
February 7, 2002 16:30

Proceedings of DETC02
2002 ASME Design Engineering Technical Conferences

September 29, 2002, Montreal, Quebec, Canada

DETC2002/DAC-xxx

THE EVOLUTION OF A LAYERED MANUFACTURING INTERCHANGE FORMAT

Sara McMains
�

Mechanical Engineering Department
University of California, Berkeley
Berkeley, California, 94720-1740

Email: mcmains@me.berkeley.edu

Jordan Smith
Carlo Séquin

Computer Science Department
University of California, Berkeley
Berkeley, California, 94720-1776

Email:
�
jordans � sequin � @cs.berkeley.edu

ABSTRACT
Over the last several years we have developed the Berkeley

Solid Interchange Format (SIF) for layered manufacturing data
exchange. By building both design software that outputs SIF as
well as manufacturing software that processes the SIF input files,
we gained insights into the concerns of both sides of data ex-
change – insights which often led to major changes in successive
versions of the format. In this paper, we share some of the most
important lessons we learned (many of which are applicable to
all geometric data exchange, not merely for layered manufactur-
ing) and explain how they shaped SIF.

INTRODUCTION
Designers who want to make prototypes of solid three-

dimensional parts directly from CAD descriptions are increas-
ingly turning to a class of technologies collectively referred to as
layered manufacturing (LM) or rapid prototyping. These tech-
nologies include stereolithography (SLA), 3-D printing, fused
deposition modeling (FDM), selective laser sintering (SLS), and
laminated object manufacturing (LOM)(Beaman97). In all these
processes, a triangulated boundary representation (b-rep) of the
CAD model of the part is sliced into horizontal, 2.5-D layers
of uniform thickness. Each cross sectional layer is successively
deposited, hardened, fused, or cut, depending on the particular
process, and attached to the layer beneath it. (For technologies
such as SLA and FDM, a sacrificial support structure must also
be built to support overhanging geometry.) The stacked layers

�
Corresponding author.

form the final part.

The computer representation of the part plays a central role
in this process. While a human can easily interpret a shaded 3D
surface model or a display of a wireframe model with dashed
hidden lines, a solid model that unambiguously defines the re-
gion inside of the part is necessary for layered manufacturing.
For a b-rep such as the STL format that has become the de facto
standard in the LM industry, the boundary must be watertight,
oriented, and not self-intersecting. Unfortunately, STL files com-
monly contain errors such as cracks and penetrating or extrane-
ous faces. Service bureaus that manufacture LM parts typically
massage and clean up these files to produce sanitized and consis-
tent models which then are then used as input to the fabrication
machine’s software. If the original file is highly inconsistent,
then the manufacturers have to make an educated guess as to
what the intent of the original designer was and what the desired
geometry might have looked like. They will then try to approxi-
mate that geometry as best possible with a clean STL description.

In this context we developed the Berkeley Solid Interchange
Format (SIF) (McMains99) to serve as a replacement interface
between designers and fabricators of LM parts. During this
project we built both design software that outputs SIF as well as
manufacturing software that processes the SIF input files. Build-
ing this software helped us gain insights into the concerns of
both sides of data exchange – insights which often led to major
changes in successive versions of the format. In this paper, we
share some of the most important lessons we learned (many of
which are applicable to all geometric data exchange, not merely
for layered manufacturing) and explain how they shaped SIF.

1 Copyright  2002 by ASME

RELATED WORK
In this section we describe several existing interchange for-

mats that have been used for layered manufacturing.

STL
The industry de facto standard for exchanging part descrip-

tions for layered manufacturing is the STL format. STL is a
boundary representation that consists of a simple list of triangu-
lar facets. The vertex coordinates are specified explicitly for each
triangle in which the vertex appears. The vertices are enumerated
in counter clockwise order as seen from the exterior of the part.
In addition, for each triangle, a surface normal that points to the
exterior of the part is specified. Figure 1 shows an example of an
excerpt from an STL file for a cube centered at the origin.

