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Abstract 

In this paper, we study the problem of using com- 
puter vision as a sensor to control the landing of an 
Unmanned Air Vehicle (UAV). The vision problem we 
address is a special case of the general ego-motion esti- 
mation problem due to the fact that all feature points 
lie on a plane. We propose a new geometric estima- 
tion scheme for solving the differential version of the 
planar ego-motion estimation problem. The algorithm 
is computationally inexpensive and amenable for real- 
time implementation. We present a performance eval- 
uation of the algorithm under different levels of image 
measurement noise and camera motions relative to the 
landing pad. We also present a full dynamic model of 
a UAV, discuss a nonlinear controller based on differ- 
ential flatness, and show through simulation that the 
vision guided UAV performs stable landing maneuvers 
even under large levels of image measurement noise. 

Keywords: unmanned air vehicle, autonomous land- 
ing, structure from motion 

1 Introduction 

Unmanned air vehicles (UAVs) have generated consid- 
erable interest in the control community due to the fact 
that the design of UAVs brings to light research ques- 
tions falling in some of the most exciting new directions 
for control. One of these directions in the use of com- 
puter vision as a sensor in the feedback control loop. 
The task of autonomous aircraft landing is well suited 
to vision-based control, especially in cases where the 
landing pad is in an unknown location and is moving, 
such as the deck of a ship. 

In this paper, we present a computer vision algorithm 
to estimate the motion of a UAV relative to a land- 
ing pad. The algorithm is computationally inexpensive 
and amenable to real-time implementation. We present 
a performance evaluation of the algorithm under dif- 
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ferent levels of image measurement noise and camera 
motions relative to the landing pad. We also present 
a full dynamic model of a UAV, discuss nonlinear con- 
troller based on differential flatness, and show through 
simulation that the vision guided UAV performs sta- 
ble landing maneuvers even under large levels of image 
measurement noise. 

The organization of the paper is as follows. In section 2, 
we establish the notation for the camera motion and 
imaging models. In section 3 we formulate the problem 
of ego-motion estimation from image measurements of a 
planar scene. In section 4, we present simulation results 
of the motion estimation algorithm. In section 5 we 
present a dynamic model of a UAV, discuss a controller 
based on differential flatness, and present simulation 
results of a vision guided landing. We end the paper 
in section 6 with concluding remarks and directions for 
future research. 

2 Motion and Imaging Models 

In this section we give the mathematical model of the 
UAV motion and the imaging model of the on-board 
camera. We adhere to the following convention: We 
denote the coordinates of a point in the inertial frame 
with a tilde, for example d E R3, and denote the co- 
ordinates of the point in the camera frame using the 
same letter, but without a tilde. We assume a monoc- 
ular camera is fixed to the UAV and the optical axis of 
the camera coincides with the vertical axis of the UAV 
body frame. 

We assume the motion of the UAV is described by a 
smooth curve in the special Euclidean group SE(3). 
Let ( p ( t ) ,  R( t ) )  E SE(3) denote the position and orien- 
tation of the camera with respect to the inertial frame 
at  time t .  The coordinates of a fixed point in the iner- 
tial frame and its coordinates in the camera frame at  
time t are related by [8]: 

= W d t )  f P ( t )  (1) 

Given body angular and linear velocities w ,  v E R3, the 
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Figure 1: Geometry of camera frame relative to plane 

coordinates of a fixed point in the inertial frame satisfy 

q = - L j q - v  (2) 

where the skew symmetric matrix 3 is defined by 3 q  
w x q V q  E R3. The body angular and linear velocities 
are given by 3 = RT R, v = RTp. 

The imaging model of a calibrated camera is given by 
perspective projection 

If x is the image of a point q ,  i.e. x = n ( q ) ,  then we 
write Ax = q where X = qz E R encodes the depth of q 
from the camera along the optical axis. We denote the 
optical axis of the camera by e3 = ( O , O ,  l)T. 

3 Visual Ego-Motion Estimation 

In this section, we give a formulation of the so-called 
“visual ego-motion estimation” problem. The goal is to 
recover the motion of the camera using image measure- 
ments of fixed points in the environment. In the gen- 
eral case when the features in the images correspond to 
points in a general configuration in 3D, the ego-motion 
estimation problem from a pair of images can be solved 
by the well-known “8-point algorithm” [4]. Recently, 
Ma  et a1 [7] derived a counterpart for the 8-point al- 
gorithm for the “differential case” where the measure- 
ments are image velocities. Our ego-motion estimation 
problem for the purpose of landing a UAV is a special 
case of the general one: All the image points correspond 
to. coplanar points on the landing pad. I t  is well known 
that the case where all features points are coplanar is 
a degenerate case that makes the 8-point algorithm ill- 
conditioned, giving poor estimation results. Hence one 
needs algorithms specific for the planar case. 

