Proceedings of DETCO00

2000 ASME Design Engineering Technical Conferences

September 10-13, 2000, Baltimore, Maryland, USA

DETC2000/DAC-14285

LAYERED MANUFACTURING OF THIN-WALLED PARTS

Sara McMains
Jordan Smith
Jianlin Wang
Carlo Séquin
Computer Science Department
University of California, Berkeley
Berkeley, California, 94720-1776
Email:sara | jordans | jianlin | sequin@cs.berkeley.edu

ABSTRACT

We describe a new agorithm we have developed for mak-
ing partialy hollow layered parts with thin, dense walls of ap-
proximately uniformthickness, for faster buildtimesand reduced
material usage. We have implemented our agorithm on a fused
deposition modeling (FDM) machine, using separate build vol-
umes for aloosdly filled interior and a thin, solid, exterior wall.
The build volumes are derived as simple boolean combinations
of slicecontoursand their offsets. We make use of an efficient al -
gorithmfor computing the Voronoi diagram of agenera polygon
as part of the process of creating offset contours. Our agorithm
guarantees that the surface of the fina part will be dense while
il alowing an efficient build.

INTRODUCTION

Designers who want to make prototypes of solid three-
dimensiona parts directly from CAD descriptions are increas-
ingly turning to a class of technologies collectively referred to
as layered manufacturing or solid freeform fabrication (SFF).
These technol ogies include stereolithography (SLA), 3-D print-
ing, fused deposition modeling (FDM), selective laser sintering
(SLS), and laminated object manufacturing (LOM)(4). In al
these processes, atriangul ated boundary representation (b-rep) of
the CAD model of the part in STL format (1) is dliced into hor-
izontal, 2.5-D layers of uniform thickness. Each cross sectional
layer is successively deposited, hardened, fused, or cut, depend-

ing on the particular process, and attached to the layer beneath
it. (For technologies such as SLA and FDM, a sacrificia sup-
port structure must also be built to support overhanging geom-
etry.) The stacked layers form thefina part.

With most additive layered SFF processes, build time is
roughly proportional to the solid volume of the fina part. With
FDM, it is proportional to the amount of material deposited (for
the part and for supports). With SLSor SLA, it isproportional to
the scan and dwell time of thelaser solidifyingthe build material.

When making amodel of asolid part with alow surface area
to volumeratio, using a process such as (FDM), we can compl ete
thebuild considerably faster if wedon't fill theinterior of the part
densealy. For afairly sturdy fina part, we can fill theinterior with
aloose cross-hatched pattern for support, withasolidwall several
layersthick at the surface.

The QuickSlice 6.2 software (19) that currently ships with
the Stratasys FDM machineincludesafast build option. The soft-
wareidentifiesdicesthat are*hidden” by slices above and bel ow,
and for these it buildsadense shell consisting of three concentric
“roads’ insidethe perimeter, and fillstheinterior (the hidden part)
with alooser fill pattern, as shownin figure 1.

The drawback of thisstraight-forward approach isthat if the
dice intersects any part surfaces that approach horizontd, the
softwarewill just do asolidfill ontheentiredlicebecause the con-
centric outer roads might not entirely hide theloosefill patternin
adjacent layers. For largelayerswhose interiorswould be a most
entirely hidden, thisisawaste of time and materia. Experienced

Copyright 2000 by ASME

J

Figure 1. FOR A SIMPLE RECTANGULAR BLOCK, ALL OF THE INTE-
RIOR SLICES ARE “HIDDEN” AND THUS CAN BE BUILT USING THE
FAST BUILD STYLE PICTURED ON THE LEFT. FOR CONTRAST, THE
REGULAR BUILD STYLE USED ON THE TOP AND BOTTOM SLICES
IS PICTURED ON THE RIGHT, WITH DENSELY SPACED PARALLEL
ROADS IN THE INTERIOR. IN AREAS WHERE A PART SURFACE
SHOWS A SHALLOW SLOPE WITH RESPECT TO THE BUILD PLANE,
THE BUILD STYLE ON THE LEFT CANNOT BE USED.

users of FDM machines may manually re-assign such layersto be
built with thefast build option and change the number of concen-
tric roads, but if they are too aggressive the result is a part such
astheone pictured in figure 2.

