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Abstract

This paper investigates how best to make informative and aesthetically pleasing three-dimen​sional visualization models of the higher-dimensional regular polytopes. We first review the trade- offs for the case of 2D projections of the five Platonic polyhedra and then apply our findings to the higher-dimensional cases. We demonstrate the results with pictures of actual physical visualization models. We also discuss general issues concerning symmetrical views and loss of information.

1. Introduction 

In two dimensions, there exist infinitely many regular n-sided polygons. In three dimensions there exist just five regular polyhedra – the well-known Platonic solids. Polytope is a generalization of the terms in the sequence: point, segment, polygon, polyhedron ... [1]. Such a polytope is called regular, if all its ele​ments (vertices, edges, faces, cells ...) are indistinguishable, i.e., if there exists a group of spatial transfor​mations (rotations, mirroring) that will bring the polytope into coverage with itself. Through these symmetry operations, it must be possible to transform any particular element of the polytope into any other chosen element of the same kind.

The goal of this work is to find highly informative and aesthetically pleasing projections to 3D space of the higher-dimensional polytopes, with the ultimate goal to build physical models or even large con​structivist sculptures. The necessary projections to lower dimensions destroy some of the original symme​tries. While the regular polytopes have many rotational symmetry axes – one each around every vertex, edge center, face center, etc. – a projection to a 2D image plane will maintain at most a single rotational center. Projections to a 3D model space are not quite as destructive on symmetry; many different symmetry axes can be maintained simultaneously. 

Retaining as much of the original symmetry as possible seems desirable when trying to depict highly symmetrical objects. However, too much symmetry can destroy relevant information. If we look at a geo​metrical cylinder directly end-on, then all we see is a circle, and we cannot tell how long that cylinder is. In order to answer that question, we have to bring the cylinder out of alignment with the visual projection axis – either by rotating it, or by moving our head. In this paper we explore these trade-offs between the desire for regularity and the need to avoid obfuscation by too many coincidences and self-occlusions due to some special alignment of the projection. To get a feel for the issues involved, we start by looking at various pro​jections of the Platonic polyhedra to two dimensions. We use the lessons learned on the six regular poly​topes that exist in 4D space and then generalize and apply our technique to the cases of five and more dimensions. We illustrate these discussions with CAD models made in the Berkeley SLIDE environment [7] as well as with actual physical models made with a variety of rapid-prototyping processes [3].

2. Projecting the Platonic Solids to Two Dimensions 

Figure 1 shows slightly perspective, shaded projections of the five Platonic solids, and Table 1 shows their salient characteristics, in particular, the number of the elements from which they are composed and also the valences of the symmetries around some of these elements.

Figure 1.  The Platonic solids in 3D: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron.

Table 1.  Characteristics of the Platonic Solids

	
	Tetrahedron
	Cube
	Octahedron
	Dodecahedron
	Icosahedron

	# Vertices
	4 (v=3)
	8 (v=3)
	6 (v=)
	20 (v=3)
	12 (v=5)

	# Edges
	6
	12
	12
	30
	30

	# Faces
	4 (n=3)
	6 (n=4)
	8 (n=3)
	12 (n=5)
	20 (n=3)


In Figure 2 the direction of projection has been chosen from some “arbitrary” angle. This yields much more informative results than displaying, say, the cube by looking perpendicularly onto one of its faces, showing nothing but a single square. Our visual system allows us to infer the 3D shapes of these objects from such single views, exploiting the varying shading on different faces, which acts as a powerful queue for the orientation of the faces. Then by subconsciously solving the problem of putting these faces together into a coherent closed surface, the 3D shape emerges in our minds.