3.1 Discrete Case 
The “discrete” version of the planar visual ego-motion 
estimation problem has been studied extensively in the 

literature [5, 1, 121. Here we recall the well known re- 
sults. 

Suppose we have a set of m fixed coplanar points 
{&}El c P, where P denotes the plane. Without loss 
of generality, we take the origin of the inertial frame to 
be in P. The geometry is depicted in Figure 1. 

Proposition 1 Suppose the camera undergoes a rigid 
motion ( p ,  R) E SE(3) between “camera frame 0” and 
“camera frame I ” ,  where without loss of generality, 
“camera frame 0” differs from the inertial frame by a 

pure translation. Then the coordinates {gp}zl, { q f } z 1  
of the fixed coplanar points {&}zl c P in the two 
camera frames are related by q: = ( R +  $pnT)qf  for 
i =  1, . . .  ,m. 

The proposition is direct to prove using the identity 
nTqt  E d for i = 1,. . . , m, where d is the distance 
of camera frame 1 to the plane P and n E S2 is the 
surface normal to P relative camera frame 1. We call 
the matrix 

(4) 

the “planar essential matrix,” since it contains all the 
motion and structure parameters that we need to re- 
cover. The vision task is to recover the matrix A 
based on image measurements, then decompose it into 
its motion and structure parameters. We say that a 
set of coplanar points {ci}z1 are in general configura- 
tion if there is a group of 4 points such that no three 
are collinear. I t  turns out that the A matrix can be 
uniquely estimated from image point correspondences. 
if and only if the points {i,}zl are in general configu- 
ration.. The A matrix may then be decomposed up 2 
physically possible solutions for the motion and struc- 
ture parameters [12]. 

3.2 Differential Case 
Our contribution is to the “differential” version of the 
problem, that is, the task of recovering the linear and 
angular velocity of the camera given image velocities 
of fixed points in a plane. The differential version is 
important for the control of a dynamic mobile robot 
such as a UAV, since velocity estimates are necessary 
for the computation of control inputs. The differential 
structure from motion problem for a planar scene has 
also been studied in [a, 101. We propose a new geomet- 
rical estimation scheme for the motion and structure 
parameters. 

Proposition 2 Suppose the camera undergoes a rigid 
motion with body linear and angular velocities U ,  w .  
Then the coordinates of coplanar points {&}El in the 
instantaneous camera frame satisfy: 

Qi = -(G + $vnT)g; for i = 1,. . . , m. 
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We call the matrix 

(5) 

the “planar differential essential matrix”, since it con- 
tains all the (differential) motion and structure param- 
eters that we need to recover. We first show how to re- 
cover the matrix B based on image measurements, then 
decompose it into its motion and structure parameters. 

Proposition 3 The B matrix given in equation (5) 
satisfies the constraint: 

xi = - ( I  - xiez)Bxi,  i = 1,. . . , m (6) 

where {xi( t ) ,  xi(t)}& are image points and velocities 
of fixed points {&}zl in the plane. 

Proof: 
q = -Bq gives.Xx + Ax = -XBx. 
X = ezq  gives X = -XeTBx. 

Differentiatjng Ax = q and substituting 
Differentiating 

Using these relations 
and eliminating X gives the result. rn 

Equation (6) is the planar differential epipolar con- 
straint. Since the constraint is linear in B, by stacking 
the entries of B as b = ( b l l ,  b12, b13, b21,. . . , E R9, 
we may re-write (6) as xi = gTb, where gi E Etgx3 is 
a function of xi. However, since the third row of equa- 
tion (6) contains only zeros, each image point velocity 
only has two constraints on the matrix B. Given a 
set of m image point and velocity pairs {xi, xi}E1 of 
fixed points in the plane, we may stack each equation 
xi = g,Tb into a single equation: 

X = G b  (7) 
where X = (;Cy,. . . ,xz)T E and G = 
(g1,.  . . , g,)T E R3mx9. 

Proposition 4 rank(<=) = 8 if and only if the points 
{ii}zi are in general configuration. 

For the proof, please refer to [9]. If rank(G) = 8 then 
by linear least squares techniques, equation (7) can be 
used to recover b up to one dimension. That is, we 
can recover B = BL + ~ B K  where BL corresponds to 
the minimum norm least squares estimate of B,  BK 
corresponds to the vector in ker(G) and < E R is an 
unknown scale. By inspection, of equation (6) one can 
see that BK = I .  Thus we only need to recover the 
unknown in order to uniquely estimate B. Next we 
give a constraint imposed by the structure of B which 
will be used to estimate B. 