Ideally, wewouldliketo dividethe part into athin outer wall
region (for the solid fill) and interior region(s) (for the loosefill).
Thisdivision could be accomplished by finding the exact interior
offset surfacein 3D and then dlicing thisoffset surface along with
the origind part; unfortunately, calculating a 3D offset is dow,
difficult to program, and subject to failures caused by numerical
accuracy limitationsin floating point calculations. Sincethewall
need not be of perfectly uniform thickness, we can use arobust,
easi er-to-compute approximation while still obtaining full cover-
age at the part’s surface.

RELATED WORK

Yu et a (22) describe applying Rossignac’s solid offset al-
gorithmfor 3D constructive solid geometry (CSG) solids (16) in
order to obtain offset surfacesfor faster rapid prototyping. For in-
put described with ab-rep, they suggest offsetting each dice con-
tour individually in 2D, an approach that is clearly inadequate at

Figure 2. A PART BUILT WITH AN OVER-AGGRESSIVE MANUAL EX-
TENSION OF THE QUICKSLICE SOFTWARE'S FAST BUILD REGION.
NOTE THE GAPS IN THE SURFACE ON THE NEAR-HORIZONTAL
FACES.

horizontal and near-horizontal faces. The implementation of the
CSG solid offset algorithm applied to SLA is described in Li et
al (10). InLam et a (8), they expand upon thiswork by describ-
ing how to derive an explicit representation for the FDM interior
support geometry using an octree.

Allen and Dutta have studied the related problem of mini-
mizing the need for supportsin FDM by selectively thickening
different wall areas. In (2) they describetheir agorithmfor build-
ing asubset of thin shell surfaces without any supports, and min-
imizing supportsfor more general surfaces and solids. The orig-
inal implementation was for surfaces and solids of revolution. In
(3) they detail an extension of the algorithmto genera closed sur-
faces. This agorithm discretizes each layer to a grid, reclassi-
fies cellsinside each original contour to be solid or support cells
depending on the propagation of information from neighboring
cells, and then derives new contours around connected groups of
solid and support cells for input to the FDM machine. Thisago-
rithmis not designed to produce walls of uniform thickness.

OUR THIN-WALLED ALGORITHM

Our agorithm uses interna 2D offset contours and regul ar-
ized boolean set operations to approximate the true internal 3D
offset surface. We generate the thin-walled region, one layer a a
time, based only on the 2D dlice information of the current dice
and afew dlices above and bel ow.

We use regul arized boolean set operationsto ensure that our
resulting contours are closed and have non-zero area. A regular-
ized boolean operation is defined as the closure of theinterior of
the result of the corresponding standard bool ean operation (15).

For each layer, at theleast wewant the solidfill patterninthe
region between the boundary of the dice and its 2D inner offset.
We will refer to thisregion as the “dlice offset region.” For the
inner layers in the part shown in figure 3, the only region where

Copyright 2000 by ASME

we need a solidfill isthe dice offset region. Call thisdlice offset
region Region 1.

Figure 3. FOR THIS CENTRAL SLICE, THE AREA WE WANT TO FILL
DENSELY WITH THE BUILD MATERIAL (A SOLID FILL) IS SIMPLY THE
SLICE OFFSET REGION (REGION 1). THE INTERIOR REGION OF
THIS LAYER WILL BE FILLED WITH A LOOSER CROSS-HATCHED
PATTERN FOR SUPPORT.

