.

(b) This result emphasizes the fact that any statistical fluctuations caused by the random sampling
process will result in an apparent information gain.
The easy part is showing that the gain is zero when each subset has the same ratio of positive
examples. Since p =

∑
pk and n =

∑
nk, if pk/(pk + nk) is the same for all k we must have

pk/(pk + nk) = p/(p + n) for all k. From this, we obtain
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Note that this holds for all values of pk +nk. To prove that the value is positive elsewhere, we can
apply the method of Lagrange multipliers to show that this is the only stationary point; the gain
is clearly positive at the extreme values, so it is positive everywhere but the stationary point. In
detail, we have constraints
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k nk =n, and the Lagrange function is
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Setting its derivatives to zero, we obtain, for each k,
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Subtracting these two, we obtain log(pk/nk) = (p + n)(λ2 − λ1) for all k, implying that at any
stationary point the ratios pk/nk must be the same for all k. Given the two summation constraints,
the only solution is the one given in the question.

2. Empirical Loss and Splits

(a) 0/1 Loss. Let pk and nk be the number of positive and negative examples respectively for each
subset. Then the loss for the parent is min(

∑
k pk,

∑
k nk) and the total loss for the children is

given by
∑

k min(pk, nk). We’d like to show that,∑
k

min(pk, nk) ≤ min(
∑

k

pk,
∑

k

nk) . (1)
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Note that min(pk, nk) ≤ pk, therefore
∑

k min(pk, nk) ≤
∑

k pk. Similarly
∑

k min(pk, nk) ≤∑
k nk. Hence the assertion in (1) is correct, i.e., 0/1 loss can never increase when splitting.

(b) L2 loss is minimzed in any given set by returning the sample mean ȳ = 1
N

∑N
i = 1 yi, giving L2 loss∑N

i = 1(yi − ȳ)2. Suppose we split the set into subsets A and B, with sample means ȳA and ȳB .
Since each minimizes the L2 loss for its respective subset, we have∑
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Adding these two inequalities, we obtain
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hence the L2 loss cannot increase.

3. Splitting continuous attributes
Without loss of generality, consider a node with p positive and n negative examples and p ≤ n. Let
pk and nk be the number of positive and negative examples after a split. Consider a case where we
split between positive examples such that the child node on the left is more positive and the child
node on the right is more negative, i.e. pk ≥ nk and pk+1 ≤ nk+1. The empirical loss for the two
child nodes is nk + pk+1. We can improve the empirical loss by moving the split one position to the
right, which effectively takes a wrongly classified example from the right child node and turns it into a
correctly classified example in the left node. Majority is still maintained and the empirical loss becomes
nk + pk+1 − 1. We can repeatedly apply this argument to see that the optimal split must occur at the
dividing point between samples of different classes.

4. Majority voting

(a) In order for the majority vote classifier to make a mistake, more than half of the K classifiers
must fail. Since each classifier fails independently with Bernoulli(ε), the probability that more
than K/2 out of K trials of independent Bernoulli(ε) variables are 1 gives the desired probability:

εmajority =
K∑

n=bK/2c+1

(
K
n

)
εn(1− ε)K−n

(b) Yes, if the independence assumption is removed, the ensemble error can be worse than ε. Consider
the case where we have 3 classifiers A,B,C and consider the following scenario where X is a correct
prediction and × is an incorrect prediction.

A B C Majority
× × X ×
X × × ×
× X × ×
X X X X
... ... ... ...

(2)

If the above pattern continues forever, we get εmajority = 3/4 while ε = 1/2.
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