Lemma 1 Suppose u , v  E R3, and 1 1 ~ 1 1 ~  = 1 1 ~ 1 1 1 ~  = a. 
If  U # U, the matrzx D = uvT + vuT E has 
eigenvalues {XI, 0 ,  X3}, where XI > 0 ,  and A3 < 0.  
I f  u = fv, the matrix D has eigenvalues { f 2 a ,  O,O}. 

Proof: Let /3 = uTv. If U # f v ,  we have -a < p < 
a. We solve the eigenvectors of D to be {u+v, U x U, u- 
U} with the corresponding eigenvalues {p+a, 0,p-a}. 
Clearly XI = (p  + a )  > 0. and A3 = p - a < 0. I t  is 
direct to check the case where U = fv. rn 

Theorem 1 The matrix B can be uniquely estimated 
from the image measurements if and only if the points 

are in general configuration. 

Proof: W e  use sorted eigenvalues, that is, given 
eigenvalues {X1,X2,X3} then XI 2 XZ 2 X3. If the 
points are not in general configuration, then by Propo- 
sition 4, rank((=) < 8, and the problem is undercon- 
strained. If the points are in general configuration, 
then by least squares we may recover B = BL +<I  
for some unknown [ E R .  By lemma 1, we have that 
B + BT = :vnT + i n v T  has eigenvalues {XI, Xz, A,} 
where XI 2 0, X2 E 0, and A3 _< 0. Compute the eigen- 
valuesofBr,+Bz to be {y1,yz,ys}. Then X j  = yi+2<, 
for i = 1 , 2 , 3 .  Since we must have Xz = 0, we have 

= -1. zy2, and set B = BL - f y z I .  

The following constructive proof gives a new technique 
for the recovering the motion and structure parameters 
from the B matrix. 

Theorem 2 Given a matrix B E R3x3 in the form 
B = G+hvnT, one can recover the parameters {G,  f ,  n }  
up to at most 2 physically possible solutions. There is 
a unique solution if v = 0 ,  v x n = 0 or eTv = 0, where 
e3 = (0, 0 ,  l)T is the optical axis. 

Proof: Compute the eigenvalue/eigenvector pairs 
of B + BT to be {Xi,  u i } ,  i = 1 , 2 , 3 .  If X i  = 0 for 
i = 1 , 2 , 3 ,  then we have v = 0 and G = B. In this case 
we can not recover the normal of the plane n. Other- 
wise, if XI > 0, and A3 < 0, then we have v x n # 0. 
Let a 11v/dll > 0, let ij = v / f i  and ii = f i n ,  
and let p 4 G T i i i .  According to Lemma 1, the eigen- 
value/eigenvector pairs of B + BT are given by 

I XI = p + a  > 0, 

X 3 = P - a < 0 ,  u 3 = & ( 6 4 )  

211 = d ( 6 +  i i )  

Ilu - nll 

Then a = +(XI - As). It is direct to check that 

11; + ii1I2 = 2x1, 116 - = -2x3 

Then (8) and (9) give a solution: 

I 51 A + ( m u l + m u 3 )  

iil A + ( m u 1  - m u 3 )  

L1 A $ ( ( B  - C l i i y )  - ( B  - 61iiT)T)  
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The estimate of 2 1  is computed as above because due 
to measurement noise, in general B - v’l $f! so( 3), so 
we take the projection of B - 616: onto so(3). 

However, the eigen-decomposition {A;, u i }  is not unique 
- there is a sign ambiguity in the eigenvectors u1 and 
u3. This sign ambiguity leads to a total of 4 possi- 
ble solutions for ij and ii computed according to (10). 
In order to reduce the number of physically possible 
solutions, we impose the “positive depth constraint” 
- since the camera can only see points that are in 
front of it, we must have nTe3 > 0. The positive 
depth constraint reduces the ambiguity of solutions to 
the true solution {v ,  n,w} plus the ambiguous solution 
{v+,n+,w+}, where v+ = 11v/dlln, n+ = &v/d, 
Lj+ = 6 - nvT/d + vnT/d. If vTe3 = 0, the ambigu- 
ous solution may be eliminated by the positive depth 
constraint, and if v x n = 0 ,  the two solutions are equiv- 
alent . 