Of course, having a virtual 3D model that can be rotated interactively would be giving us an even bet​ter understanding of the 3D nature of the original object, since our brain could then integrate the many dif​ferent views into a conceptual 3D structure. Thus for visualizing the more complex higher-dimensional polytopes, it seems almost necessary to use a 3D visualization space. Unfortunately, evolution has not found it useful to develop equivalent mechanism for inferring higher-dimensional shapes from shaded models in 3D space. Thus we need to look for different depth queues. By projecting and rendering only the edges of a polyhedron, we can gain a sense of transparency and render visible the front as well as the back of the polytope. Figure 2 shows face-first views of the regular dodecahedron first using a parallel projec​tion and then perspective projections. By adding perspective, one can introduce implicit depth cues: ele​ments further away from the camera appear smaller (Fig.2b). These cues can be enhanced by rendering closer edges with darker or thicker lines (Fig.2c). If we move the camera close enough, the projection of the front face can become so large that all the other elements of the polytope appear inside it and the figure is bounded by a single pentagon (Fig.2d) This extreme projection avoids all edge intersections and will become particularly useful to highlight the cells of which a particular 4D polytope is composed (Section 3).

.

Figure 2.  Wire-frame projections of the Dodecahedron: (a) parallel projection, (b) perspective projection, (c) added depth cues, (d) extreme perspective projection from a camera close to one face center. 

The direction of the projection is another important aspect to consider. Figure 3 gives a survey of the relevant view axis alignments that can be used to bring out particular aspects of the Platonic polytopes. It shows vertex-first, edge-first, and face-first projections, depending on which element’s center is chosen to lie on the central projection axis. Depending on the viewing direction, the resulting figure can have more or less symmetry. The vertex-first projections maintain the rotational symmetry found around the vertices of the original polyhedron, and the face-first views maintain the symmetry of the original faces. The edge- first projections yield only two-fold dihedral symmetry. Moreover, these projections can have more or less  desirable or undesirable  coincidences. Some hide more than half the elements by self-occlusion, e.g., the edge-first projection of the dodecahedron hides half the edges and eight out of twelve faces.
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Figure 3.  Parallel Projections of the Platonic Polyhedra. 

Inspection of Figure 3 makes it clear, that in order to obtain a meaningful visualization model, con​cerns more subtle than just maintaining a high degree of symmetry come into play. Most people when see​ing a square with its two diagonals would not immediately think of this figure as depicting the edge-first projection of a tetrahedron; the square outline is more reminiscent of a cube. Moreover, the newly intro​duced edge intersection leads to an ambiguity as to whether there is a vertex at this cross point, which might then imply a top-down view of a four-sided pyramid or of an octahedron. This can be mitigated by giving the two crossing edges different depth cues and/or by showing explicitly enhanced vertices (Fig.4a). 

As another example, the face-first parallel projection of the cube is too simple, because of the many coincidences among the projections of its twelve edges; this simple square does not imply a three-dimen​sional object at all. A perspective projection breaks these degeneracies and allows us to show all twelve edges without loss of symmetry (Fig.4b). The vertex-first parallel projection of the cube has only the single coincidence of the two vertices closest and farthest from the camera. The apparent emergence of a central vertex of valance six can again be mitigated by introducing suitable depth cues on the edges (Fig.4c) .

Figure 4.  Enhanced wire frame renderings of (a) the Tetrahedron and (b,c) the Cube.

In summary, some lessons learned in this exercise tell us:

· Vertex-first or face-first projections yield the highest symmetries.

· We should pick a projection that yields a shape conceptually related to the object we are trying to depict, e.g., by maintaining an un-distorted view of one of its faces.

· Avoid too many coincidences and self-occlusions which might make the result look flat.

· Use depth cues (line width, color) to restore some of the information lost in the projection.

3. The Regular Polytopes in Four Dimensions 

In four dimensions there exist six regular polytopes [1]. Their characteristics are shown in Table 2, which also lists the valence v of the vertices, the number w of faces (or cells) sharing each edge, the num​ber n of sides on each face, and the type of cell that makes up the shell of each polytope.

Table 2.  Characteristics of the Regular Polytopes in 4D

	
	Simplex
	Tesseract
	16-Cell
	24-Cell
	120-Cell
	600-Cell

	# Vertices
	5 (v=4)
	16 (v=4)
	8 (v=6)
	24 (v=8)
	600 (v=4)
	120 (v=12)

	# Edges
	10 (w=3)
	32 (w=3)
	24 (w=4)
	96 (w=3)
	1200 (w=3)
	720 (w=5)

	# Faces
	10 (n=3)
	24 (n=4)
	32 (n=3)
	96 (n=3)
	720 (n=5)
	1200 (n=3)

	# Cells
	5 (tetra)
	8 (cube)
	16 (tetra)
	24 (octa)
	120 (dodeca)
	600 (tetra)


The additional dimension now gives us another possibility for the alignment of the projection axis; the cell-first projection takes a view perpendicular to one of the cells that bound the four-dimensional poly​tope. This direction preserves the symmetry of the 4D polytope with respect to an axis going through the center of one of its bounding cells. The cell-first and the vertex-first projections yield a maximum of sym​metry in the result. In addition, if we move the camera close enough to the polytope, the projection of the closest cell will become so large, that all the other elements of this polytope are seen on the inside of this cell. This provides a good visual indicator of the type of the object that is being projected. 

