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Introduction: 
 

Finite element analysis is ubiquitous in engineering design.  The complex 
geometries of typical design make closed-form analysis impossible, and finite element 
analysis provides a means of computing approximate solutions, based on a set of basis 
functions that approximate the exact solution over spatially-limited domains (elements), 
that can be proven to approach the unknown exact solution with mesh refinement.  This 
technique has become indispensible in automotive and aerospace engineering as well as 
in architecture and structural engineering, where it has enabled analysis of complex forms 
that could not be designed to bear loads and survive damage through any other method, at 
least not with the same degree of confidence afforded by FEA. 
 

The idea of using NURBS as the basis functions, instead of the traditional 
Lagrange polynomials, seems to be relatively recent. Cottrell, Hughes, and Bazilevs put 
forth the notion in 2004, and followed with a series of papers that applied NURBS-based 
finite element analysis to various test problems, typically showing improved numerical 
performance and efficiency.  These results were recently collected with extended 
commentary in book form.  The authors argued that the ability of NURBS to exactly 
represent a given geometry at low order, coupled with the capability of refining the mesh 
to achieve higher accuracy without changing the geometry, made NURBS an ideal basis 
with which to build finite element codes. 
 
Project Description: 
 

The goal of this project was twofold:  I needed to teach myself how NURBS work 
and how to integrate them into finite element analysis for the sake of my research, and I 
hoped to make good on the promise of NURBS in adaptive analysis.  Adaptive analysis 
refers to the process of automatically refining a finite element mesh to achieve a target 
level of accuracy at the minimum possible computational cost.  Although adaptive 
analysis has clear benefits to industry in terms of potentially making analysis much less 
time-consuming, the practical difficulty of iteratively refining a conventional finite 
element mesh without butchering the geometry has effectively confined adaptive analysis 
to the academic realm.  In particular, adaptive analysis with ordinary Lagrange-basis-
function finite elements would require a direct computational link between CAD and 
FEA software.  Since this link is typically only realized quasi-manually in practice, 
adaptive analysis cannot be done in industry without unreasonable overhead. 

 
The geometrical exactness of NURBS basis functions coupled with the relative 

ease of refinement makes them naturally suited to making adaptive analysis more 
practical.  No external link to the geometrical model is required with NURBS, since the 
CAD and coarsest FEA model are one and the same.  This makes automated adaptive 
analysis much more feasible, and also makes such techniques as shape optimization – a 
true union of design and analysis – much more accessible.  The prospect of making these 
powerful labor-, cost-, and material-saving techniques less academic and more readily 
available in structural design motivated this project. 

 



I had hoped to accomplish the project in two phases.  In the first, I would 
concentrate on building a NURBS-based finite element analysis code in MATLAB.  In 
the second, I would focus on a straightforward two-dimensional test problem presented in 
[1] where the analytical solution is known, and would develop an iterative code that 
would compare the analysis results on a particular mesh to the exact solution and then 
would decide how to refine the mesh until a desired target accuracy was achieved.  
Ultimately the code would be modified to use an a-posteriori error estimation routine (of 
which many exist in the literature), eliminating the need for a known exact solution and 
rendering the code fully adaptive for any given problem. 
 
Concept and Structure of Code: 

 
It is worth mentioning that although the code was written in MATLAB, the 

algorithms I wrote were intended to stand on their own.  The code is ultimately intended 
to be incorporated into the popular and powerful open-source academic finite element 
analysis program FEAP, which my advisor and co-advisor maintain and distribute.  I 
therefore set myself several limitations that the code needed to satisfy before I would be 
satisfied with the code.  Specifically: 

 
1. It had to be arbitrary-order, i.e. it had to be able to generate and analyze 

a NURBS mesh of any given polynomial order.  Ideally, it should also 
be able to produce any order of derivative (up to the polynomial order). 

2. It had to be general, in the sense of not relying on any assumptions 
about the input.  Code that assumed open knot vectors, assumed 
uniform knot vectors, assumed no repeated internal knots, etc, was 
therefore disqualified. 

3. It had to be reasonably efficient.  In particular, no arrays could be 
dynamically allocated.  Of course, the requirement of efficiency was 
balanced against the requirement of actually getting the code to work 
under a deadline, so I wasn’t fanatical about this, just careful. 

