
NURBS-Based Adaptive Finite Element Analysis

Toby Mitchell

PhD Student and Graduate Research Assistant
Structural Engineering and Mechanics of Materials
Civil and Environmental Engineering
University of California at Berkeley

Introduction:

Finite element analysis is ubiquitous in engineering design. The complex
geometries of typical design make closed-form analysis impossible, and finite element
analysis provides a means of computing approximate solutions, based on a set of basis
functions that approximate the exact solution over spatially-limited domains (elements),
that can be proven to approach the unknown exact solution with mesh refinement. This
technique has become indispensible in automotive and aerospace engineering as well as
in architecture and structural engineering, where it has enabled analysis of complex forms
that could not be designed to bear loads and survive damage through any other method, at
least not with the same degree of confidence afforded by FEA.

The idea of using NURBS as the basis functions, instead of the traditional
Lagrange polynomials, seems to be relatively recent. Cottrell, Hughes, and Bazilevs put
forth the notion in 2004, and followed with a series of papers that applied NURBS-based
finite element analysis to various test problems, typically showing improved numerical
performance and efficiency. These results were recently collected with extended
commentary in book form. The authors argued that the ability of NURBS to exactly
represent a given geometry at low order, coupled with the capability of refining the mesh
to achieve higher accuracy without changing the geometry, made NURBS an ideal basis
with which to build finite element codes.

Project Description:

The goal of this project was twofold: I needed to teach myself how NURBS work
and how to integrate them into finite element analysis for the sake of my research, and I
hoped to make good on the promise of NURBS in adaptive analysis. Adaptive analysis
refers to the process of automatically refining a finite element mesh to achieve a target
level of accuracy at the minimum possible computational cost. Although adaptive
analysis has clear benefits to industry in terms of potentially making analysis much less
time-consuming, the practical difficulty of iteratively refining a conventional finite
element mesh without butchering the geometry has effectively confined adaptive analysis
to the academic realm. In particular, adaptive analysis with ordinary Lagrange-basis-
function finite elements would require a direct computational link between CAD and
FEA software. Since this link is typically only realized quasi-manually in practice,
adaptive analysis cannot be done in industry without unreasonable overhead.

The geometrical exactness of NURBS basis functions coupled with the relative

ease of refinement makes them naturally suited to making adaptive analysis more
practical. No external link to the geometrical model is required with NURBS, since the
CAD and coarsest FEA model are one and the same. This makes automated adaptive
analysis much more feasible, and also makes such techniques as shape optimization – a
true union of design and analysis – much more accessible. The prospect of making these
powerful labor-, cost-, and material-saving techniques less academic and more readily
available in structural design motivated this project.

I had hoped to accomplish the project in two phases. In the first, I would
concentrate on building a NURBS-based finite element analysis code in MATLAB. In
the second, I would focus on a straightforward two-dimensional test problem presented in
[1] where the analytical solution is known, and would develop an iterative code that
would compare the analysis results on a particular mesh to the exact solution and then
would decide how to refine the mesh until a desired target accuracy was achieved.
Ultimately the code would be modified to use an a-posteriori error estimation routine (of
which many exist in the literature), eliminating the need for a known exact solution and
rendering the code fully adaptive for any given problem.

Concept and Structure of Code:

It is worth mentioning that although the code was written in MATLAB, the

algorithms I wrote were intended to stand on their own. The code is ultimately intended
to be incorporated into the popular and powerful open-source academic finite element
analysis program FEAP, which my advisor and co-advisor maintain and distribute. I
therefore set myself several limitations that the code needed to satisfy before I would be
satisfied with the code. Specifically:

1. It had to be arbitrary-order, i.e. it had to be able to generate and analyze

a NURBS mesh of any given polynomial order. Ideally, it should also
be able to produce any order of derivative (up to the polynomial order).

2. It had to be general, in the sense of not relying on any assumptions
about the input. Code that assumed open knot vectors, assumed
uniform knot vectors, assumed no repeated internal knots, etc, was
therefore disqualified.

3. It had to be reasonably efficient. In particular, no arrays could be
dynamically allocated. Of course, the requirement of efficiency was
balanced against the requirement of actually getting the code to work
under a deadline, so I wasn’t fanatical about this, just careful.