But not all of our diceswill bethrough vertical faces. At hor-
izontal faces, wewant asolidfill pattern not only in the dlice off-
set region but also in thewhole horizonta region, sinceit will be
visiblefrom the exterior of the part, as shown in figure 4. At an-

Figure 4. WE USE A SOLID FILL IN THE SLICES DIRECTLY ABOVE
OR BELOW HORIZONTAL FACES (REGION 2).

oled faces, we want a solid fill pattern in the region of the cur-
rent dlice that is not covered by the two adjacent dices, since
thiswill aso be visible from the exterior of the part, as shown
in figure 5. For near-vertical faces, this region will be a subset
of Region 1, but we will need to explicitly calculate it for near-
horizontal faces. Both these cases — horizonta faces and angled,

Figure 5. WE ALSO USE A SOLID FILL AT ANGLED FACES ANY-
WHERE THE CURRENT SLICE IS NOT COVERED BY THE SLICE
ABOVE OR BELOW (REGION 2).

near-horizontal faces — are taken care of by doing a solid fill (in
addition to inside Region 1) inside any part of the current dice
that doesn’t appear in theslice below or aboveit. We subtract the
slice above and the dice below from the current dliceto find this
region. Call thisRegion 2.

Thiswill giveusasolidfill at the visible surface of the part,
but we won't have avery good approximation of athinwall yet.
Where horizontal or near horizontal faces meet vertical faces, for
example, we'll get “gaps’ in theinterior boundary of thewall as
shown infigure 6.

KEY

Region 1

Region 2

Figure 6. HERE WE ARE LOOKING AT A CROSS-SECTION OF THE
PART. ALL OF THE REGIONS THAT ARE IN THE SLICE OFFSET RE-
GIONS ARE LABELED WITH REGION 1 SHADING. THE REGIONS
THAT WERE IN REGION 2 BUT NOT REGION 1 ARE LABELED WITH
REGION 2 SHADING. THE “GAPS” IN THE THIN WALL ARE CIRCLED.

To avoid such gaps, we also do a solid fill anywhere in the
current slice that aso appeared in the dice offset of the dice
above or below (thisis equivaent to the intersection of the cur-
rent slice with both of the two adjacent dice offsets). Call this
Region 3.

Copyright 2000 by ASME

Solid filling these three regions, we can get a good approxi-
mation of a one-dicethick offset (seefigure 7).

Figure 7. LOOKING AT THE SAME CROSS SECTION, WE SEE THE
ADDITIONAL AREAS THAT ARE SOLID FILLED WHEN WE ADD RE-
GION 3.

We can express the combination mathematically as follows:
Call theregion of thenth dlice S, and call itsdlice offset (there-
gion between its boundary and itsinner offset) Of fset(S,).

Region 1is Of fset(Sy).

Region 2is(Sy—* Si+1) U* (Sh—* Si-1)-

Region 3is §,N* (Of fset(Sy41) U* Of fset(Sy-1)).

Taking the union of these three regions, the formula for the
entireregion that will get solid fill at the nth layer is:

Offst(S) U' (S =" Sw1) U (S = Swn) U' (S O
(Offset(Sh1) U* OFfset(S-1))).

Typicaly thewall should be thicker than only asinglelayer
to obtain asturdy part. For Region 1, we simply change the off set
distance based on our desired wall thickness. For Regions 2 and
3, we can modify our previousformulasto take dicesfurther than
one layer away into consideration, to get a thicker wall.

For Region 2 (the horizontal and near-horizontal region),
we want to extend this region down or up, depending upon the
orientation of the face, through as many layers as we want our
wall to be thick, as shown in figure 8. Of course, we only want
to fill thisextension if it fallsinside our current slice. Call the
number of layers needed to achieve our desired thickness T.
Then the extended Region 2/2+ for layer nis:

-
S0 (U ((Swim1 =" Sui) U* (Shie —* Shi))-
i=1
Similarly for Region 3 (the extension of the neighbor’s
offset dice), we extend the region up and down T layers, aslong
asit falsinside these dices, as shown in figures 9 and 10. The
extended Region 3/3+ for layer nis:

KEY

=== Region U/1+

Region 2
mmmE Region 3

Region 2+

Figure 8. FOR A WALL THAT WE WANT TO BE TWO LAYERS THICK,
WE MUST EXTEND REGION 2 UP AN ADDITIONAL LAYER ABOVE
DOWN FACES AND DOWN AN ADDITIONAL LAYER BELOW UP
FACES.