4. It had to be exportable.  As much as possible was done with only for 
loops and if statements, and minimal use was made of the canned 
MATLAB functions for matrix manipulation.  The code was written 
with an eye for future translation into heavier-duty languages. 

 
Of course, no project works out exactly like it was planned.  When I started I had 

done a literature search that turned up no papers on adaptive NURBS-based FEA, so I 
thought I had a shot at getting something publication-worthy.  I later found some 
preprints and conference presentations showing researchers working on exactly that, 
which gave me some insight into the difficulty of the problem but also killed my get-
published-quick scheme.  More to the point, the learning curve involved in writing a 
NURBS-based FEA code from scratch stymied my attempts to arrive at an adaptive code.  
I nonetheless was able to get results which compared well with the exact solution, so the 
effort was still a qualified success. 

   



Although the results thus far are sadly not new, I would argue that the particular 
implementation and the underlying philosophy of the code is superior to the published 
results I had used as references.  In particular, Cottrell, Hughes, and Bazilevs rely heavily 
on the algorithms published in Piegl and Tiller, which, while certainly efficient, tend to 
obscure the underlying geometrical structure of NURBS by replacing it with rather 
opaque algebraic formulae.  I spent quite a bit of time reading Farin, which was a much 
better guide to the underlying geometrical concepts (although it is chock full of 
typographical errors), and was able to get some good insights into algorithm design from 
Prautzsch, Boehm, and Paluzsny.  In the end, I arrived at a code design that I believe is 
simpler and more transparent than that presented by Hughes et al. 

 
The main philosophical consideration guiding the code was really something I 

picked up from this class – that the geometry of NURBS is more fundamental than the 
algebra.  Rather than relying on basis function formulae to construct curves, as in Piegl 
and Tiller, it is much more intuitive to build the recursive linear interpolation algorithms 
to construct the curves directly.  Basis functions can then be recovered from these 
algorithms in exactly the same way as they were originally derived – by expanding out 
the recursive linear interpolation.  Specifically, every time a basis function is needed, it is 
evaluated as a one-dimensional curve with a unit control point at the selected function 
and zero control points everywhere else, effectively filtering out the function that would 
be multiplied onto that control point in evaluating a point on the curve. 

 
The concept of blossoming, presented in Rockwood and Chambers as well as in 

other references, was very useful in concisely representing the recursive linear 
interpolation that is the essential building block of the code.  Rather than having different 
algebraic algorithms for each geometric operation (as in Piegl and Tiller), every separate 
algorithm is constructed by some combination of this one fundamental atomic unit.  The 
only exception is order elevation, which requires a separate routine to elevate Bezier 
curve segments.  I ended up replacing the simple blossoming routine in Rockwood and 
Chambers with a tetrahedral algorithm, as discussed in Prautzsch, Boehm, and Paluzsny, 
that can take derivatives of the curve by successively differencing intermediate points of 
the recursive linear interpolation. 

 
I can’t say that my code is more efficient than others – at this point in its 

development that is impossible to expect – but it is more transparent and it does keep the 
geometry closer to the surface.  The structure of the code is presented in Figure 1.  In 
addition to this main routine, several routines (GraphSurf , GraphStress, 
GraphExactStress, GraphStressError) were written to display the displacement field 
results u from the finite element solution, the corresponding stresses, the stresses of the 
exact solution, and the RMS error of the stresses from the finite element solution 
compared with the stresses from the exact solution. 

 
Other than the general issues of presentation I’ve mentioned, I was able to 

eliminate one minor unnecessary complexity from the implementation presented in 
Hughes et al.  The numerical integration of element stiffness matrices is typically 
conducted in a normalized bi-unit “parent domain” which is mapped to the physical 



geometry by a Jacobian coordinate transformation.  This is done so that the integration 
points can be pre-computed rather than being computed separately for each element, 
which would introduce unacceptable computational expense.  However, this parent 
domain does not match the parameterization of the NURBS knot vectors, so in Hughes et 
al., the authors transform the integration points into the knot vector space.  In this 
approach, a separate mapping is required for the derivatives of basis functions and for the 
Jacobian determinant used in Gauss integration, a result that differs from standard form. 

 
Rather than do this, it is sufficient to do the opposite and simply translate and 

stretch each local knot vector that is collected in evaluating each element such that it fits 
the standard parent domain parameterization.  This requires no modification of the 
Jacobian from its standard form, eliminating a minor but ultimately unnecessary matrix 
calculation.  Results of both methods were found to give equivalent results to 10-10 digits, 
so the additional simplicity of my method comes at no cost in accuracy. 