3.3 Disambiguation of Vision Estimates 
We assume that we have stored in memory the images 
{ z ~ } ~ ~  of features points on the landing pad taken 
from the desired configuration. These features could for 
example be the corners of the typical “H” pattern found 
on most helicopter landing pads. The corners of the 
“H” pattern satisfy the general configuration condition 
of proposition 4, and hence the vision based motion 
estimation problem is well conditioned with respect to 
this pattern. 

Let ( p 0 , I )  E S E ( 3 )  be the configuration of the de- 
sired camera frame above the landing pad, and let 
do = -n;po > 0 be the desired distance of the cam- 
era to the landing plane with known surface normal 
nF E R3. 

Proposition 5 If d o , d  > 0 are the distances from 
the plane to camera frames 0 and 1, respectively, and 
A = (R+ hpnT) E R3x3 is the planar essential matrix, 
relating the two camera frames, then the distance from 
camem frame 1 to the plane is given by d = do/det(A). 

The knowledge of do allows to compute d ,  which solves 
the scale ambiguity p / d  in the discrete algorithm and 
v/d in the differential algorithm. The knowledge of 
np allows us to disambiguate the pair of solutions by 
taking the one that minimizes Iln,,t - R z t n ~ ( ( ,  where 
nest is the vision estimated surface normal, and Rest is 
the estimated rotation matrix according to the discrete 
algorithm. 

3.4 Real-time Implementation Considerations 
The most computationally intensive task in the vision 
algorithm is the least squares estimation of the B ma- 
trix, which involves the singular value decomposition 

Figure 2: Noise Sensitivity 

(SVD) of the matrix G E R3mx9 where m is the num- 
ber of tracked feature points. The cost of the SVD 
of a matrix M E RnXm for n 5 m is O(n2m) flops. 
Then, as the number of feature points m increases, the 
cost of the vision algorithms grows as O(rn). We have 
implemented the above algorithm using the MATHLIB 
C/C++ library in Matlab, and have found that on a 450 
MHz Pentium I1 running Linux, the vision algorithms 
can perform motion estimation based on 25 tracked fea- 
ture points at a rate of over 150 Hz. 

4 Vision Performance Evaluation 

Of utmost consideration is the performance of the vi- 
sion sensor in the presence of noise in the image mea- 
surements. Another important criteria is how the esti- 
mation errors depend on different camera motions with 
respect to the observed plane. By way of comparison, 
for each simulation we also show the performance of the 
differential “8-point algorithm” described in [7]. For 
more detailed simulation results and analysis, see refer 
to [9]. 

For all simulations, we generated 50 random points 
uniformly distributed within a 60’ camera field of 
view. The image correspondences and the optical flow 
measurements were corrupted by additive white Gaus- 
sian noise. For evaluating the 8-point algorithm, we 
randomly scattered the depths of these points uni- 
formly between distance of zmin=ioO and zmax=400 fo- 
cal lengths. For evaluating the planar algorithm, we 
placed the points on the fronto-parallel plane at a dis- 
tance of (zmax+zmin) /2. 

In Figure 2 we show the performance of the algorithm as 
a function of noise in the image velocity measurements. 
Notice that the planar algorithm is more robust to noise 
than the 8-point algorithm. 

v 
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Figure 3: Sensitivity to translation-rotation axes 

In Figure 3 we show the noise sensitivity of the al- 
gorithm with respect to different motions relative to 
the plane. We ran the algorithm for each different 
translation-rotation axis pair for a noise level of 3 pix- 
els standard deviation. In general, the planar algo- 
rithm performs better than the 8-point algorithm ex- 
cept when the translation axis is parallel to the optical 
axis (and hence the surface normal of the plane). The 
higher noise sensitivity in this case can be seen as an 
overall numerical sensitivity to perturbations in the al- 
gebraic eigenvalue/eigenvector problem when there are 
repeated eigenvalues. The situation of having repeated 
eigenvalues occurs in the planar differential algorithm 
when the translational motion is parallel to the surface 
normal of the plane and in the 8-point algorithm when 
the translation and rotation axes are parallel [7]. 

5 UAV Control Design 

In this section, we give the dynamic model of a UAV 
helicopter, and discuss a control design based on differ- 
ential flatness. 

We parameterize R by the “roll, pitch, yaw” Euler an- 
gles 0 = (4, 8, $ J ) ~ ,  away from the representation singu- 
larity 8 = -7r/2. The Euler angle velocities and body 
angular velocity are related through 0 = Qu. Refer 
to [8] for details on Euler angles. 