KEY

Region 1/1+
Region 2
Region 3
Region 2+

Region 3+

Figure 9. THE CROSS SECTION OF THE FULL 2-LAYER THICK
WALL, SHOWING THE ADDITION OF THE EXTENDED REGION 3.

KEY

E=== Region 1/1+

Region 2
mmm Region 3

Region 2+

A e

e Region 3+

Figure 10. AN EXAMPLE WHERE IT IS NECESSARY TO CLIP THE
EXTENDED REGION 3 AGAINST THE BOUNDARY OF THE CURRENT
SLICE.

)
S0 (" (OFfset(Soui) U* OF fSet(S1-1))-
i=1

Combining these three extended regions, the fina formula
for the region that will be solid filled at the nthlayer is:

Of fset(S,) U*

Copyright 2000 by ASME

T
U Sn+| 1 — Sn+i)
i=1

+i) U Of fset(S1-4)))))-

U (Swist = Sei) U
(Of fset (S,

This yields a very close approximation to awall T layers
thick.

THIN WALL IMPLEMENTATION

Our algorithmtakesatessellated b-rep asinput, either in STL
(1) or in SIF, our Solid Interchange Format (14; 12). We use our
dicing software described in (13) to dlice the input, exploiting
geometric and topological inter-slice coherence to output clean
dlices with explicit nesting of contours. We output the dicesin
our neutral layer format, L-SIF (Layered Solid Interchange For-
mat) (21). The L-SIF format describes each layer as a boolean
combination of closed, oriented contours, so we can also express
the boolean combination of the layers and their offsets, derived
using the formula above, in L-SIF. The 2D offsetting algorithm
isdescribed in detail in the section below. For more efficient cal-
culations, we storetheintermediate results (the offsets, the differ-
ences between adjacent dlices, and subsets of the summations of
unions) for reuse in neighboring slice calculations.

To go from L-SIF to the FDM machine, we have written a
program that resolves these 2D booleans and outputs oriented,
nested contoursin the SSL dlice format used by QuickSlice (19).
We then rely on QuickSlice to cal culate where externa supports
for overhangs are needed and to compute the actua roads, using
theloose-filled and solid-filled build styl es as specified in our SSL
file

A bug in the QuickSlice 6.2 software manifests itself when
we use identical contours to describe the outer contour of the
loosdly-filledinner region and the hol e contour for the solid-filled
outer wall region. Unfortunately, if we describethem withidenti-
cal coincident contours, the fact that the two regions they bound
have different build characteristics confuses the software and it
overwritestheloosely-filled build stylewith the solid-filled build
style on dternate dices. As awork-around, we assign the build
characteristics of the loosely-filled build style to both copies of
the contour, even though one copy boundstheinside of the solid-
filled region, and then QuickSlice produces the result we want
when it generates roads.

GENERATING OFFSET CONTOURS

One of the steps in our algorithm for the creation of athin-
walled part for SFF isthe creation of 2D offset contoursfor each
of the 2D dlicesthrough the 3D input polyhedron. There are two
types of algorithmsfor creating 2D offset contours: algorithms
that offset all edges and vertices of a contour separately and then
trimtheresulting offset segments, or a gorithmsthat usethe com-

bined Voronoi diagram of al the input contours. We present an
algorithm that computes the combined Voronoi diagram of a set
of oriented input contoursand usesthisVoronoi diagramto create
the offset contours.

Offsetting

Algorithmsthat offset each site of a contour separately gen-
erate offset segments that self intersect each other. These tech-
niquesthen rely on bool eanintersectionsto trim away excess off-
set geometry. It is necessary to compare and possibly compute
the intersection of every pairing of offset segments, so the worst
case running time is O(n?). The boolean operationsare also sus-
ceptibleto numeric drift because some round off error isincurred
during the creation of each intersection point.