 
 

 
 
Figure 1:  Structure of Code 



 
One additional improvement was the use of a separate knot multiplicity vector r to 

deal with repeated knots.  The implementation presented in Hughes et al. simply checks if 
two adjacent knot values are equal, indicating a degenerate knot span, and in that case 
does not compute an element over the degenerate span.  I implemented an improvement 
suggested in various references, namely the use of a separate vector that indicates the 
multiplicity of each knot value in the knot vector.  This improvement results in a 
modified knot vector with no repeated values, coupled with a separate knot multiplicity 
vector, and eliminates the need to check if the current span is degenerate, since no 
repeated knot values exist in the modified knot vector and all knot spans are therefore a 
priori non-degenerate.  It also allows the knot vectors to be a vector of doubles while the 
knot multiplicity vector is a separate vector of ints. 

 
It must be noted that the final code only employed B-splines.  NURBS-based code 

is not significantly difficult, but it will have to wait to be implemented. 
 
The Test Problem: 
 
 The problem that the code was tested on is a classic result from mechanical 
engineering involving the stress concentration of a two-dimensional flat plate with a hole 
under tension, where the hole is small with respect to the dimensions of the plate.  The 
smallness of the hole allows one to model the plate as effectively infinite in size. 
 

 

 
Figure 2.  Test problem: Segment of infinite plate with hole under tension (from [1]) 



 
 This problem is commonly employed in industry to model the stress concentration 
in the vicinity of a small hole.  The exact stresses in the plate are given by 
 

 
 

where Tx is the magnitude of the applied tensile stress and R is the radius of the hole.  
The maximum tensile stress at the edge of the hole is three times the applied tensile 
stress.  This is referred to as the stress concentration factor of this particular geometry, 
and design engineers must size the plate to accommodate these stress concentrations. 
 

Since the domain of the problem is infinite but the code can only model finite 
domains, a trick is required in order to render the problem amenable to computational 
analysis.  First, the problem is symmetric about the origin, so only one quadrant is 
modeled, with appropriate symmetry displacement boundary conditions.  Second, a small 
subdomain of the infinite plate in the immediate vicinity of the hole is selected, and the 
stresses from the exact solution are applied at the edges of this subdomain (Figure 2).  
This trick enables the finite element solution to approximate the exact solution.  Ideally, 
the finite element solution will converge to the exact solution as the mesh is refined. 

 

 
 
Figure 3:  Two-element quadratic NURBS mesh.  Blue = control net, Green = elements. 

 
This particular geometry can be described exactly with one two-element quadratic 

NURBS patch that is C1-continuous across the element boundary (Figure 3).  This 



particular approach results in a singular point at the upper left corner, where two control 
points must overlap to force the patch to have straight sides.  This geometry can also be 
modeled by stitching two separate quadratic NURBS patches together with C0 continuity 
at the 45-degree boundary.  However, this approach will result in stresses that are 
discontinuous at the C0 patch boundary, so the first approach is advocated in [1] as 
producing a more physically reasonable result.  The same approach was adopted here. 

 
An additional trick was adopted in order to simplify the code.  In standard finite 

element analysis, displacement boundary conditions are applied in strong form by 
directly prescribing displacement values at nodes, while stress boundary conditions are 
applied in weak (integral) form.  Applying non-constant stress boundary conditions on a 
finite element mesh (as we are doing here) requires a separate subroutine to numerically 
integrate the stresses along the boundary in order to produce consistent element loads.  
Rather than build this additional routine to apply the exact stresses at the boundary, I 
simply solved for the exact displacement and applied this displacement directly along the 
boundary at the control points.  This clever trick completely backfired, introducing a 
systematic error into the solution, but teaching an important lesson about a major 
conceptual difference between NURBS and conventional finite element analysis. 
 
Results: 
 
 The analysis was conducted on a two-element mesh, beginning with quadratic 
polynomial order and increasing up to tenth order.  A stress of 10 units was applied on 
the plate, leading to an expected maximum value of stress at the hole of 30 units.  As 
expected, results were less accurate at low polynomial order (in terms of both the 
maximum stress at the hole and the spatial distribution of RMS stress error) and became 
more accurate with increased polynomial order.  Although knot insertion would have also 
improved the solution quality, and is in fact essential in order to provide enough elements 
to achieve reasonable accuracy, the routines to insert knots across the mesh and subdivide 
it into more elements were not successfully implemented before the project deadline. 
 