Figure 5 shows all four aligned projections for the case of the 4D Hypercube, also called Tesseract. In my personal judgement, the cell-first projection captures the essence of the Hypercube most succinctly. It looks very “cube-like” and maintains a high degree of symmetry.

Figure 5.  Perspective projections of the Hypercube in the four special directions (a) cell-first, (b) face-first (c) edge-first, (d) vertex-first.

We should pause to ponder why the most symmetrical model of this polytope seems to be the preferred one, when, in contrast, in Section 2 we have found that the most symmetrical case destroyed too much information about the original. The crucial difference is that with a 3D model, the symmetry breaking occurs typically in the final projection onto our 2D retinas; moreover, we can choose the amount of pro​jected asymmetry interactively, while preserving the symmetry of the 3D model. The asymmetries in Fig​ure 1 work for us because we use it in the construction of a conceptual 3D model, which we know should be as symmetrical as possible. Unfortunately people do not possess such reconstructive skills for 4D geom​etry from 3D models.

Figure 6.  4D polytopes: (a) 5-cell or Simplex, (b) Hypercube or Tesseract, (c) 16-cell or Cross Polytope.

Figure 6a shows a model of the 4D simplex made from modular plastic tiles using the Polymorf [5] edge-connector system. This is a vertex-first or a cell-first projection. One face has been opened to better show the four tetrahedral cells on the inside. Figure 6b shows a cell-first view of a Tesseract made on a 3D printer from ZCorporation. Figure 6c presents a cell-first projection of a 4D cross polytope, in which four flanges along each depict the four faces attached to each edge; this model was made on a Fused Deposition Modeling (FDM) machine by Stratasys [9].

Figure 7a models the 24-cell or “Hyper-octahedron” in a cell-first projection, also made on an FDM machine. Figure 7b shows a cell-first projection of the 120-cell, made out of wax on a Sanders machine by Solidscape [8]. Another effect of the special alignments discussed above, when used in a parallel projec​tion, is to reduce the complexity of the result through self-occlusion. This turns out to be useful for the two “monster” objects the 120-Cell and the 600-Cell in 4D space. By using parallel projection with an appro​priate alignment (Fig.7c), about half the vertices, edges, faces, and cells of the 600-cell can be hidden; but this model still shows clearly that 5 tetrahedra crowd around every edge. This projection makes it simpler to build a physical model of this complex polytope and also easier to comprehend its basic connectivity.

Figure 7.  The other three 4D polytopes: (a) 24-cell, (b) 120-cell, (c) front half of 600-cell.

4. Projecting the Platonic Polyhedra to One Dimension

When we want to make three-dimensional visualization models of objects in five dimensions and higher, we have to apply several consecutive projection steps. Each projection by itself has many parame​ters that we can choose freely, and thus the amount of control we can exert in projecting high-dimensional objects grows steeply with their original dimensionality. To what degree can we then predefine the result​ing geometrical constellation of the vertices without thinking about the exact projection parameters needed to achieve some desired result? 

To understand that issue, we will study reductions of the Platonic polyhedra to a single dimension by two consecutive projections. In particular, we will first try to choose the projection parameters in such a way that the vertices will end up being separated by constant intervals on the final target line.

As a first example, we can project a tetrahedron onto a line, so that its four vertices end up equally spaced. We start with an edge-first parallel projection, which puts the four vertices at the corners of a square (Fig.3). If we further project this configuration in the plane along the y-axis onto the x-axis, we will see just two double vertices; if we project along the axis y=x, we will see three vertices, the middle one being doubled; but if we project along a line y=2x, we will find four separate vertices at equal spacing (Fig.8a).