Offsetting algorithms that use the combined Voronoi dia-
gram (VD) of al the input contours can be faster and more ro-
bust numerically than algorithms that offset each site indepen-
dently. The Voronoi diagram of a set of contours partitions (12
into a mesh of Voronoi faces (VF's). Each VF is associated with
asingleinput site 5. The input sites are the vertices and edges
that are part of the input contours. The edges can in general be
straight line segments, circular arcs, or any free form curve. For
the purposesof thisdiscussion of Voronoi diagrams, wewill limit
our contours to be constructed out of straight line segments and
circular arcs with © < 1. Each VR contains the set of pointsin
02 that are closer to § than any other input site. VF's are con-
tinuous. VF, will have an infinite area if 5 is the closest site to
pointsat infinity in some set of directions. VF’sare bounded and
connected by Voronoi edges (VE's). VE's are the set of points
which are equidistant from two input sites. VE's are segments of
straight lines, parabolas, hyperbolas, or elipses. If we limit our
set of input sites further to only vertices and straight line edges,
thentheVE’swill be segmentsof straight linesor parabolas. VE's
are bounded and connected by Voronoi vertices (W's). W’sare
pointsin 02 that are equidistant to at least three input sites. The
Voronoi diagram isthe mesh consisting of al theVF's, VE's, and
W'’s. For amore detailed description of Voronoi diagrams, con-
sult Held (11).

The VD isuseful in the creation of contour offsets. The VD
encodesthedistancefunctiontotheclosest input sitefor 02, This
distance function can be viewed in 3D as the Voronoi mountain
(20). The Voronoi mountainisgenerated by liftingeach point p of
02 inzby itssigned distance to the nearest input site. The signed
distanceis positiveif p isinsidethe genera polygon defined by
the oriented input contours, and it is negativeif p isoutside this
polygon. Applying this lifting map transforms the 2D Voronoi
mesh into a 3D mountainous surface as shown in figure 12. The
VF of aline segment site turnsinto a piece of a45° tilted plane.
The VF of avertex or circular arc segment site turnsinto a piece
of a45° angle cone. The VE’s become the intersection curves of
these planes and cones. The VD provides globa nearest neigh-

Copyright 2000 by ASME

Figure 11. INPUT CONTOUR (THICK BLACK), VORONOI DIAGRAM
(THIN GRAY), AND OFFSET CONTOUR (THICK GRAY).

T ITANN

Figure 12. INPUT CONTOUR IN Z = O (THICK BLACK), VORONOI
MOUNTAIN (THIN GRAY), AND OFFSET CONTOUR IN Z = d (THICK
GRAY).

bor information of the input sites by the VI adjacencies encoded
intheVE’s. The offset contour may step directly between VF’s of
input sitesthat were not consecutive sitesintheinput contour. An
exampleisillustrated in the lower right corner of the offset con-
tour in figure 11. This nearest neighbor information eliminates
the extraneous pairwise comparisons of sites found in the brute
force boolean approach to offsetting.

The lower bound on creating the Voronoi diagram of thein-
put contoursis O(nlogn). Thisistrue because the creation of the
VD can be reduced to sorting. Algorithms that use the Voronoi
diagram to create offset contours can run in O(n) time, so total
running time including the creation of the Voronoi diagram has a
lower bound of O(nlogn). Itisalso easier to create numericaly
stablealgorithmsfor creating Voronoi diagrams thanitisfor per-
forming bool ean operations.

Kim (6) describes an O(n) agorithm for constructing an off-
set contour of a simple input polygon using the Voronoi diagram
of the polygon and two stacks to manage the creation of digoint

contour loops in the offset contour. The agorithm proceeds by
walking around the input contour, creating offset segments when
they exist, and jumpsto create new contour loopswhen disconti-
nuitiesare encountered. Thisonly worksfor asinglesimpleinput
contour.

A more general approach to creating the offset contoursisto
dlicetheVoronoi mountain by aplanez= d whered isthesigned
offset distance: d > 0 offsetsthe polygoninward, d = O isthe set
of input contours, and d < 0 offsets the polygon outward. The
offset contoursat adistanced are equivalent to the dlice contours
created by dlicing the Voronoi mountain with the plane z= d and
then projecting back into the z= 0 plane.