4. It had to be exportable. As much as possible was done with only for
loops and if statements, and minimal use was made of the canned
MATLAB functions for matrix manipulation. The code was written
with an eye for future translation into heavier-duty languages.

Of course, no project works out exactly like it was planned. When I started I had

done a literature search that turned up no papers on adaptive NURBS-based FEA, so I
thought I had a shot at getting something publication-worthy. I later found some
preprints and conference presentations showing researchers working on exactly that,
which gave me some insight into the difficulty of the problem but also killed my get-
published-quick scheme. More to the point, the learning curve involved in writing a
NURBS-based FEA code from scratch stymied my attempts to arrive at an adaptive code.
I nonetheless was able to get results which compared well with the exact solution, so the
effort was still a qualified success.

Although the results thus far are sadly not new, I would argue that the particular
implementation and the underlying philosophy of the code is superior to the published
results I had used as references. In particular, Cottrell, Hughes, and Bazilevs rely heavily
on the algorithms published in Piegl and Tiller, which, while certainly efficient, tend to
obscure the underlying geometrical structure of NURBS by replacing it with rather
opaque algebraic formulae. I spent quite a bit of time reading Farin, which was a much
better guide to the underlying geometrical concepts (although it is chock full of
typographical errors), and was able to get some good insights into algorithm design from
Prautzsch, Boehm, and Paluzsny. In the end, I arrived at a code design that I believe is
simpler and more transparent than that presented by Hughes et al.

The main philosophical consideration guiding the code was really something I

picked up from this class – that the geometry of NURBS is more fundamental than the
algebra. Rather than relying on basis function formulae to construct curves, as in Piegl
and Tiller, it is much more intuitive to build the recursive linear interpolation algorithms
to construct the curves directly. Basis functions can then be recovered from these
algorithms in exactly the same way as they were originally derived – by expanding out
the recursive linear interpolation. Specifically, every time a basis function is needed, it is
evaluated as a one-dimensional curve with a unit control point at the selected function
and zero control points everywhere else, effectively filtering out the function that would
be multiplied onto that control point in evaluating a point on the curve.

The concept of blossoming, presented in Rockwood and Chambers as well as in

other references, was very useful in concisely representing the recursive linear
interpolation that is the essential building block of the code. Rather than having different
algebraic algorithms for each geometric operation (as in Piegl and Tiller), every separate
algorithm is constructed by some combination of this one fundamental atomic unit. The
only exception is order elevation, which requires a separate routine to elevate Bezier
curve segments. I ended up replacing the simple blossoming routine in Rockwood and
Chambers with a tetrahedral algorithm, as discussed in Prautzsch, Boehm, and Paluzsny,
that can take derivatives of the curve by successively differencing intermediate points of
the recursive linear interpolation.

I can’t say that my code is more efficient than others – at this point in its

development that is impossible to expect – but it is more transparent and it does keep the
geometry closer to the surface. The structure of the code is presented in Figure 1. In
addition to this main routine, several routines (GraphSurf , GraphStress,
GraphExactStress, GraphStressError) were written to display the displacement field
results u from the finite element solution, the corresponding stresses, the stresses of the
exact solution, and the RMS error of the stresses from the finite element solution
compared with the stresses from the exact solution.

Other than the general issues of presentation I’ve mentioned, I was able to

eliminate one minor unnecessary complexity from the implementation presented in
Hughes et al. The numerical integration of element stiffness matrices is typically
conducted in a normalized bi-unit “parent domain” which is mapped to the physical

geometry by a Jacobian coordinate transformation. This is done so that the integration
points can be pre-computed rather than being computed separately for each element,
which would introduce unacceptable computational expense. However, this parent
domain does not match the parameterization of the NURBS knot vectors, so in Hughes et
al., the authors transform the integration points into the knot vector space. In this
approach, a separate mapping is required for the derivatives of basis functions and for the
Jacobian determinant used in Gauss integration, a result that differs from standard form.