Figure 8.  Projections onto a line of (a) the Tetrahedron and (b, c, d) the Cube.

Now let’s try to do this for the cube. We start with an oblique parallel projection to yield two offset squares and look for the proper angle to achieve the desired result. Figures 8b – 8d show that this can be done in several different ways, depending on how we plan to have the points of the two squares interleaved on the target line – we just need to choose appropriate parameters for the first oblique projection. Of course, the resulting edge-connectivity patterns on the target line are different for cases b, c and d. The same approach also works for the octahedron. We choose the first oblique projection to separate by the appropriate amount the two vertices that lay originally on the z-axis, so they will fall onto the slanted pro​jection line needed by the second projection (Fig.9a).

Figure 9.  Projecting (a) the Octahedron onto a line and (b, c) the Icosahedron onto a circle.

The two remaining Platonic polyhedra with 12 and 20 vertices, respectively, are more challenging. We may start by consulting Figure 3 to find a promising looking first projection that then can be projected again laterally to yield equally spaced vertices. But for the icosahedron and dodecahedron this does not seem possible with the use of ordinary parallel or perspective projections, if we want to avoid coincident vertices. However, if our minds are set to obtain a “regular” image on a one-dimensional manifold, we might instead contemplate projecting these polyhedra onto a circle. This begins to stretch our notion of a “projection,” but the main goal is to obtain results that are “regular” or “symmetrical” and convey as much of the “essence” of the original object as much as possible. 

For the current task at hand, to map a icosahedron onto a circle, we start from its face-first projection shown in Figure 3. In that diagram we then project all vertices radially onto a circle concentric with the centroid of the figure. This leads to six double vertices on the perimeter of the circle (Fig.9b). To isolate all twelve vertices, we may rotate the projections of the two sets of six inner and six outer vertices against each other – perhaps by as much as 30°, in order to obtain equal spacings between all vertices. This consti​tutes an even further departure from the usual notion of a projection, since it effectively twists the original object while projecting its vertices onto a cylinder, and finally onto a circle. The topology of the original object is still contained in the edge-connectivities between the projected vertices. Creating these ID images is somewhat contrived, but it is useful to prepare ourselves for the case of multiple, broadly interpreted “projections” from high-dimensional spaces down to three dimensions. It will look less contrived already when we map 4D polytopes onto 2D manifolds (Section 5).

5. Projecting 4D Regular Polytopes onto 2D Manifolds

To deepen our understanding of the effects of multiple consecutive projections, we will discuss the task of projecting some of the 4D regular polytopes onto an image plane – or onto a sphere – while aiming for a high degree of regularity or symmetry. As we have shown in Section 3a, using  cell-first or vertex-first projections from 4D space to 3D space leads to the most symmetrical results. If we then project these 3D objects along one of their symmetry axes, we obtain a 2D diagram with the corresponding rotational sym​metry. Figure 10 shows double projections of the 120-cell, first into 3D space, and then onto a 2D image plane. In Figure 10a we first use a perspective cell-first projection, yielding an object like the model in Fig​ure 7b, followed by a face-first parallel projection to 2D space. In this diagram, all edges have been extruded into each one of the attached faces, to give a sense of the various pentagonal faces present in this complex 4D polytope. In Figure 10b the first projection is a cell-first parallel projection that reduces the complexity of the resulting object 3D object by about one half. The subsequent carefully aligned parallel projection to 2D yields another reduction by about four, because the 3D constellation is so regular.

Figure 10.  Double projections of the 4D 120-cell into 3D space and subsequently onto the plane.