Voronoi Diagrams

Many algorithms exist for the creation of the Voronoi dia
gram of acontour. A major class of these algorithmsisthedivide
and conquer agorithms. These agorithmswere derived from the
divide and conquer algorithm used by Shamos and Hoey (17) to
create the Voronoi diagram of a set of verticesin 2. The ago-
rithmdividestheinput verticesintotwo haf setsV, and Vg based
on their geometric position, recursively createstheVVD and VDR
of those two sets respectively, and then merges VD and VDg to
create the VD of the whole set. The key operation in the ago-
rithmisthe O(n) merge step. The merge buildsthe bisector poly-
linethat separates the sites of V| and Vg, and it prunes away the
defunct geometry from the VD and VDgr. The key insight in the
merge step isthat al portionsof VD, that lieto theright of the bi-
sector polylinewill not bein thefina VD, and viceversa. Others
((9) and (5)) describe agorithmsthat do the same work in creat-
ing the Delaunay triangul ation of a set of vertices. The Delaunay
triangulationisthe planar dual of the Voronoi diagram.

Held (11) and Kim et a (7) describe agorithms that cre-
ate the VD of an input polygon with straight lines and circular
arcs as edges. These algorithms are both generalizations of the
Voronoi diagram for point sets. Instead of dividingtheinput sites
by geometric position, these algorithms divide the contour into
two halves based on the topologica counterclockwise ordering
around the input contour. Both agorithms limit themselves to
creating theVD of theinside of the contour only. Both algorithms
create the bisector polylineduring the merge step by creating rep-
resentations of the VE's between the VF’s and then intersecting
theVE's. Themgjor difference between thetwo approachesisthe
representation of thefunctionsfor theVE's. Held usesan implicit
form parameterized by the distance to the input contour. Kim et
a use rational quadratic Bézier segments to represent the conic
curves for the VE's. Held's approach gives a parameterization
that is very intuitive, but it does not aways have unique points
for aparameter value. Kim et a create VE's with monotonic pa
rameterizations, so when offsetting the parameterization yields at
most one unique point. Kim et al are able to smplify coding to
asingle operation, the intersection of arational Bézier withara

Copyright 2000 by ASME

tional Bézier, but thismay come at the expense of some numeri-
cal accuracy. Held'salgorithm has many moreintersection cases,
butitispossiblefor it to generate higher numeric accuracy. Held
specifically mentions the handling of a single general outer con-
tour with convex inner contours. It is not clear whether the al-
gorithm can be extended to handle island contours of arbitrary
shapes. These divide and conquer algorithms are worst case op-
timal with O(nlogn).

Our Offset Implementation

When creating polygon offsetsfor SFF, it isnecessary to han-
dle contours made up of arbitrary straight line segments with ar-
bitrary island contours. The 2D contours are created by dlicing
3D polyhedral approximations of free form shapes. The primi-
tivesare always linear, but the configurations can be very generd
and may be higher in complexity than examples normally expe-
rienced in NC pocket machining. Our approach is to create the
Voronoi diagram of these contours, and then create the off set con-
tours by conceptually dicing the Voronoi mountain.

We construct the Voronoi diagram using a divide and con-
guer method that builds the Voronoi diagram on the inside and
on the outside of each input contour. By computing the inside
and outside Voronoi diagram, it makes it possible to handle ar-
bitrary island contours as shown in figure 13. A mgjor concernin
thisalgorithm is numeric accuracy, so we are careful to make all
calculations based on the original input data without creating in-
termediate bisector representations. In the future, we plan on in-
corporating the exact arithmetic methods presented by Shewchuk
(18) when calculating theW'’s. Theindividual contour VD’s can
be combined using the same merge operation to form the com-
bined VD of al the input contours. Details for merging theVD's
of island contours are discussed by Held (11).

R

Figure 13. INPUT CONTOUR (THICK BLACK) AND VORONOI DIA-
GRAM (THIN GRAY).