STL files come in two types, ASCII and binary. Although
the ASCII version uses an organization and keyword choice that
suggests the possibility of defining non-triangular facets with
multiple loops and grouping them into multiple solids, the bi-
nary format has no way of capturing this information. The binary
format consists of only a header string, the number of triangles
to follow, and a list of four 3-D coordinates for each triangular
facet, defining the normal and the three vertices.

solid ascii

facet normal 0.0000 1.0000 0.0000 facet normal 1.0000 0.0000 0.0000 facet normal 0.0000 -1.0000 0.0000

outer loop outer loop outer loop

vertex 1.0000 1.0000 1.0000 vertex 1.0000 1.0000 1.0000 vertex -1.0000 -1.0000 -1.0000

vertex 1.0000 1.0000 -1.0000 vertex 1.0000 -1.0000 1.0000 vertex 1.0000 -1.0000 1.0000

vertex -1.0000 1.0000 -1.0000 vertex 1.0000 -1.0000 -1.0000 vertex -1.0000 -1.0000 1.0000

endloop endloop endloop

endfacet endfacet endfacet

...

facet normal 0.0000 0.0000 1.0000 facet normal 0.0000 -1.0000 0.0000 facet normal 0.0000 0.0000 -1.0000

outer loop outer loop outer loop

vertex 1.0000 1.0000 1.0000 vertex -1.0000 -1.0000 -1.0000 vertex -1.0000 -1.0000 -1.0000

vertex -1.0000 -1.0000 1.0000 vertex 1.0000 -1.0000 -1.0000 vertex -1.0000 1.0000 -1.0000

vertex 1.0000 -1.0000 1.0000 vertex 1.0000 -1.0000 1.0000 vertex 1.0000 1.0000 -1.0000

endloop endloop endloop

endfacet endfacet endfacet

end solid

Figure 1. An excerpt from an ASCII STL file for a cube.

The shortcomings of STL are well known. It is redundant,
both in repeating the coordinates of shared vertices in each tri-
angle in which they appear, and in the specification of where the
exterior of the part lies (the surface normal, as well as the order-

ing of the vertices, gives this information). This redundancy not
only makes files unnecessarily verbose, but worse, it allows for
inconsistency if the two methods of specifying the exterior do not
agree. There are no rules associated with STL for resolving such
inconsistencies if they arise. Because the vertices are not shared
between triangles, gaps can be introduced between vertices that
should be coincident. With no information about topology or
connectivity included, it is impossible to communicate the de-
signer’s original intent when such gaps are present. Units are
unspecified in STL, leading some manufacturers to guess the in-
tended units based on the bounding box of the part compared to
the machine build volume. There is no way to specify solid or
surface properties. And because there is no version specification
in the format, it is difficult to update it.

The ACIS .SAT Format
Another popular exchange format is the .SAT save file for-

mat (Spatial96) used by the ACIS geometric modeling kernel.
The .SAT format is closely tied to ACIS’s internal topological
data structure, allowing the kernel to quickly rebuild the data
structure from saved files. While it makes sense to use this type
of “data structure dump” as an internal save file format for appli-
cations which use ACIS, it is inappropriate for an LM exchange
format. An exchange format should be independent of the in-
ternal data structure of any one modeler. Furthermore, since the
process of exchanging geometric information consists primarily
of writing, transmitting, and reading back in data files, an ex-
change format should be compact. An internal data structure for
a modeler, on the other hand, generally contains redundant infor-
mation to facilitate real-time analysis and modeling operations;
space-time tradeoff considerations will sacrifice a compact data
structure for interactivity.

Therefore, it is not surprising that ACIS .SAT files are gener-
ally even more bloated than STL files. Yet some of the additional
information they contain would in fact be useful for LM applica-
tions. For example, the faces that define each connected bound-
ary surface are grouped together into “shells,” and the shells that
bound a connected piece of solid material are grouped together
into “lumps.” Surface and solid properties could conceivably be
attached to the shells and lumps, respectively.

Other information is redundant and not always useful for
LM. For a faceted model, the plane equation of the plane con-
taining each facet and the line equation of the line containing
each edge must be specified explicitly. Each vertex is specified
separately from the 3-D point that determines its location. Every
edge-use, or “coedge,” is transmitted separately from its edge and
the loop that contains it. Each entity is assigned an index corre-
sponding to its line number in the ASCII version of the .SAT file,
and the full radial-edge connectivity (Weiler88) of the entities is
recorded using these indices. Figure 2 shows an excerpt from an
ACIS .SAT file representing a simple cube.