A dynamical model of a UAV helicopter based on rigid 
body dynamics and the force and moment generation 
process can be expressed as 

-TM sinal, 

-TM COS a l ,  cos 61, 

(12) 
(13) 

TMsinbl, -TT ] + [ i ]  (11) 

0 = Qw 
w = Z - l ( r b - W  x Z W )  

where m is the mass of the UAV, g is the gravitational 
constant, TM and TT are the thrusts generated by the 
main and tail rotors, a l ,  and bl ,  are the longitudinal 
and lateral tilt angles of the main rotor blades, the iner- 
tial matrix is Z E I w 3 x 3  and the body torque is rb E Pi3. 

5.1 Differential Flatness 
A system is said to be differentially f la t  [6] if there ex- 
ist output functions, called flat outputs, such that all 
states and inputs can be expressed in terms of the flat 
outputs and their derivatives. Differential flatness has 
been applied on approximate models of aircraft for tra- 
jectory generation and control. Given an output tra- 
jectory, outer flatness [ll] has been proposed and used 
for generating an inner trajectory for an inner system 
to track. In this scheme, one partitions a system into 
an “inner system” (e.g. the attitude dynamics) and 
an “outer system” (e.g. the position dynamics). The 
scheme applies to systems for which the outer system 
is flat. 

Based on the natural time scale separation between po- 
sition and attitude dynamics of a helicopter, the outer 
and inner systems are defined since attitudes can be 
treated as inputs to the position dynamics. It has be 
shown in [3] that the helicopter rigid body dynamics 
are approximately differentially flat, with the position 
and heading { p ,  $J} as the flat outputs. The approxima- 
tion is based on the assumption that the coupling terms 
al, ,  bl,, TT/TM are small and can be neglected from the 
model. With this assumption, the outer system dynam- 
ics are simply equation (11) with al, = bl,  = TT = 0, 
while the inner system dynamics are equations (12, 13). 
In [3], it is shown that the approximation for the outer 
system is differentially flat, and a stabilizing controller 
is designed based on this approximation. The inter- 
ested reader is referred to [3] for detailed treatment of 
the control design. 

5.2 Closed Loop Simulation Results 
We present the simulation results of the “vision in the 
control loop” landing scheme. In this simulation, the 
initial conditions of the UAV are p = (2 ,1 ,  5)T meters 
away from the desired landing configuration above the 
landing pad (the origin), the initial heading is $ = 0.4 
radians. The additive noise on the image correspon- 
dences and optical flow is 2 pixels standard deviation. 
The top of Figure 4 shows the vision based estimates of 
position, orientation, linear and angular velocity, while 
the bottom of the figure shows the trajectory followed 
by the UAV using the noisy state estimates for the 
control computations. The simulation results attest to 
the feasibility of using computer vision in the feedback 
control loop under relatively large noise levels in the 
feature-tracking estimates. Please refer to [9] for more 
detailed discussion and simulations of the vision sensor 
in the control loop. . .  
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6 Conclusions and Future Work 

- m. 
l 

- w -  1 -  

mz - 
$ 0  

1 -  

-1 5 

0 1 2  3 4 5 6 7 8 9 10 
-- 

I -  vis6 I I  0.5 

0 1 2  3 4 5 6 7 8 9 10 
4 . 5  

I I 

I 
0 1 2  3 4 5 6 7 8 9 10 

4 

1.5 

1 

0 5  
- 

1 

-1 5 
J ,  1 

0 1 2  3 4 5 E 7 8 0 10 

Vision Estimates 

0 1 2  3 4 5 6 7 6 9 10 
-21 " " " " ' I 

0 1 2  3 4 5 6 7 8 9 10 
-0.5' " " " " ' I 

. . . . . .  

* 2l 
$0- I I 

-2 

Figure 4: Vision in the loop landing, 2 pixel noise std 

In this paper, we presented the problem of using com- 
puter vision to control the landing of an Unmanned Air 
Vehicle. We derived a new geometric method of esti- 
mating the camera angular and linear velocity relative 
to a planar scene, and a presented performance evalu- 
ation of the algorithm. The vision sensor was put into 
the feedback loop of a UAV controller based on differ- 
ential flatness. Through simulation results, the vision 
guided UAV was shown to perform stable landing ma- 
neuvers for large levels of image measurement noise. 

We are currently implementing the above vision algo- 
rithm and controller on a model helicopter as part of the 
UC Berkeley BEAR (BErkeley Aerial Robot) project. 
Our UAV is a Yamaha R-50 model helicopter, on which 
we have mounted computers, inertial navigation sen- 
sors, GPS, and a vision system, consisting of a camera, 
a real-time feature tracker board, and a Pentium I1 run- 
ning Linux. 
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