Bayesian Networks: Modeling

CS194-10 Fall 2011 Lecture 21

Outline

- ♦ Overview of Bayes nets
- ♦ Syntax and semantics
- \Diamond Examples
- ♦ Compact conditional distributions

Learning with complex probability models

Learning cannot succeed without imposing some prior structure on the hypothesis space (by *constraint* or by *preference*)

Generative models $P(\mathbf{X} \mid \theta)$ support MLE, MAP, and Bayesian learning for domains that (approximately) reflect the assumptions underlying the model:

- ♦ Naive Bayes—conditional independence of attributes given class value
- Mixture models—domain has a flat, discrete category structure
- ♦ All i.i.d. models—model doesn't change over time
- ♦ Etc.

Would like to express arbitrarily complex and flexible prior knowledge:

- ♦ Some attributes depend on others
- Categories have hierarchical structure; objects may be mixtures of several categories
- \Diamond Observations at time t may depend on earlier observations
- \Diamond Etc.

Bayesian networks

A simple, graphical notation for conditional independence assertions among a predefined set of random variables X_j , $j=1,\ldots,D$ and hence for compact specification of arbitrary joint distributions

Syntax:

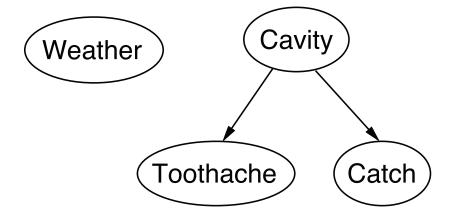
```
a set of nodes, one per variable a directed, acyclic graph (link \approx "directly influences") a set of parameters for each node given its parents:
```

 $\theta(X_j|Parents(X_j))$

In the simplest case, parameters consist of a conditional probability table (CPT) giving the distribution over X_j for each combination of parent values

Example

Topology of network encodes conditional independence assertions:



Weather is independent of the other variables

 $Toothache \ {\it and} \ Catch \ {\it are} \ {\it conditionally} \ {\it independent} \ {\it given} \ Cavity$

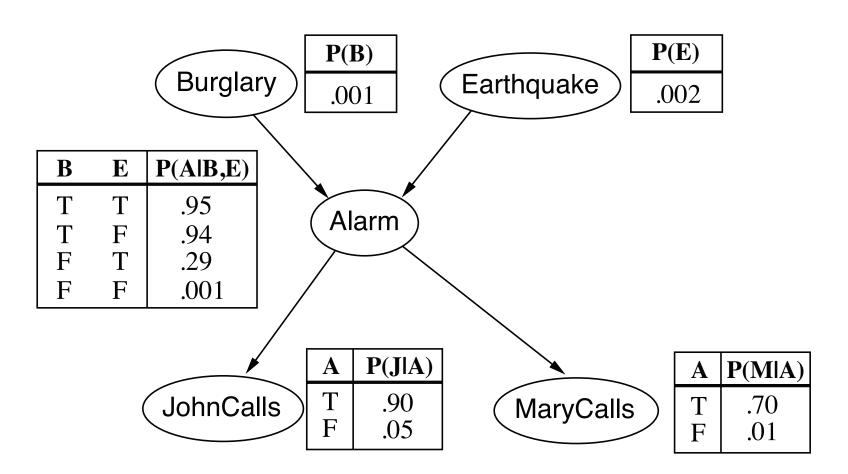
Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

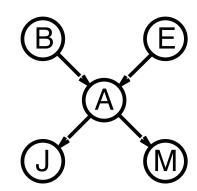
Example contd.



Compactness

A CPT for Boolean X_j with L Boolean parents has 2^L rows for the combinations of parent values

Each row requires one parameter p for $X_j = true$ (the parameter for $X_j = false$ is just 1 - p)



If each variable has no more than L parents, the complete network requires $O(D \cdot 2^L)$ parameters

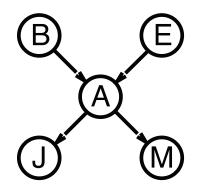
I.e., grows linearly with D, vs. $O(2^D)$ for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 parameters (vs. $2^5 - 1 = 31$)

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\dots,x_D) = \prod_{j=1}^D \theta(x_j|parents(X_j)) \ .$$
 e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$



CS194-10 Fall 2011 Lecture 21

Global semantics

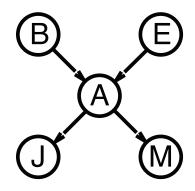
Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1, \dots, x_D) = \prod_{j=1}^D \theta(x_j | parents(X_j)) \ .$$
e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= \theta(j|a)\theta(m|a)\theta(a|\neg b, \neg e)\theta(\neg b)\theta(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$