2 Copyright  2002 by ASME

201 0 1 0 coedge $-1 $45 $22 $27 $54 1 $12 $-1 #

7 Unknown 16 ACIS 2.1 Solaris 24 Wed Jul 30 16:51:37 1997 coedge $-1 $22 $45 $49 $65 1 $12 $-1 #

-1 9.999999999999999547e-07 1.000000000000000036e-10 coedge $-1 $64 $30 $22 $44 0 $20 $-1 #

body $-1 $1 $-1 $-1 # edge $-1 $57 $66 $43 $67 forward #

lump $-1 $-1 $2 $0 # coedge $-1 $42 $41 $23 $46 0 $12 $-1 #

shell $-1 $-1 $-1 $3 $-1 $1 # edge $-1 $55 $51 $45 $68 forward #

face $-1 $4 $5 $2 $-1 $6 reversed single # edge $-1 $52 $35 $33 $69 forward #

face $-1 $7 $8 $2 $-1 $9 reversed single # coedge $-1 $70 $25 $59 $71 0 $50 $-1 #

loop $-1 $-1 $10 $3 # coedge $-1 $25 $70 $42 $65 0 $50 $-1 #

plane-surface $-1 0 0 5 0 0 -1 -1 0 0 forward v I I I I # loop $-1 $-1 $70 $38 #

... ...

vertex $-1 $18 $62 # point $-1 -5 5 -5 #

straight-curve $-1 5 -5 5 -1 0 0 I I # straight-curve $-1 5 -5 -5 -1 0 0 I I #

face $-1 $-1 $50 $2 $-1 $63 reversed single # point $-1 -5 -5 -5 #

plane-surface $-1 0 -5 0 0 1 -0 -0 0 1 forward v I I I I # straight-curve $-1 -5 -5 -5 0 1 0 I I #

coedge $-1 $30 $64 $32 $60 1 $20 $-1 # End-of-ACIS-data

Figure 2. An excerpt from an ACIS .SAT file for a cube.

Alternate LM Interchange Formats
Several alternate interchange formats have been proposed

specifically for LM. Stroud and Xirouchakis (Stroud00) pro-
posed extending an STL file with an extra section at the end that
lists the faces in the original CAD model and indicates which tri-
angles in the STL file came from which faces. This information
about the designer’s intent could then be used to clean up incon-
sistencies in the generated STL. They do not specify the details
of how the original face information should be communicated;
they used ACIS in their example implementation, but ideally the
original faces would be described in a CAD-system independent
manner.

Other proposed exchange formats encode their own full
topological data structure as well as geometric information.
Rock and Wozny (Rock91) developed the “RPI Format” shortly
after STL was introduced. A header section specifies the in-
tended manufacturing process, scanning methodology, material,
and part name, followed by sections that define the vertices,
straight line edges, and triangular faces of the part. Vertices,
edges, and faces are stored in indexed array-like lists, allowing
triangles that share vertices to reference the same vertex index.
In addition to the implicit connectivity information provided by
the shared vertex indices, each triangular face explicitly records
the indices of the adjacent faces and the edges shared between
them. Faces also record outward facing surface normals. Edges
record the indices of their endpoints and the adjacent faces. CSG
trees can also be built from cuboid, cylinder, cone, sphere and tori
primitives using geometric transforms. Like STL, the RPI For-
mat includes redundant surface normal information. In addition,
the face connectivity information and the edges are redundant

and directly tied to their data structure representation.

Similarly, Jacob et al.’s LMI (Layered Manufacturing Inter-
face) format (Jacob99) is organized to match their own topolog-
ical data structure choice. It is restricted to 2-manifold objects
with a single boundary shell. The faceted version contains trian-
gular facets defined by one loop consisting of three edges. Con-
nectivity information is recorded in the edges, which reference
their two endpoints and two adjacent faces. Each facet points to
a plane and each edge to a line. In the precise version, edges can
point to curves and facets to surfaces. Loops can have any num-
ber of edges. Connectivity is again recorded in edges, but this
time they are divided into half-edges. Each half edge records one
adjacent face, the next half-edge in the loop around that face, and
the previous half-edge in the loop around the other adjacent face.

The differences between the organization of ACIS .SAT, the
RPI format, and LMI, all of which include similar topological in-
formation, reflect the many variations on topological data struc-
tures that can represent that information. Clearly a neutral inter-
change format should not favor a particular data structure. The
fact that connectivity shows up in so many different interchange
formats, however, reflects the fact that deriving the connectivity
is non-trivial.

AN OPERATION-CENTRIC ANALYSIS OF DATA EX-
CHANGE REQUIREMENTS

In designing a data exchange format it is typical to focus on
the information that needs to be exchanged. In this paper, we
will instead focus on the operations to be performed on the data
as the organizing principle, and describe how these operations
influenced our decisions during the development of SIF.