Once the VD is created, we compute the offset contours by

walking the edges of the VD as shown in figure 14. The ago-
rithm starts by marking al of the VE's as unprocessed. It then
picksthefirst unprocessed VE. If it does not have an intersection
point with the offset planeit isignored and marked as processed.
If it does intersect the offset plane, then it becomes the starting
VE inacrawl of theVD to recover asingle offset contour around
a single peak of the Voronoi mountain. The crawl proceeds by
walking theinterior sides of the edges of the VF in clockwise or-
der until the next VE intersected by the offset plane is encoun-
tered. A contour segment is created between the previous point
and the new point. Then we step over the newly intersected VE
into the adjacent VIF. We continueto trace out the offset contour
in counterclockwise order around the peak until the starting VE
isencountered again. All edges that are touched in thiswak are
marked as processed. The algorithm repeats until all edges have
been processed. This offsetting agorithmworksfor arbitrary sets
of input contours and can offset inwards or outwards as shown
infigure 14. The running time of the offsetting algorithmonly is
O(n) because it touches each of the edges of the Voronoi diagram
a constant number of times.

Figure 14. INPUT CONTOUR (THICK BLACK), VORONOI DIAGRAM
(THIN GRAY), AND ONE INNER AND TWO OUTER OFFSET CON-
TOURS (THICK GRAY).

RESULTS

We have manufactured the simple test part shown in fig-
ure 15, avery short asymmetrical pyramid with anear horizontal
face on the right. Using our algorithm and a desired wall thick-
ness of T = 3, the build time for this part was 110 minutes and
it used 203 inches (5.2 m) of material. The QuickSlice software
didn’'t find any dlices to manufacture with the fast build style for
this part. Using the regular build style, the build time was 131
minutes and it used 252 inches (6.4 m) of materia, taking 19%
longer and using 24% more material thanwith our agorithm, and

Copyright 2000 by ASME

producing a part which looks identical on the outside, as shown
infigure 16.

Figure 15. A SIMPLE TEST PART WITH A SOLID THIN EXTERIOR
WALL AND LOOSE FILLED INTERIOR BUILT USING OUR ALGO-
RITHM.

Figure 16. THE SAME PART BUILT USING THE FDM'S MACHINE'S
QUICKSLICE SOFTWARE. THE PART LOOKS IDENTICAL ON THE EX-
TERIOR.

Inthissimpletest part, the volumeto surface ratio was quite
small. For apart with a higher volume to surface ratio, such as
the screw part shown in figure 17, the differences in build times
can be more dramatic. For thispart, the gentle slope of the screw
threads prevents the QuickSlice software from applying its fast
build agorithm (figure 18), but our algorithm still builds a thin-
walled part (figure 19). Using our algorithm and a desired wall
thickness of T = 5, the build time for this part was 232 min-
utes (3:52) and it used 301 inches (7.6 m) of material. Using
the QuickSlice software directly, the build time was 504 minutes
(8:24) and it used 872 inches (22.1 m) of material, taking 2.17
times as long and using 2.9 times as much material.

Figure 17. THE SCREW PART MANUFACTURED USING OUR ALGO-
RITHM. USING THE QUICKSLICE SOFTWARE DIRECTLY, THE BUILD
TOOK OVER TWICE AS LONG TO COMPLETE.

Figure 18. A SAMPLE SLICE THROUGH THE SCREW PART, USING
THE QUICKSLICE SOFTWARE'S FAST BUILD OPTION. ALL OF THE
ROADS ARE DENSELY SPACED.

CONCLUSION

In this paper, we have described a conceptually simple algo-
rithm for making partialy hollow layered parts with thin, dense
wallsof approximately uniformthickness. We haveimplemented
thisalgorithmfor an FDM machineto producelighter partsusing
less material and in less time than with the commercial software.

The techniques described in this paper, with small modi-
fications, should also speed up manufacturing with other calli-
graphic (random-scan) SFF technologies, such as SLA and SLS.
With those technol ogies, however, modificationsto the a gorithm
would be needed to obtain the same material savings, since it
would be necessary to eliminate the trapped volumes of material
inthe part interiors.

Copyright 2000 by ASME

Figure 19. THE SAME SLICE USING OUR ALGORITHM. THE INTE-
RIOR ROADS ARE LOOSELY FILLED FOR A FASTER BUILD.