Can we obtain more “regularity” than shown in Figure 10a,b? Given that the original polytopes are very round – all their vertices have the same distance from their centroid – we might want to project their edge patterns onto a sphere rather than onto a plane. The obvious way to do this is to start from one of the highly symmetrical 3D images and then do a radial point projection from its centroid. This approach is not practi​cal in the case of the cell-first projection of the simplex (Fig.6a) or for the vertex-first projection of the Hypercube (Fig.5d), because of the presence of a vertex right at the center of the 3D model. It also is not very useful in the case of the cell-first projection of the Hypercube (Fig.5a), because the inner cube frame is projected into coincidence with the outer cube frame. However, for many other situations we obtain beautifully symmetrical and still very informative results. Figure 11a shows the example of the 4D cross polytope and of the 24-cell. Since the underlying cell-first projection results in a cube frame with its face diagonals, the result on the sphere consists of just six great circles; perhaps a cube frame plus diagonals would be more informative. Therefore we map the 120-cell not only onto a sphere (Fig.11b) but also onto the surface of a regular dodecahedron (Fig.11c). These projections result in a maximum number of occluded edges and thus in the strongest reduction in complexity. Now we should be ready to tackle the multiple consecutive projections required to map 5D and higher-dimensional polytopes down to 3D space.

Figure 11.  Projecting (a) the 4D cross polytope onto a sphere; projecting the 120-cell (b) onto a sphere and (c) onto a dodecahedron.

6. Regular Polytopes in Higher Dimensions 

Curiously enough, in all dimensions higher than four, there are just three regular polytopes for each dimension. These naturally belong to three infinite series running through all higher dimensions. The first is the simplex series. In space of dimension d it corresponds to the fully connected graph with d+1 vertices. A second series is composed of the orthogonal measure polytopes in all dimensions. Each such polytope is constructed from the one with one dimension less by an extrusion through the length of one edge. The third is the series of cross polytopes; these are the duals of the measure polytopes. Table 3 gives a summary of these three lines of regular polytopes. For an easy-to-read overview of why only these regular objects exist and no others, see [6]; for a more mathematical description consult the pioneering work by Coxeter [1]. In the following we will discuss various approaches to finding symmetrical projections of these objects.

Table 3.  Characteristics of the Regular Polytopes in 4D

	
	Simplex Series
	Cross Polytopes
	Measure Polytopes

	# Vertices
	d+1
	2 d
	2d

	# Edges
	0.5 (d+1) d
	2 d (d-1)
	d 2d-1



	# Facets of dim M
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	# Hyper faces
	d+1
	2d
	2 d


We now use what we learned from the study of projecting the Platonic solids onto a line or a circle and projecting the 4D polytopes onto a sphere. For most cases we would like the projected vertices of the poly​tope to lie in a regular pattern on one or more spherical shells in 3D space. We primarily determine what the pattern of these projected vertices should look like, and are less concerned whether there exist projec​tions that might accomplish the desired configuration. One may argue that for really high-dimensional objects it is irrelevant whether there is a set of affine or perspective projections that transforms the vertices from their original locations to their final destinations. Several consecutive projections change the geome​try so drastically, that not much can be inferred from the final constellation about the original positions. The one thing that is maintained however, is the topological connectivity among the various elements of the polytope, in particular, the valences of the vertices do not change during the projections. Thus for high- dimensional polytopes, the key criterion when making a visualization model in 3D space is to find an arrangement that makes it possible to show off the topology as instructively as possible. This may entail avoiding vertex coincidences and unnecessary edge-intersections. With these thoughts in mind, let us review the three series of regular polytopes in dimensions five and higher and investigate the possibilities of making 3D models of high symmetry and of high relevance.

7. The Simplex Series 

The wire frame of a simplex in d dimensions consists of d+1 vertices that are all mutually connected and lie at unit distance from each other. An inductive procedure can be used to construct them. Starting with the unit line segment in one dimension, we find its center of gravity (COG), i.e., its midpoint, and on its perpendicular bisector we search for the point that is a unit distance away from both end points; this forms an equilateral triangle. On the normal above the COG of this triangle, we find the 4th point of a tet​rahedron with all unit length edges. Then, “above” (in the fourth dimension) the COG of the tetrahedron, we find the last corner of the 5-cell  and so on  for all simplices in higher dimensions. 

The generic problem in making a 3D model of a d-dimensional simplex is to find a pleasing constella​tion of d+1 vertices that allows to show the complete graph containing edges between every possible pair of vertices. Ideally, all edges should be of about equal length. Placing all vertices in a regular pattern on a sphere may be a good start. This can readily be achieved for 4, 6, 8, 12, 20 vertices by using the corners of a Platonic polyhedron. The Archimedean solids and their duals offer further solutions for vertex counts of 14, 24, 26, 30, 32, 38, 48 60, 62, 92, and 120 vertices. By placing vertices on two or more concentric shells, more vertex numbers can be accommodated with semi-regular constellations in 3D space. A problem is that many of these constellations have pairs of opposite vertices that will all be pair-wise connected with an edge through the centroid of the constellation, leading to multiple coincidences at the center. These edge intersections should be eliminated by displacing the vertices on the sphere in an appropriate way. Prefera​bly, those moves should be done in a systematic way that preserves some degree of symmetry. 