Figure 3 shows the basic operations involved in transforming
a geometric model on a designer’s computer into a 3D part. First,
the design software must translate from its native solid modeling
representation into the representation used by the exchange for-
mat. The exchange file must be written out, transmitted over the
network, and read back in by the manufacturing software. The
manufacturing software then builds its own internal representa-
tion of the geometry and validates that it is legal. Next, possibly
with user intervention, the manufacturing software may perform
operations such as scaling the part, changing its orientation, and
positioning it in the build volume. Then the 3D part is sliced
into 2D layers from which scanning paths or raster patterns are
made to control the cutting/deposition/hardening (depending on
the particular process) of each individual layer. Depending on
the technology being used, support structure geometry may need
to be generated, and various process parameters will need to be
set. Finally, the LM machine builds the part.

3 Copyright  2002 by ASME

Network

−TransmitDesigner Manufacturer

−Read
−Validate
−Scale
−Position
−Slice
−Rasterize
−Build

−Translate
−Write

Figure 3. Basic operations to transform a designer’s geometric
model into an LM part.

Translation
The first operation we consider is translating from the CAD

modeler’s native format into the neutral interchange format.
From the point of view of the design software, the ideal inter-
change format would include all of the design constructs and
representations that the CAD software supports, because then
translation would just be a simple syntactical mapping from its
internal representation. For different design software, this rep-
resentation might encompass anything from voxels to CSG to
b-reps. The b-reps might be as simple as polygonal models or
allow faces as complex as trimmed NURBS patches or embed-
dings in arbitrary analytic surfaces. Design constructs might in-
clude parameterized features, rotations, and sweeps of 1D, 2D,
or 3D objects.

On the other hand, the manufacturers have to read in the
interchange format end and build up a model they can easily ma-
nipulate. From their point of view, the simplest possible format
is desired. Despite its widely acknowledged problems, .STL is
extremely simple, which explains why it is still being used today.

Over the course of the SIF project, members of our group
wrote both design sofware (ranging from mathematical sculpture
generators (Sequin97; Smith99) to a machining feature-based
CAD applet (Sundararajan01)) and layered manufacturing val-
idation, cleanup, and slicing software (McMains99), which gave
us a unique insight into both sides of the interchange process.

Our initial definition of SIF was driven by the design side.
It included many constructs that mapped directly onto the design
interface, some of which were redundant from the point of view
of the range of geometry that could be expressed. As the design
software grew richer, the interchange format became ever more
bloated. Eventually we found that even when the same person
was writing both the design module that wrote SIF and the man-
ufacturing module that read SIF, the reader module wasn’t being
kept up to date with all the new features being added. Instead,
we would just produce .STL files and read those into our manu-
facturing software. Clearly a format that we weren’t even using

internally was not going to be widely accepted.
While some people have proposed using STEP as an inter-

change format for LM, it suffers from the same problem as this
early version of SIF - it was defined by and for designers, who
want to be able to exchange information with other designers
without losing either accuracy or the semantics of their design
process. While the richness of STEP accomplishes this goal to
some degree, it does not achieve it entirely; from the manufac-
turer’s point of view, it isn’t even the right goal.

In a major overhaul of SIF we reduced it back down to the
bare minimum - a triangulated boundary representation much
like STL - and only added features that enhanced the clarity of
the data exchange process or fit in with downstream processing
on the manufacturing side.

Transmission
From the point of view of transmitting files across the net-

work, the best format is the most compact format. This raises the
issue of ASCII versus binary exchange formats.

We started the SIF project defining only an ASCII version of
SIF. There were several reasons for this decision. First, humans
learn about formats much more efficiently from short example
files than pages of formal specifications, and ASCII is human-
readable. Effectively communicating the essence of a new in-
terchange format to a large number of people requires an ASCII
representation. Furthermore, data exchange will always be im-
perfect, making debugging (by humans) a necessity. Humans
would much prefer to examine an ASCII file, even if binary ver-
sions are available. Another argument for an ASCII interchange
format is that when the original designer typed in coordinate
or dimension values to their design software, those were ASCII
characters. Software that outputs those values directly will lose
no information if the interchange format is also ASCII. And fi-
nally, there is no big endian/little endian ambiguity with ASCII
decimal values.

On the other hand, there are two major arguments for hav-
ing a binary format. First, it is far more compact. Second, the
exchange is between, and the ultimate processing on, computers,
which store and operate on binary numbers. Even simple frac-
tional decimals such as .1 cannot be represented exactly as binary
floating point values. If the computers on both ends are storing
binary numbers, converting such a number to a finite precision
ASCII decimal value to transmit it and then back to binary float-
ing point on the other end can change that value. IEEE floating
point representation standards should eliminate any changes in
the values during the exchange of binary numbers.