 
 
Figure 4.  Exact Solution 
 



 
 
Figure 5.  Two-element quadratic solution. 
 

 
 
Figure 6.  Solution on fourth-order mesh 
 
 The exact solution is shown in Figure 4, the FEA solution on the quadratic mesh 
in Figure 5, and a refined solution at fourth order on Figure 6.  Although the stress 
concentration at the hole is fairly accurate even for the coarse mesh (approximately 26 
units versus 30 units exact), and becomes more accurate with refinement, the stress away 
from the hole along the 45-degree element boundary is considerably different, as is 
visible in the high RMS stress error along the 45-degree line (Figure 7).  It is expected 
that the stress at element boundaries will be less accurate; however, this degree of 
inaccuracy is more than should be expected, and seems to indicate systematic error – see 
Figure 8 for a depiction of the discrepancy in the x-component of stress.  The exact stress 
lies below the surface of the finite element stress, particularly along the 45-degree line. 
 

As mentioned previously, there is a convincing source of systematic error that I 
missed due to a misunderstanding of the difference between conventional and NURBS-
based finite element analysis.  The strong imposition of displacement boundary 
conditions used to simplify the problem relies on the fact that, at the linear boundaries of 
the mesh, the control points become interpolatory.  This allows us to directly prescribe 
the displacement in this case, even though control points are not generally interpolatory.  
However, due to the overlapped control points at the corner of the mesh (Figure 9), the 
spacing of the nodes along the boundary is distorted, and the displacement boundary 
conditions are not applied at the correct interpolatory locations.  Rather, the displacement 
boundary conditions are “smeared out”, rendering the results systematically inexact. 



           
 
Figure 7.  RMS stress error        Figure 8. Exact vs. finite element x-stress 
 
 The original strategy of strongly imposing displacement boundary conditions 
would have worked had the boundary between the elements been C0, as in Figure 10.  
Unfortunately this strategy was rejected on physical grounds without my recognition of 
its impact on the solution strategy, and it was not possible to implement it in time.  To 
complete the study, it would be necessary to either impose the traction boundary 
conditions, as in [1], or to move to a C0 mesh so that the control points become 
interpolatory at the straight edges of the mesh. 
 

   
Figure 9.  Original C1 mesh.  Figure 10.  C0 mesh.  Note how the control 

points become interpolatory at the boundary. 
 
Conclusions: 
 

A B-spline-based finite element code was implemented and used to analyze a 
classic stress analysis problem.  The code architecture was designed for robustness, 
transparency, and reasonable efficiency, goals that I think were met successfully. 
Howver, several conceptual difficulties related to the test problem chosen were 
encountered which prevented the full success of the final code.  These difficulties do not 
represent particularly difficult hurdles to be overcome, requiring only more time to 



implement the required fixes.  Results thus far encourage expectations that the code will 
function as expected once these issues are addressed. 

 
Specifically, it is necessary to include NURBS basis functions instead of B-

splines (which merely requires a NURBS-based derivative evaluation routine – I already 
have routines to evaluate NURBS that work perfectly, just not routines to evaluate their 
derivatives), the ability to impose general stress boundary conditions needs to be 
implemented, and knot insertion across the entire mesh must be available.  Ultimately an 
a-posteriori error estimate and a suitable adaptive feedback routine must be designed.  
Future work will finish these tasks. 

 
Overall, the experience of coding this routine was invaluable in building my 

understanding of NURBS and NURBS-based finite element analysis.  The task turned out 
to be more difficult than I anticipated, largely due to habits of mind that, like most other 
finite element analysts, are programmed for the behavior of Lagrange polynomials.  The 
non-interpolatory nature of the boundary conditions and the overlapping support of the 
functions that must be accounted for in the matrix assembly data structures required a bit 
of mental adjustment to understand.  I anticipate that the results will be worth the 
adjustment, as evidenced by the ability of the code to analyze meshes at polynomial 
orders much higher than those possible via Lagrange-based standard FEA. 
 
 One last note: to run the code, it is necessary only to run FemTestBsplinePElev.m.  
However, the current implementation is quite research-y and user-hostile, so no user’s 
manual was included in this report.  This will eventually be addressed by including the 
routines in FEAP, which is much more user-friendly in comparison. 


