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Abstract  
My goal is to create sculptural models of mathematical knots that exhibit a high degree of symmetry.  I start with an 
arbitrary torus knot and turn it into a circular braid with the same symmetry by selectively reversing some of the 
displayed crossings in a knot projection along the rotational symmetry axis.  In the simplest case, I make the knot 
completely alternating.  The resulting braid can then be draped around a cylinder to result in a classical Turk’s Head 
Knot.  Alternatively, the braid can be fit around a sphere to yield a ball-shaped knot.  Different choices for the 
sequence of over- and under-crossings result in different mathematical knots.  The approach can be generalized by 
choosing an appropriate short braid segment and stitching together a number of identical copies of it.  The resulting 
knots all have the common property that the knot filament travels around the rotational axis in a monotonic manner; 
I call such knots “Vortex Knots.”  Small scale models, about five inches in diameter, have been made by additive 
manufacturing on a Fused Deposition Modeling (FDM) machine.  Some of these have been turned into small 
bronze sculptures. 
 

Possible Knot Symmetries 
The type of symmetry that a mathematical prime knot can exhibit is rather limited [3]. Except for the 
trivial Unknot, they cannot display simple mirror symmetry [6].  Their symmetries are limited to just three 
families of rotational symmetry groups:   

• “Cn” (Schönfliess notation [9]) or “nn” (Conway’s Orbifold notation [8]) exhibits a single n-fold 
rotational symmetry axis (Figure 1a).   

• “Dn” or “22n” has the same type of rotation axis, but also has n 2-fold rotation axes perpendicular 
to the primary n-fold axis (Figures 1b, 1c).   

• “S2n” or “nX” also has a primary n-fold rotation axis, and in addition exhibits glide symmetry, 
involving a reflection along the primary axis combined with a rotation through an angle of 360°/n  
around that axis (Figure 1d).  

 

                   
                  (a)                                       (b)                                     (c)                                       (d)                    

Figure 1:  Trefoil-knot (Knot 31):  (a) 2D diagram with C3 symmetry;  (b) 3D model with D3 symmetry.       
Figure-8 knot (Knot 41):  (c) 3D model with C2 symmetry;  (d) 3D model with S4 symmetry. 

 
Most prime knots of low complexity can be deformed to display more geometrical symmetry than is 
implied by the depictions in the Rolfsen Knot Tables [5].  All but one knot (Knot 817) [4] that have eight 
or less crossings, can exhibit one of the above rotational symmetries.  However, there seems to be no 
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robust algorithm that automatically finds the maximal symmetry of a given particular knot.  In order to 
find a possible symmetrical configuration of a given knot, one has to use some ad-hoc trial-and-error 
approach.  One might start with a projection of the given knot and apply various Reidemeister-moves [6] 
to shift some trace segments in the knot projection across one another without changing the topology of 
the knot.  However, it is not clear what sequence of moves should be applied to tease out a projection that 
displays a higher degree of symmetry.  Alternatively, one might form the knot of interest from a loop of 
wire or with some pipe-cleaners or chenille stems.  Yet again, there is no recipe for the sequence of 
deformations that might bring about a more symmetrical configuration. 

In view of this, a more effective way of creating mathematical knots of high symmetry is to use a 
procedural approach to define a path that moves through Euclidean 3-space, R3, following a symmetrical 
pattern.  In the following I outline a few techniques for generating such symmetrical paths.  I might not 
know the label of the generated knot in the knot table, but the result is still useful to produce a knot 
sculpture with high symmetry.  A tool like SnapPy [2] can help identify the generated knot, if its crossing 
number is not too high. 
 

From Torus Knots to Vortex Knots 
The most obvious and quick way to obtain a prime knot with s-fold rotational symmetry is to construct a 
TorusKnot(s,t), where the knot filament shoots through the central hole of a donut s times, while 
completing  t  turns around the hole (Figure 2a).  These knots exhibit Ds symmetry.  But, as the values of 
s and t get larger, the result does not look so much like a complex “Gordian” knot, but more like the 
cooling pipes in a power plant.    