Figures 12 and 13 shows our preferred solutions for simplices of dimensions five through eight. For the 5D simplex we can use the somewhat offset vertices of an octahedron (Fig.12a). The additional vertex of the 6D simplex can be accommodated in the center of that configuration (Fig.12b). The eight vertices of the 7D simplex fall naturally on the corners of a cube, from where they are offset somewhat to avoid inter​sections of the space diagonals as well as of the face diagonals (Fig.13a). And again, a 9th vertex for the 8D simplex can be placed at the center of this configuration (Fig.13b).

Figure 12.  3D SFF models of simplices: (a) 5D and (b) 6D.

Figure 13.  Simplex constructions with SLIDE in (a) 7D and (b)8D. 

8. The Cross Polytopes. 

A d-dimensional cross polytope can be constructed by placing vertices onto all the coordinate half- axes, a distance sqrt(0.5) away from the origin, and then connecting all pairs of vertices that do not lie on the same coordinate axis. As we move into high-dimensional space, the cross polytopes have almost twice as many vertices as the simplex in the same dimension (Table 3), and these vertices are only slightly less densely connected than in the corresponding fully connected graph.

A suitable placement of the “projected” vertices in 3D can thus be approached in a way very similar to the one used for the simplices. There is one mitigating circumstance: Since “opposite” vertices need not be connected, they can readily be placed into opposite positions on a spherical shell, without the shifting needed to avoid the intersections of the space diagonals. Figures 14 and 15 show some plausible solutions for cross polytopes of dimensions 4 through 7, with 8, 10, 12, and 14 vertices, respectively. The first case is naturally realized with two complementary tetrahedra of somewhat different sizes (Fig.14a). Ten vertices can be accommodated with a superposition of an octahedron and a tetrahedron, which are then mutually connected (Fig.14b). The 6D cross polytope naturally forms an icosahedron with 30 additional inner edges. It is difficult to avoid all edge intersection, and it would be a pity to destroy this perfect symmetry (Fig.15a); spheres might be added at the 12 vertices. For the 7D case, 14 vertices reflect a combination of a cube and an octahedron (Fig.15b).

Figure 14.  Cross polytopes: (a) 4D FDM model and (b) 5D construction with SLIDE.



Figure 15.  Cross polytopes: (a) 6D FDM model and (b) 7D construction with SLIDE.

9. Measure Polytopes 

The series of n-dimensional hypercubes are readily constructed by an inductive process of extrusion. We start with a unit-length line segment representing the “measure polytope” in one dimension. By sweep​ing it perpendicular to itself through one unit distance, we extrude a unit square. Sweeping this square par​allel to itself through one unit distance in a direction that is perpendicular to the two dimensions that it already occupies extrudes a unit cube. The cube in turn is extruded along a fourth dimension into a hyper​cube, or “tesseract” (Fig.5). In direct analogy, every d+1-dimensional measure polytope is obtained by extruding the d-dimensional measure polytope through a unit length perpendicular to its space. In this sweep, every (d-1)-dimensional “face” becomes a new d-dimensional “cell.” In addition, the starting posi​tion of the d-dimensional polytope becomes the “bottom” cell of the new measure polytope, and the end position of the sweep becomes its “top” cell; of course, all of these 2d+2 cells are equivalent.