Global semantics

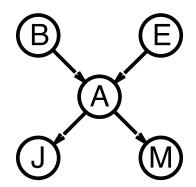
Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1, \dots, x_D) = \prod_{j=1}^D \theta(x_j | parents(X_j)) .$$
e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= \theta(j|a)\theta(m|a)\theta(a|\neg b, \neg e)\theta(\neg b)\theta(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

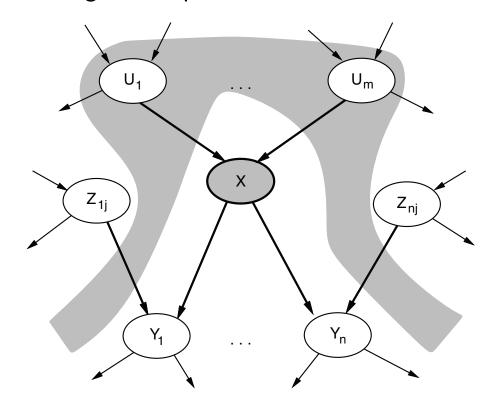
$$\approx 0.00063$$



Theorem: $\theta(X_j|Parents(X_j)) = \mathbf{P}(X_j|Parents(X_j))$

Local semantics

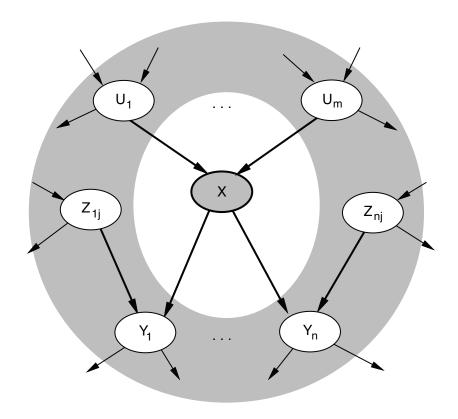
Local semantics: each node is conditionally independent of its nondescendants given its parents



Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents



Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1, \ldots, X_D
- 2. For j=1 to D add X_j to the network select parents from X_1,\ldots,X_{j-1} such that $\mathbf{P}(X_j|Parents(X_j))=\mathbf{P}(X_j|X_1,\ldots,X_{j-1})$

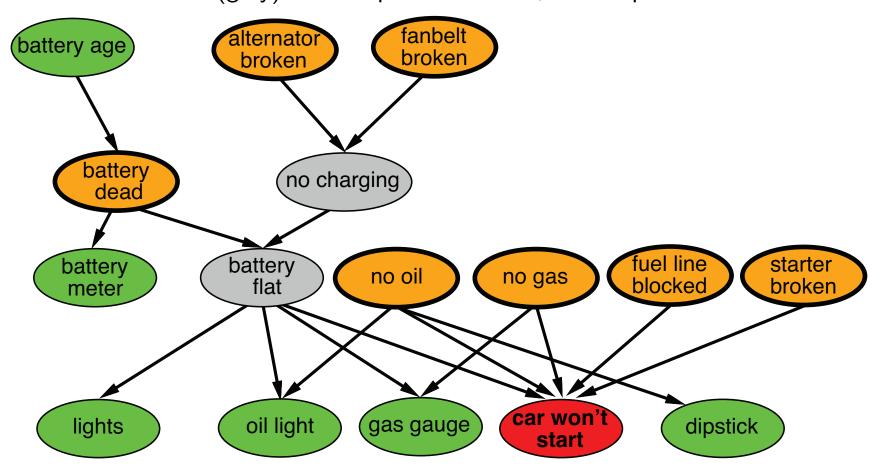
i.e., X_i is conditionally independent of other variables given parents

This choice of parents guarantees the global semantics:

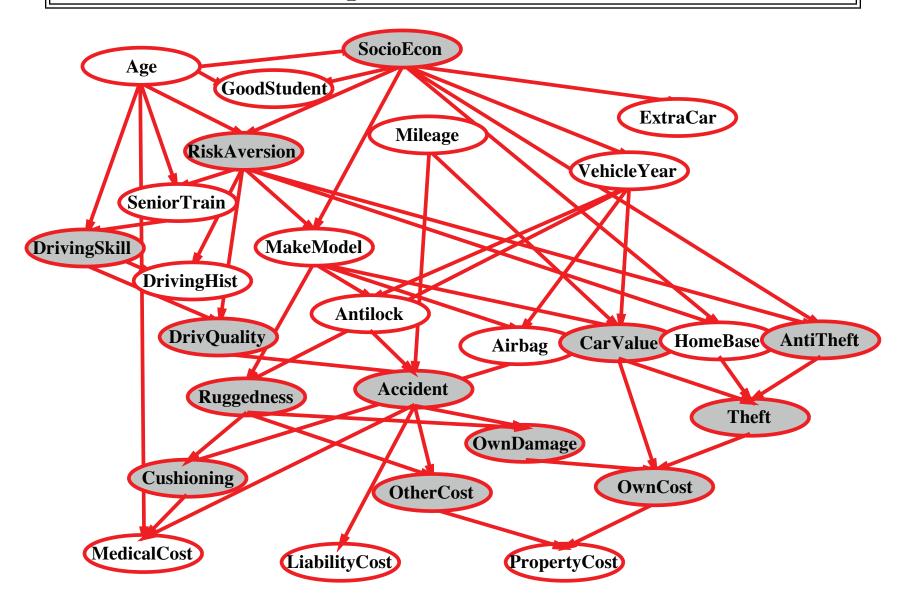
$$\mathbf{P}(X_1, \dots, X_D) = \prod_{j=1}^D \mathbf{P}(X_j | X_1, \dots, X_{j-1}) \quad \text{(chain rule)}$$
$$= \prod_{j=1}^D \mathbf{P}(X_j | Parents(X_j)) \quad \text{(by construction)}$$