ACKNOWLEDGMENT

Thiswork was supportedin part by grant EIA-9905140 from
the Nationa Science Foundation. The purchase of the FDM ma-
chine was funded in part by Visteon Automotive Systems and
grant EIA-96-17995 from the Nationa Science Foundation.

REFERENCES
3D Systems, Inc. Stereolithography Interface Specification.
Company literature, 1988.
Seth Allen and Debasish Dutta. Wall thickness control in lay-
ered manufacturing. In Proceedings of the Thirteenth Annual
Symposium on Computational Geometry, pages 240-247, Nice,
France, June 1997. ACM.
Seth Allen and Debasish Dutta. Wall thickness control in lay-
ered manufacturing for surfaces with closed dices. Compu-
tational Geometry: Theory and Applications, 10(4):223-238,
July 1998.
Joseph J. Beaman et d. Solid Freeform Fabrication : A New
Directionin Manufacturing. Kluwer Academic Publishers, Dor-
drecht, 1997.
L. Guibas and J. Stolfi. Primitives for the manipulation of
genera subdivisionsand the computation of Voronoi diagrams.
ACM Transactionson Graphics, 4(2):74-123, April 1985.
D.-S. Kim. Polygon offsetting using aVoronoi diagram and two
stacks. Computer Aided Design, 30(14):1069-1076, Dec. 1998.
D.-S. Kim, P. K. Hwang, and B.-J. Park. Representing the
Voronoi diagram of a simple polygon using rational quadratic
Bezier curves. Computer Aided Design, 27(8):605-614, Aug.
1995.
T. W. Lam, K. M. Yu, K. M. Cheung, and C. L. Li. Octreere-
inforced thin shell object rapid prototyping by fused deposition
modelling. International Journal of Advanced Manufacturing
Technology, 14(9):631-636, 1998.
D. T. Leeand B. J. Schachter. Two agorithmsfor constructing

aDelaunay triangulation. International Journal of Computer &
Information Sciences, 9(3):219-242, June 1980.

C.L.Li,K. M. Yu,and T. W. Lam. Implementation and eval-
uation of thin-shell rapid prototype. Computers in Industry,
35(2):185-193, March 1998.

M. Held. On the Computational Geometry of Pocket Milling.
Springer, Berlin, Incs edition, 1991.

Sara McMains. The SIF.SFF Page
http://www.cs.berkeley.edu/tig/sif 2_0/ SIF_SFF.shtml, 1999.
Sara McMains and Carlo Séquin. A Coherent Sweep Plane
Slicer for Layered Manufacturing. In Fifth Symposiumon Solid
Modeling and Applications, pages 285-295, Ann Arbor, MI,
June 1999. ACM.

SaraMcMains, Carlo Séquin, and Jordan Smith. SIF: A Solid
Interchange Format for Rapid Prototyping. In Proceedings of
the 31st CIRP International Seminar on Manufacturing Sys-
tems, pages 4045. CIRP, May 1998.

A. A. G. Requicha. Representations for Rigid Solids: Theory,
Methods, and Systems. ACM Computing Surveys, pages 437—
464, December 1980.

J. R. Rossignac. Blending and Offsetting Solid Models. PhD
thesis, University of Rochester, 1985.

M. I. Shamos and D. Hoey. Closest Point Problems. Proceed-
ings 16th Annual | EEE Symposiumon Foundation of Computer
Science, Oct. 1975.

J. R. Shewchuk. Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates. Discrete & Computa-
tional Geometry, 18(3):305-363, Oct. 1997.

Stratasys, Inc., Eden Prairie, MN. QuickSice 6.2, 1999.

D. Veeramani and Y.-S. Gau. Selection of an optimal set of
cutting-tool sizes for 2 1/2 D pocket machining. Computer
Aided Design, 29(12):869-877, Dec. 1997.

Janlin Wang. L-SIF Verson 1.0.
http://www.cs.berkeley.edu/Tg/L SIF/ LSIF.html, 1999.
K.M.YuandC.L. Li. Speeding up rapid prototyping by offset.
Proceedings of the I nstitution of Mechanical Engineers, Part B,
209(B1):1-8, 1995.

Copyright 2000 by ASME