Rather than do this, it is sufficient to do the opposite and simply translate and

stretch each local knot vector that is collected in evaluating each element such that it fits
the standard parent domain parameterization. This requires no modification of the
Jacobian from its standard form, eliminating a minor but ultimately unnecessary matrix
calculation. Results of both methods were found to give equivalent results to 10-10 digits,
so the additional simplicity of my method comes at no cost in accuracy.

Figure 1: Structure of Code

One additional improvement was the use of a separate knot multiplicity vector r to

deal with repeated knots. The implementation presented in Hughes et al. simply checks if
two adjacent knot values are equal, indicating a degenerate knot span, and in that case
does not compute an element over the degenerate span. I implemented an improvement
suggested in various references, namely the use of a separate vector that indicates the
multiplicity of each knot value in the knot vector. This improvement results in a
modified knot vector with no repeated values, coupled with a separate knot multiplicity
vector, and eliminates the need to check if the current span is degenerate, since no
repeated knot values exist in the modified knot vector and all knot spans are therefore a
priori non-degenerate. It also allows the knot vectors to be a vector of doubles while the
knot multiplicity vector is a separate vector of ints.

It must be noted that the final code only employed B-splines. NURBS-based code

is not significantly difficult, but it will have to wait to be implemented.

The Test Problem:

 The problem that the code was tested on is a classic result from mechanical
engineering involving the stress concentration of a two-dimensional flat plate with a hole
under tension, where the hole is small with respect to the dimensions of the plate. The
smallness of the hole allows one to model the plate as effectively infinite in size.

Figure 2. Test problem: Segment of infinite plate with hole under tension (from [1])

 This problem is commonly employed in industry to model the stress concentration
in the vicinity of a small hole. The exact stresses in the plate are given by

where Tx is the magnitude of the applied tensile stress and R is the radius of the hole.
The maximum tensile stress at the edge of the hole is three times the applied tensile
stress. This is referred to as the stress concentration factor of this particular geometry,
and design engineers must size the plate to accommodate these stress concentrations.

Since the domain of the problem is infinite but the code can only model finite
domains, a trick is required in order to render the problem amenable to computational
analysis. First, the problem is symmetric about the origin, so only one quadrant is
modeled, with appropriate symmetry displacement boundary conditions. Second, a small
subdomain of the infinite plate in the immediate vicinity of the hole is selected, and the
stresses from the exact solution are applied at the edges of this subdomain (Figure 2).
This trick enables the finite element solution to approximate the exact solution. Ideally,
the finite element solution will converge to the exact solution as the mesh is refined.

Figure 3: Two-element quadratic NURBS mesh. Blue = control net, Green = elements.

This particular geometry can be described exactly with one two-element quadratic

NURBS patch that is C1-continuous across the element boundary (Figure 3). This

particular approach results in a singular point at the upper left corner, where two control
points must overlap to force the patch to have straight sides. This geometry can also be
modeled by stitching two separate quadratic NURBS patches together with C0 continuity
at the 45-degree boundary. However, this approach will result in stresses that are
discontinuous at the C0 patch boundary, so the first approach is advocated in [1] as
producing a more physically reasonable result. The same approach was adopted here.

An additional trick was adopted in order to simplify the code. In standard finite

element analysis, displacement boundary conditions are applied in strong form by
directly prescribing displacement values at nodes, while stress boundary conditions are
applied in weak (integral) form. Applying non-constant stress boundary conditions on a
finite element mesh (as we are doing here) requires a separate subroutine to numerically
integrate the stresses along the boundary in order to produce consistent element loads.
Rather than build this additional routine to apply the exact stresses at the boundary, I
simply solved for the exact displacement and applied this displacement directly along the
boundary at the control points. This clever trick completely backfired, introducing a
systematic error into the solution, but teaching an important lesson about a major
conceptual difference between NURBS and conventional finite element analysis.

Results:

 The analysis was conducted on a two-element mesh, beginning with quadratic
polynomial order and increasing up to tenth order. A stress of 10 units was applied on
the plate, leading to an expected maximum value of stress at the hole of 30 units. As
expected, results were less accurate at low polynomial order (in terms of both the
maximum stress at the hole and the spatial distribution of RMS stress error) and became
more accurate with increased polynomial order. Although knot insertion would have also
improved the solution quality, and is in fact essential in order to provide enough elements
to achieve reasonable accuracy, the routines to insert knots across the mesh and subdivide
it into more elements were not successfully implemented before the project deadline.