In this series, the number of vertices grows exponentially with the dimension, but the edge-connectiv​ity among the vertices is much less complete than for the cross polytopes; however, the total number of edges still grows exponentially. The approach taken for the simplices and cross polytopes, placing the ver​tices into a desired pattern and then adding the connections subsequently, does not work well for the mea​sure polytopes with their much more select edge-connectivity. Furthermore, the “essence” of the measure polytopes is very much expressed by the construction using repeated extrusions, which leads to a large number of mutually parallel edges. We believe that this property should be maintained in an informative 3D model. Thus for these objects we take a different tack: Conceptually we use a sequence of oblique par​allel projections. Rather than placing the vertices and making their connections an after-thought, we focus on the sets of parallel edges first. We now try to place the directions of these edges in as uniform a manner as possible in our 3D target space. This leads naturally to the notion of zonohedra [2]. Figure 16 shows models of these 4D through 6D zonohedra constructed from specially designed rhomboid tiles. Only a sub​set of the “internal” edges and faces are shown to avoid intersecting tiles. 

A cube is a 3D zonohedron. To accommodate four sets of edge directions, we can use the four face normals of a tetrahedron, and this construct leads naturally to the regular 4D zonohedron, bounded by the rhomboid dodecahedron (Fig.16a). Five different edge directions have no completely regular embedding in 3D space; however, they can lead to a rather nice figure in the plane, if the five axes are placed at uni​formly spaced directions that lie 72° apart. This also represents a vertex-first parallel projection of the 5D measure polytope (Fig.17a). Six directions leads to a nice 3D result, in which the edge bundles lie parallel to the six space diagonals in an icosahedron. This model is bounded by the rhomboid triacontrahedron (Fig.16c). The best 5D zonohedron that we have found was also based on this 6D basis, by ignoring one of the axes (Fig.16b). Figure 17b shows a 3D model made on a 3D-printer of a maximally symmetrical ver​tex-first projection of the 6D measure polytope. However, because of the high symmetry of this construc​tion, there are a lot of edge intersections.

Figure 16.  Modular 3D zonohedra models of the (a) 4D, (b) 5D, and (c) 6D measure polytopes.

Figure 17.  Parallel projections of measure polytopes: (a) 5D vertex-first to 2D, (b) 6D vertex-first to 3D (FDM), and (c) nonuniform oblique projection of the 6D measure polytope to 2D.

Series oblique parallel projections best convey the notion of the repeated extrusions by which the mea​sure polytope series can be formed. Figure 17c shows yet another variant to convey this essence of the high-dimensional measure polytopes. By using a much stronger fore-shortening for three of the projec​tions, we can make the result looks like an ordinary wire frame of a cube, but traced out with a small, com​pact “wire-cube brush.” The same approach can also be used to trace out all 32 edges of a hypercube wire frame (Fig.5), or, conversely, we could employ a “hypercube-wire-frame brush” to trace out the 12 edges of an ordinary cube.

10. Discussion and Conclusions

This paper investigates the trade-offs in choosing suitable projections to render the high-dimensional regular polytopes in three dimensions with the goal of making a pleasing looking and informative visual​ization model. Since the original objects are so highly regular, one may want to make the projections also as symmetrical as possible. There is an interesting trade-off between maximizing symmetry and minimiz​ing loss of information by accidental edge intersections or occlusions. One may choose to reduce the com​plexity of the result by hiding the back-half of the polytope by occluding it with the front half, using a suitable parallel projection. Alternatively, by suitably distorting the final vertex positions in 3D space, one can eliminate all such degeneracies, but the irregular results may be harder to comprehend and to remem​ber. Not all such vertex displacements correspond to simple projections from the original high-dimensional space. But since our visual system – including the cortex and the typical training that most people obtain in their formative years – contain no facilities of inverting such projections from higher dimensional spaces, those transformations can be defined in a very liberal manner, to achieve specific goals with respect to the final constellation of the vertices in 3D space.

Often a good approach is to accept some edge intersections and to disambiguate them by enhancing the true vertex positions with larger balls, and by assigning different colors to different groups of edges. The higher symmetry helps in making more compact descriptions and in comprehending the vertex constella​tions, e.g., it is much easier to remember that all vertices lie on the corners of a cube and of an octahedron than to remember individual vertex positions. Physical models with such colored edges and vertices can now readily be produced from a CAD model with a layered manufacturing process [3] such as the 3D printing process from Z-Corporation [10].

There is no doubt that physical models of well-chosen projections to 3D space strongly facilitate understanding of the regular polytopes in four an higher dimensions. Hopefully this paper provides some guidelines for picking some suitable representation from the infinitely many possible 3D images.
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