However, this can be remedied by turning the torus knot into a more intricate circular braid.  First, 
the torus knot is squashed into a 2D circular template by setting all z-values to zero (Figure 2b).  Now 
there is a choice how one might alter the original sequence (oooo uuuu) of the over- and under-passes at 
all crossing points (Figure 2c).  In order to maintain a symmetrical configuration, one must respect the 
original s-fold symmetry of the initial torus knot, or, at the very least, choose the crossing pattern to 
follow an integral subset, s/I, of that symmetry group.   One first choice that immediately presents itself is 
to turn the flat 2D template into a strictly alternating knot (Figure 2d), resulting in a Turk’s Head Knot 
[10].  The original TorusKnot(3,5) (Figure 2c) corresponds to Knot 10124 in the knot table, while the 
alternating knot (Figure 2d) is Knot 12a1019. 
                                    

                                                                                                                                                                                           
                  (a)                                        (b)                                        (c)                                     (d)               

Figure 2:  (a) TorusKnot(3,5);  (b) flattened template;   (c) braid representing the original knot;  
 (d) an alternating over- under-crossing pattern, resulting in a Turk’s Head Knot. 

 
Of course, the sequence of over- and under-passes can be made more intricate.  For the above example, 
starting with a TorusKnot(3,5), there are a total of six different ways of choosing the over-/under-
sequence so that one obtains different knots while maintaining full D3 symmetry.  The remaining four 
possibilities are shown in Figures 3 and 4.  Figure 3a uses the pattern (ooou ouuu)3; this yields Knot 11387.  



 
 

The pattern (oouu oouu)3 (Figure 3b) results in Knot 12n708.  Similarly, pattern (oouo uouu)3 (Figure 3c) 
results in Knot 12n839, and (ouuo uoou)3 (Figure 3d) produces Knot 12n837. 
 

             
                  (a)                                       (b)                                       (c)                                     (d)               

Figure 3: Circular braids:  (a) (ooou ouuu)3;  (b) (oouu oouu)3;  (c) (oouo uouu)3;  (d) (ouuo uoou)3. 
 

These circular braids still look rather flat.  To obtain attractive 3D sculptures, I need to give these knots 
more “3-dimensionality.”  Figure 4 shows a few ways how this can be done.  Here I started with 
TorusKnot(2,5) and changed the crossing pattern to the sequence (oouu oouu)2 for subsequent over- and 
under-passes (Figure 4a); this produces Knot 63 in the knot tables.  This flat, circular braid is now rotated 
through itself  like a smoke ring.  A 90° rotation results in a cylindrical braid (Figure 4b).  I can drape this 
braid around a sphere or around an ellipsoid, rather than around a cylinder, to obtain a more ball-shaped 
sculpture (Figure 4c). Different colors in the upper half and the lower half of this sculpture, make it easier 
to see that the two halves can be transformed into one another through a 90° rotation around the z-axis 
with a simultaneous mirroring along the z-axis; this is the hallmark of S4 symmetry.   

This particular symmetry can be made even more visible, if the top- and bottom-pair of inter-linked 
lobes are pulled apart so that they form stretched, open chain links. These links can be seen as some kind 
of double-covering on two of the six edges of the tetrahedral frame.  The top-pair and the bottom-pair are 
twisted in opposite directions, reflecting the mirroring operation inherent in the S4 glide symmetry.  
During all these deformations, the knot topology remains unchanged; it happens to correspond to Knot 63 
in the knot table.  These transformations also preserve the property of a vortex knot that the filament 
spirals around the rotation axis in a monotone way. 
 

                      
                    (a)                                     (b)                                      (c)                                        (d)        

 Figure 5:  Knot 63  shown:  (a) as a flat 5-strand circular braid,  (b) as a cylindrical braid,  
 (c) as a ball-knot,  (d) in a tetrahedral configuration with linked top- and bottom-edges. 