Figure 4. Exact Solution

Figure 5. Two-element quadratic solution.

Figure 6. Solution on fourth-order mesh

 The exact solution is shown in Figure 4, the FEA solution on the quadratic mesh
in Figure 5, and a refined solution at fourth order on Figure 6. Although the stress
concentration at the hole is fairly accurate even for the coarse mesh (approximately 26
units versus 30 units exact), and becomes more accurate with refinement, the stress away
from the hole along the 45-degree element boundary is considerably different, as is
visible in the high RMS stress error along the 45-degree line (Figure 7). It is expected
that the stress at element boundaries will be less accurate; however, this degree of
inaccuracy is more than should be expected, and seems to indicate systematic error – see
Figure 8 for a depiction of the discrepancy in the x-component of stress. The exact stress
lies below the surface of the finite element stress, particularly along the 45-degree line.

As mentioned previously, there is a convincing source of systematic error that I
missed due to a misunderstanding of the difference between conventional and NURBS-
based finite element analysis. The strong imposition of displacement boundary
conditions used to simplify the problem relies on the fact that, at the linear boundaries of
the mesh, the control points become interpolatory. This allows us to directly prescribe
the displacement in this case, even though control points are not generally interpolatory.
However, due to the overlapped control points at the corner of the mesh (Figure 9), the
spacing of the nodes along the boundary is distorted, and the displacement boundary
conditions are not applied at the correct interpolatory locations. Rather, the displacement
boundary conditions are “smeared out”, rendering the results systematically inexact.

Figure 7. RMS stress error Figure 8. Exact vs. finite element x-stress

 The original strategy of strongly imposing displacement boundary conditions
would have worked had the boundary between the elements been C0, as in Figure 10.
Unfortunately this strategy was rejected on physical grounds without my recognition of
its impact on the solution strategy, and it was not possible to implement it in time. To
complete the study, it would be necessary to either impose the traction boundary
conditions, as in [1], or to move to a C0 mesh so that the control points become
interpolatory at the straight edges of the mesh.

Figure 9. Original C1 mesh. Figure 10. C0 mesh. Note how the control

points become interpolatory at the boundary.

Conclusions:

A B-spline-based finite element code was implemented and used to analyze a
classic stress analysis problem. The code architecture was designed for robustness,
transparency, and reasonable efficiency, goals that I think were met successfully.
Howver, several conceptual difficulties related to the test problem chosen were
encountered which prevented the full success of the final code. These difficulties do not
represent particularly difficult hurdles to be overcome, requiring only more time to

implement the required fixes. Results thus far encourage expectations that the code will
function as expected once these issues are addressed.

Specifically, it is necessary to include NURBS basis functions instead of B-

splines (which merely requires a NURBS-based derivative evaluation routine – I already
have routines to evaluate NURBS that work perfectly, just not routines to evaluate their
derivatives), the ability to impose general stress boundary conditions needs to be
implemented, and knot insertion across the entire mesh must be available. Ultimately an
a-posteriori error estimate and a suitable adaptive feedback routine must be designed.
Future work will finish these tasks.

Overall, the experience of coding this routine was invaluable in building my

understanding of NURBS and NURBS-based finite element analysis. The task turned out
to be more difficult than I anticipated, largely due to habits of mind that, like most other
finite element analysts, are programmed for the behavior of Lagrange polynomials. The
non-interpolatory nature of the boundary conditions and the overlapping support of the
functions that must be accounted for in the matrix assembly data structures required a bit
of mental adjustment to understand. I anticipate that the results will be worth the
adjustment, as evidenced by the ability of the code to analyze meshes at polynomial
orders much higher than those possible via Lagrange-based standard FEA.

 One last note: to run the code, it is necessary only to run FemTestBsplinePElev.m.
However, the current implementation is quite research-y and user-hostile, so no user’s
manual was included in this report. This will eventually be addressed by including the
routines in FEAP, which is much more user-friendly in comparison.