For all of the aforementioned reasons, both an ASCII and a
binary version of interchange formats should be defined. The
binary version will become the default for mature systems, but
the ASCII version will continue to be the first choice for testing
rapidly changing systems during development and for introduc-

4 Copyright  2002 by ASME

ing an interchange format to new users.
An additional feature of the ASCII version of SIF that we

added for the convenience of debugging, at the expense of com-
pactness, was explicit vertex indices at the start of each vertex
definition. A computer reading the file can automatically gen-
erate indices, but a human cannot. Requiring explicit vertex
numbers also immediately reveals the assumptions of the origi-
nator of the file about whether the vertex list starts with vertex
0 or vertex 1, as well as making the official choice obvious in a
sample file (communicating by example). Our software on the
receiving end can check that the vertices are zero-indexed and
have no gaps in their enumeration, as SIF specifies, and issues
warnings if not, but such files can still be processed successfully
if they have no other problems.

Validation
After the manufacturer’s software reads in a file, it must vali-

date that the file describes a valid solid model before processing it
further. Generally this is accomplished while building up a data
structure that will be used during the downstream processing,
typically a topological data structure such as a variant of Baum-
gart’s winged edge data structure (Baumgart75) or Weiler’s ra-
dial edge structure(Weiler88). These data structures capture the
connectivity of a b-rep model. Since many design software pack-
ages also work off a topological data structure (e.g. any software
based on the ACIS kernel), an obvious question to ask is whether
the connectivity information should be included in the exchange
format.

Our answer is that it should not be. One reason is that the ex-
act topological information exchanged in formats that do include
connectivity is closely tied to the internal data structure, which
tends to be vendor-specific. The ACIS .SAT format, for example,
appears to be a direct mapping from their internal data structure.
As such, software built on their kernel (such as AutoDesk In-
ventor) can automatically and consistently output correct ACIS
files, while software built on non-ACIS based platforms (such as
SolidWorks) often produce incorrect .SAT files. A neutral data
exchange format should not favor any vendor, nor should it pre-
scribe an internal data structure on either the sending or receiving
end.

For the steps of reading, writing, and transmitting the data,
including connectivity information clearly slows down the pro-
cess. As for rederiving connectivity on the receiving end, we
have shown (MMains01) that by using an out-of-core algorithm,
a topological data structure can be built very quickly even from
huge, unorganized data sets (for example, we can build a com-
plete topological data structure from 1 million triangles, using
only 32 MB of RAM, in 5 minutes using a 700 MHz Pentium
III). Because connectivity can be so efficiently rederived, there is
no need to include it in the interchange format.

On the other hand, we do strongly believe that vertex coor-

dinates should only be specified once, and then all triangles that
share that vertex must reference the same definition. This form
of connectivity information actually makes the data more com-
pact for transmission. It does put an extra burden on the designer
if not all vertices were shared. For example, the part pictured in
Figure 4 is made up of six rotated and translated instances of the
primitive shown in Figure 5; while each primitive is fully con-
nected with shared vertices, at the seams where they meet round-
off error led to small cracks in the STL model because vertices
that should be coincident are not. By requiring shared vertices,
the burden of determining which vertices are shared between in-
stances and referencing the same vertex in the output falls on
the designer, who knows the design intent, rather than the manu-
facturer, who would otherwise be forced to guess which vertices
the designer intended to be shared. Thus, while in some cases it
makes outputing SIF more complicated than outputing STL, the
gain in clarity is worth the potential extra overhead.

Figure 4. An LM model of a sculpture composed of six rotated
and translated copies of a complex primitive.

 ��

Figure 5. A single instance of the primitive part used in the
sculpture design.

5 Copyright  2002 by ASME

Scaling
After the manufacturer reads and validates the part descrip-

tion, they must decide on its scale. One of the obvious shortcom-
ings of STL is that it doesn’t include units. As a result, manu-
facturers who only receive an STL file are forced to guess what
units the designer intended. Some layered manufacturing soft-
ware, for example Stratasys’s QuickSlice, compare the bounding
box of the unit-less STL file to the build volume of the machine
in order to determine whether the designer more likely meant
inches or millimeters, then scale the part accordingly. (While it
can be argued that this approach does in fact automate data ex-
change, it does nothing to ensure that the interpretation of the
data is correct!)