 
Figures 6 and 7 show more examples of alternating Turk’s Head Knots, THK(s,t), turned into more 
spherical BallKnots(s,t).  The symmetry parameter s defines the number of  bights or “bays” in the Turk’s 
Head Knot, and the parameter t corresponds to the number of  leads or “parts” in that knot.  Depending on 
whether t is even or odd, the overall s-fold rotational symmetry will be of type Ds or S2s, respectively.  In 
either case, the filament takes t turns around the z-axis. 



 
 

         
                           (a)                                                    (b)                                                  (c)                   

Figure 6:  BallKnots(s,t) based on Turk’s Head Knots, THK(s,t), and their symmetries:  
 (a) THK(4,3): S8;   (b) THK(3,4): D3;   (c) THK(4,5): S8. 

 

         
                          (a)                                                     (b)                                                   (c)                   

Figure 7:  BallKnots(s,t) based on Turk’s Head Knots, THK(s,t), and their symmetries:  
 (a) THK(5,6): D5;   (b) THK(6,5): S12;   (c) THK(6,7): S12. 

 
In Figure 8, I am using the pattern (oouu oouu) with 2-, 3-, and 4-fold rotational symmetry, and the knot 
strand is always circling the z-axis five times.  The results are presented in the form of BallKnots(s,5). In 
Figures 8a and 8c, the differently colored parts are all identical and show the s-fold rotational symmetry.  
In Figure 8b, the knot has been split into upper and lower lobes, which are mirror images of one another. 
 

         
                          (a)                                                  (b)                                                    (c)                   

Figure 8:  BallKnots, BK(s,t), using crossover-pattern (oouu oouu)s  and their symmetries:  
 (a) BK(2,5): S4,   (b) BK(3,5): S6,   (c) BK(4,5): S8.  



 
 

Generalized Vortex Knots 
All of the results so far, derived from some torus knots, have the property that the knot strand undulates in 
a regular manner back and forth from one edge of the braid to the other one.  I will refer to the resulting 
knots as regular VortexKnots(s,t).  Now I generalize the braid behavior so that in some regions the 
undulations of the strand have smaller amplitudes.  One way to accomplish this is to start with ta proper 
braid segment, e.g., the minimum braid representation of a Knot 63 (Figure 9a).  This braid by itself does 
not exhibit a repetitive, periodic structure that would then automatically lead to a configuration with 
rotational symmetry when the braid is closed end-to-end to form a circular loop.  To remedy this 
situation, I concatenate s copies of such a braid into a longer braid, which then will yield a construction 
with s-fold rotational symmetry.  However, one must be careful; not every value of s will lead to a single 
knot; some values will produce a link.  For the 3-strand braid of Knot 63 (Figure 9a), two concatenated 
copies (Figure 9c) will result in a proper generalized vortex knot (Figures 9d, 9e); but concatenating three 
copies would result in complex link of three loops. 
 

                   
            (a)                                (b)                         (c)                          (d)                                   (e)        

 Figure 9: (a) The braid representation of Knot 63,  (b) Knot 63  as a cylindrical braid sculpture.   
(c) Two concatenated braids,  (d) closed into a cylindrical braid,  (e) formed into a ball-knot.  

  
 
For another example, I start with the 5-strand minimum braid representation of Knot 1043 (Figure 10a).  
Concatenating three of these braid segments into a cylindrical loop (Figure 10b) results in a generalized 
vortex sculpture with C3 symmetry (Figure 10c).  If I use only two copies of the braid segment, I obtain a 
sculpture with C2 symmetry (Figure 10d). 
 

         
              (a)                                      (b)                                           (c)                                        (d)        

 Figure 10: (a) The braid representation of Knot 1043.  (b) Three concatenated braids in a loop;   
(c) resulting sculpture with C3 symmetry,  (d) C2 sculpture formed with 2 braid segments.  

 



 
 

      
 

Beyond Vortex Knots:  “Braids” that Loop Back 
Proper braids (Figures 11a, 11b) must not have any backward turns as shown in Figure 11c.  That latter 
braid, when closed into a loop, would no longer yield a proper vortex knot in which the knot filament 
travels in a monotone manner around the primary rotation axis.  Figure 11d shows an example of a nice 
knot with 2-fold rotational symmetry; but this is no longer a vortex knot. 