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters



Example: Car insurance



Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:

$$X = f(Parents(X))$$
 for some function f

E.g., Boolean functions

 $NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican$

E.g., numerical relationships among continuous variables

$$\frac{\partial LakeLevel}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation}$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_L$ include all causes (can add leak node)
- 2) Independent failure probability q_ℓ for each cause alone

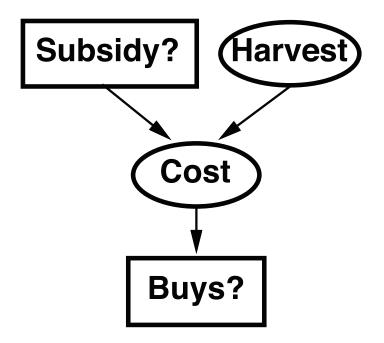
$$\Rightarrow P(X|U_1 \dots U_M, \neg U_{M+1} \dots \neg U_L) = 1 - \prod_{\ell=1}^M q_\ell$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)



Option 1: discretization—possibly large errors, large CPTs

Option 2: finitely parameterized canonical families

- 1) Continuous variable, discrete+continuous parents (e.g., Cost)
- 2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$P(Cost = c | Harvest = h, Subsidy? = true)$$

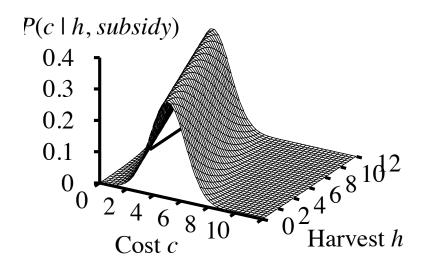
$$= N(a_t h + b_t, \sigma_t)(c)$$

$$= \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right)$$

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the **likely** range of Harvest is narrow

Continuous child variables



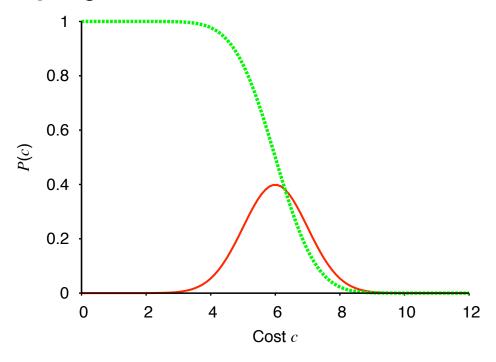
All-continuous network with LG distributions

⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a "soft" threshold:



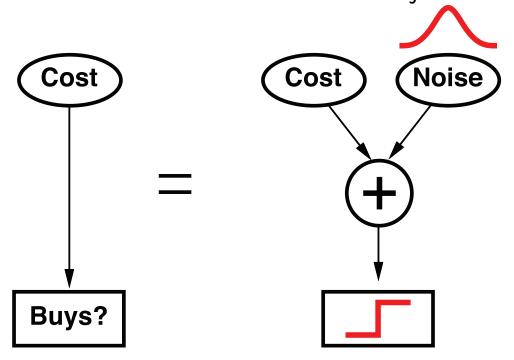
Probit distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} N(0, 1)(x) dx$$

$$P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma)$$

Why the probit?

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

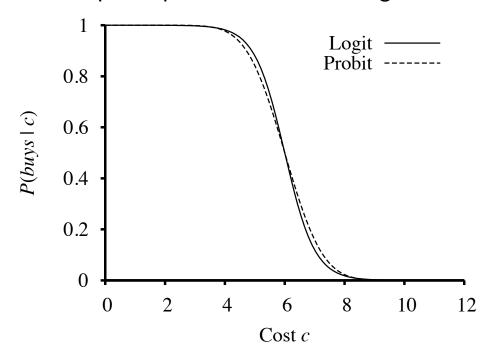


Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c + \mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:



Summary (representation)

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs = compact representation of joint distribution \Rightarrow fast learning from few examples

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR, linear Gaussian)

- ⇒ compact representation of CPTs
- ⇒ faster learning from fewer examples