In earlier versions of SIF, we took the approach of defining
the default unit to be 1 meter if no units were specified. With
the default unit so unrealistically large, we reasoned, it would
immediately be obvious to the manufacturer if a designer had
inadvertently forgotten to redefine the standard default unit in a
SIF part description.

We have subsequently reconsidered this decision and con-
cluded that even an unrealistic default unit leaves open the pos-
sibility of miscommunication. A small part specified in fractions
of an inch might still be a reasonable size with those units inter-
preted as fractions of a meter. Future commercial processes may
also support much larger build volumes or finer details than are
common today. Any choice of a default unit, even an unrealistic
one, is based upon assumptions about typical parts and processes,
and what is “typical” is not static. Thus, in the current version
of SIF, a file is not considered valid unless it explicitly specifies
whether units are in inches or millimeters.

Adjusting Position and Orientation
The manufacturer must also decide whether to change the

orientation of the part and where to position it within the build
volume. Faster build times, better accuracy, and/or improved sur-
face finish can often be obtained by re-orienting the input geome-
try. Most layered manufacturing processes can obtain significant
savings of time and/or materials by combining into a single run
multiple smaller parts that together fill the footprint of the build
volume.

In some cases, however, the designer will not want the man-
ufacturer to arbitrarily rearrange pieces of the geometry. For ex-
ample, the individual links in a chain to be manufactured can-
not be moved very far or they will no longer be interconnected.
Therefore, in SIF we include a high-level grouping mechanism,
the constellation, that allows the designer to communicate that
the relative positions of the individual lumps of material in the
constellation are fixed. Within a constellation, touching lumps of
different materials will be built touching so that they fuse, and
the links of a chain will be constructed in the relative positions
specified by the designer so that they will interlock. The entire

constellation, meanwhile, can be re-oriented freely as a group by
the manufacturer to optimize build time or quality.

Slicing
The next step in processing is to slice the geometry into the

thin parallel layers that will guide the manufacturing process.
We have developed a simple, efficient sweep-plane algorithm
for slicing triangulated boundary representations, as described
in (McMains99). For some applications, however, the input
is initially captured in layers: for example, CT scans or laser
scanned data. For such applications, it might initially appear to
make sense to manufacture these layers directly, in which case
the interchange format should include some way of transmitting
this data.

There are two main reasons why transmitting captured layer
input to be manufactured directly is generally not advisable.
First, the thickness of the layers used for acquisition and manu-
facturing are seldom identical. Furthermore, some LM technolo-
gies support varying the layer thicknesses on different slices to
speed up build times. Manufacturers will not want to have to sup-
port an interchange format that gives them the resposibility for
interpolating the input layers if the transmitted layer thicknesses
don’t match the manufacturing layer thicknesses. Secondly, the
orientation in which the data was captured may not be the best
orientation for manufacturing. For these reasons, it is preferable
that a boundary representation be reconstructed from the scanned
input before transmission to the manufacturer. For volumentric
or medical data, the marching cubes method (Lorensen87) or
its variants are typically used to construct a surface representa-
tion; for scanned data, the Powercrust (Amenta01) algorithm will
build a water-tight boundary from densely sampled data points.
These faceted reconstructed surfaces that already interpolate the
data can then be sent to the manufacturer, who can easily re-
orient the geometry to optimize build time and quality.

Rasterization
After slice contours have been created, the final stage in pro-

cessing is to determine what is the “inside” of the part in each
layer, in order to control the scanning paths or raster patterns that
determine the cutting, deposition, or hardening of the material.
For most input, this rasterization (a.k.a. scan conversion) is a
straightforward process. Some data may be ambiguous, how-
ever, due to intersections in the input geometry.

For example, the shaded solid model shown in Figure6 may
actually be composed of two correctly oriented but intersecting
shells, as shown in Figure7. The designer who saw only the
shaded model would probably believe that they had designed a
part that was the union of the two shells. Yet a slice through the
middle of the part as indicated may or may not be rasterized that
way. Using the system software that controls the Z-corporation
3D printer (Z-Corp00), the interior of both contours is filled;

6 Copyright  2002 by ASME

Figure 6. A shaded solid model.

Figure 7. The wireframe of the same model reveals that it is
composed of two intersecting shells.

but using the QuickSlice software (Stratasys99) that controls the
Stratasys Fused Deposition Modeling (FDM) machine, only the
area between the two contours is filled, as shown in Figure 8.
The Z-corporation software treats this situation as a union of two
shells, while Quickslice ignores the orientation of the inner shell
in slices where it is contained within another shell, calculating a
difference between the shells in these slices.