       
                  (a)                                  (b)                                   (c)                                            (d)        

 Figure 11: (a, b) Two proper representations of the same braid.  (c) Not a true braid.   
(d) a symmetrical knot that is not a proper vortex knot. 

 
 
Figure 12a gives another example of a knot projection with C3 symmetry that is not a vortex-knot; but it 
still makes a rather attractive 3D model, when this “bad” braid is wrapped around a cylinder (Figure 12b). 
 

       
                                      (a)                                                                                    (b) 

Figure 12: (a) Another C3-symmetrical knot;  (b) its realization as a cylindrical braid.  
 

 
Summary and Discussion 

Symmetrical prime knots all have a dominant n-fold rotational symmetry axis, because their overall 
symmetry must fall into one of the three families Cn, Dn, or S2n (Schönfliess notation [9]) or “nn”, “22n”, 
or “nX” (Conway’s Orbifold notation [8]).  A knot with n-fold rotational symmetry of type Cn, thus can 
be constructed by grouping n copies of an appropriate tangle of trace segments symmetrically around a 
common rotation center (Figure 13a).  The symmetry of the resulting construction can be further 



 
 

enhanced, and the number of group elements doubled, by adding copies of each tangle that are flipped 
through an angle of 180° around an axis that intersects the dominant rotation axis at right angle; this 
yields Dn symmetry (Figure 13b).  Alternatively, the number of tangles can be doubled by interspersing 
into the first Cn-set of tangles another set of n tangles that are mirrored along the dominant rotation axis 
(Figure 13c). 
 

                
                        (a)                                                       (b)                                                       (c)                 

 Figure 13:  Knot constructions with n-fold rotational symmetry (n=3):   
(a) Cn symmetry;  (b) Dn symmetry;  (c) S2n symmetry. 

 
 
Among all such constructions, Vortex knots, in the form of almost-planar circular braids, in which the 
knot filament spirals around the main symmetry axis in a monotone way, are particularly efficient in 
providing a desired level of symmetry with a minimal amount of bending energy (the integral of squared 
curvature along the whole knot trace), since they contain no “unnecessary” tight turns.  Most “efficient” 
in this respect are the simple, regular TorusKnots(s,t), which exhibit crossover-patterns of the type 
(ooo…o uuu…u)s.  But for large values of s, they start to look like industrial cooling pipes.   

To make them look more like interesting, intricate knots, the crossover-sequence must be changed 
into a more varied pattern. The alternating pattern (ououou…ou)s will result in a Turk’s Head Knot [10], 
and there are many other possible patterns.  Once the mathematical knot type has been determined in this 
manner, the knot geometry can be refined by mapping the initial flat circular braid around a cylinder or 
around an ellipsoid, and the thin knot trace can be replaced with a sweep of a more interesting 
geometrical profile (Figure 14). 
 
 

Vortex Knots in Bronze 
Some of the described knot constructions will lead to some well known knots from the knot table.  For 
instance Torus-knot(2,3) turned into an alternating braid will result in the Figure-8 Knot (Knot 41), 
exhibiting S4 symmetry.  Similarly, Torus-knot(3,4) turned into an alternating braid will result in the 
Chinese Button Knot (Knot 940), exhibiting D3 symmetry.  Figure 14 presents artistic bronze sculptures 
based on these two knots.  They were modeled by sweeping a crescent-shaped cross-section along the 
knot curve.  The basic geometry was then fabricated on a Fused Deposition Modeling (FDM) machine. 
These ABS-plastic models were then converted into bronze in a classical investment-casting process by 
Steve Reinmuth in his Bronze Studio in Eugene, OR.  It turns out that ABS as well as PLA plastic models 
sublimate cleanly in the kiln in which the plaster shell is fired.  Steve Reinmuth also created the colorful 
patinas with a combination of heat (from a flame torch) and chemistry (from a spray bottle). 
 



 
 

           
                                              (a)                                                                          (b)        

 Figure 14:  Bronze sculptures:  (a) Knot 41 (Figure-8 Knot);  (b) Knot 940 (Chinese Button Knot). 
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