3D Printer slice
contours and fill
pattern

FDM slice contours
and fill pattern

Figure 8. A horizontal slice through the middle of the part pic-
tured in the previous figure will produce two slice contours, ori-
ented as shown, which will be rasterized differently by different
manufacturers.

Nested slice contours of opposite orientation can occur even
in well-formed files, for example a slice through the middle of
a hollow cube. The slice contour through the outer shell will

be oriented counterclockwise, while the slice contour through
the contained inner contour will be oriented clockwise, unam-
biguously indicating a hole in the 2D layer. But in an ill-formed
geometry, where the inner shell intersects the outer shell, the in-
terpretation is not clear. Two possible interpretations of the slice
are shown in Figure 9.

slice contours and
one possible fill
pattern

slice contours and
another possible fill
pattern

Figure 9. Two possible interpretations of the inside of two op-
positely oriented slice contours that intersect.

Finally, a shell (and its slice contours) may self-intersect.
Again, there are multiple possible interpretations of what area
is “inside” of such a contour (Figure 10.) Such self-intersections
may not have been present in the original model, only to be intro-
duced while “healing” geometry that was not initially watertight.
This can arise in cases where algorithms that clean up .STL files
add additional triangles or perturb vertices without checking that
the new or modified triangles don’t intersect existing geometry.

slice contour and
one possible fill
pattern

slice contour and
another possible fill
pattern

Figure 10. Two possible interpretations of the inside of a self-
intersecting contour.

Even if these ambigous cases of intersecting geometry are
prohibited in the interchange format (STL certainly doesn’t ex-

7 Copyright  2002 by ASME

plicitly allow them), we have seen that manufacturers won’t cat-
egorically reject them. The interchange format should clearly
define the correct interpretation in these ambiguous cases so that
all manufacturers given the same part file will interpret it as rep-
resenting the same geometry.

The interpretation we advocate is to treat overlapping or in-
tersecting geometry as expressing implicit Boolean operations
(or implicit “unary” operations in the case of a self-intersecting
shell, in the sense of Heisserman’s unary shape operators (Heis-
serman92)). We interpret intersecting shells where both are ori-
ented with surface normals pointing outwards as expressing im-
plicit Boolean unions, intersecting shells of opposite orientations
as expressing implicit Boolean differences, and self-intersecting
shells as expressing implicit unary unions with themselves. This
interpretation treats the orientation of a shell consistently regard-
less of its context, doesn’t produce non-manifold parts that are
structurally weak whenever contours intersect, and guarantees
that an epsilon change in the geometry of a shell will only effect
an epsilon change in the volume of the part.

Furthermore, this interpretation can be easily implemented
at the slice level. When scan converting a slice, we simply inter-
pret every region that has a positive winding number (Foley90)
to contain material. Performing this calculation and rasteriz-
ing accordingly is directly supported by the OpenGL interface
(Woo99), which is available for virtually all modern graphics
cards.

Once we have implemented the consistent interpretation of
implicit Booleans at the slice level, interpreting explicit Booleans
is a simple extension. In SIF, we support unevaluated Booleans
on any oriented, closed, polygonal shells in the input. The un-
evaluated Boolean tree is carried through to the slice level and
only there resolved, in 2D. While this makes the interchange for-
mat slightly more complex, it places very little additional bur-
den on the manufacturer. It can also reduce the number of non-
watertight shells transmitted. Since gaps often occur between
trimmed surface patches where the trim curves on the two adja-
cent surfaces approximated their Boolean intersection, by elim-
inating the need to calculate the intersections in 3D if original
watertight solids and the unevaluated Booleans are transmitted
instead, such gaps will occur less frequently.

CONCLUSION
In the course of the SIF project, we re-thought many of

our initial decisions about what a viable LM interchange format
should include. Some of the most important lessons we learned
were:

1. A new interchange format should apply the KISS (Keep it
simple, stupid!) principle to encourage acceptance on the
receiving end.

2. Both ASCII and binary versions of the format are needed.

3. Connectivity in the form of shared vertices should be in-
cluded in the transmission of a b-rep, but not a full topo-
logical data structure dump. Redundancy has no place in an
interchange format.

4. Require units to be defined explicitly.
5. Communicate to the manufacturer when the relative position

of parts matters.
6. Don’t send unprocessed 2D data.
7. Define the interpretation of potentially ambiguous input

such as implicit Booleans, even if it is not strictly legal.
8. Many operations that are very difficult to perform robustly

in 3D can be postponed to 2D (after slicing) where they be-
come more tractable.

These principles, more so than the semantics and certainly
rather than the exact syntax of our interchange format, are the
most important contribution of the SIF project.

REFERENCES
Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The
power crust. In Sixth Symposium on Solid Modeling and Appli-
cations, pages 249 – 266, Ann Arbor, MI, June 2001. ACM.
Joseph J. Beaman et al. Solid Freeform Fabrication : A New Di-
rection in Manufacturing. Kluwer Academic Publishers, Dor-
drecht, 1997.
B. G. Baumgart. A Polyhedron Representation for Computer
Vision. In Proceedings of the National Computer Conference,
pages 589–596, 1975.
James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, MA, second edition, 1990.
Christoph M. Hoffmann. Geometric and Solid Modeling : An
Introduction. Morgan Kaufmann, San Mateo, CA, 1989.
J. Heisserman and R. Woodbury. Unary Shape Operations.
In Geometric Modeling for Product Realization, pages 63–80.
North-Holland, Amsterdam, 1992.
Gan G. K. Jacob, Chee Kai, and Tong Mei. Development
of a new rapid prototyping interface. Computers in Industry,
39(1):61–70, June 1999.
Harvey E. Cline and William E. Lorensen Marching cubes: A
high resolution 3D surface construction algorithm. In Computer
Graphics Proceedings, Annual Conference Series, pages 163–
169, Anaheim, CA, July 1987. ACM SIGGRAPH.
Martti Mäntylä. An Introduction to Solid Modeling. Computer
Science Press, Rockville, MD, 1988.
Sara McMains. The SIF SFF Page.
http://www.cs.berkeley.edu/ũg/sif 2 0/ SIF SFF.shtml, 1999.
Sara McMains, Joseph M. Hellerstein, and Carlo Séquin. Out-
of-Core Build of a Topological Data Structure from Polygon
Soup. In Sixth Symposium on Solid Modeling and Applications,
pages 171–182, Ann Arbor, MI, June 2001. ACM.

8 Copyright  2002 by ASME

Michael E. Mortenson. Geometric Modeling. Wiley, New York,
1985.
Sara McMains and Carlo Séquin. A Coherent Sweep Plane
Slicer for Layered Manufacturing. In Fifth Symposium on Solid
Modeling and Applications, pages 285–295, Ann Arbor, MI,
June 1999. ACM.
A. A. G. Requicha. Representations for Rigid Solids: Theory,
Methods, and Systems. ACM Computing Surveys, pages 437–
464, December 1980.
Stephen J. Rock and Michael J. Wozny. A Flexible File Format
for Solid Freeform Fabrication. Proceedings Solid Freeform
Fabrication Symposium, pages 1–12, 1991.
Sundararajan, Ahn, Smith, Kannan, D’Souza, Sun, Kim, Mc-
Mains, Smith, Mohole, Séquin, and Wright. CyberCut: An In-
ternet Based CAD/CAM System. ASME Journal of Computing
and Information Science in Engineering, 1(1):to appear, 2001.
C. H. Séquin, H. Meshkin, and L. Downs. Interactive Gen-
eration of Scherk-Collins Sculptures. In 1997 Symposium on
Interactive 3D Graphics, pages 163–166, Providence, RI, April
1997. ACM SIGGRAPH.
Jordan Smith. SLIDE Educational Rendering Sys-
tem for 3D Interactive Dynamic Environments.
http://www.cs.berkeley.edu/˜ug/slide/pubs/masters, 1999.
Spatial Technology, Inc, Boulder, CO. ACIS Save File Format
Manual, 1996.
Stratasys, Inc., Eden Prairie, MN. QuickSlice 6.2, 1999.
I. Stroud and P. C. Xirouchakis. STL and extensions. Advances
in Engineering Software, 31(2):83–95, February 2000.
Kevin Weiler. The Radial Edge Structure: A Topological Repre-
sentation for Non-Manifold Geometric Boundary Modeling. In
Geometric Modeling for CAD Applications, pages 3–36. North-
Holland, Amsterdam, 1988.
Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.
OpenGL Programming Guide. Addison-Wesley, Reading, Mas-
sachusetts, third edition, 1999.
Z-Corporation, Inc., Burlington, MA. Z402C 3D Printer, 2000.

9 Copyright  2002 by ASME

