Martin E. Newell, Xerox Palo Alto Research Center Carle H. Sequin, University of California, Berkeley

A convention for interpreting general polygons is proposed, together with algovithms for processing such polygons. This convention, as well as the
algonithms for dealing with it, has been designed to fulfill the requirements found in processing the geometry of IC masks.

The Case for Polygons in IC Mask Description

Several geometric primitives have been developed for
use in describing the geometry of IC masks. These
primitives are oriented towards efficient descripnon of
the types of geometric constructs typically encountered.
They include rectangles, wires, flashes, and polygons. For
example, Caltech Intermediate Form, CIF (Mead and
Conway 1980), a mask description language now in
widespread use in the university community, makes use
of all of these constructs.

The term “primitive” is not strictly applicable, since
the first three of these can be generated as polygons,
unless circular flashes and circular ends and corners of
wires are required; even then only circular flashes and
polygons are needed. Since polygons can be used 1o
represent most constructs, there is a need to be able to
handle polygons in the most general way. Stated
another way, a system that can handle general polygons
is able to deal with most constructs met in 1C mask
specification. Other primitives may be added for
efficiency reasons, but a basic polygon capability is
essential. Unfortunately, most specifications of mask
geometry either prohibit general polygons or do not
adequately specify how they should be interpreted. The
latter is true of the definition of CIF (Mead and
Conway 1980).

We will define a simple polygon to mean a polygon

having a simple, (i.e., non-self-intersecting), boundary.

The processing of convex, simple polygons ..is

straightforward. The interpretation of inside and outside

may be made in the obvious way, and scan conversion
algorithms can rely on there being only one pair of
edges to consider at a time. However, such polygons are

-not sufficiently general. They do not allow the
representation of such common shapes as an L.
Furthermore, a restriction against self-intersection

prohibits the simplest specification of some shapes such
as the outline of a self-intersecting wire, or certain types
of alignment marks, Figure 1. Also, shapes with holes
have to be specified as a combination of several
polygons that overlap each other. Even if an initial
specification of such self-intersecting polygons is
prohibited, they can arise from the expansion of simple
polygons (Sequin and Newell) for the purposes of
compensating for photolithographic distortions and for
accommeodating fabrication design rules, and so
techniques for handling the self-intersection case are
necessary.

20 LAMBDA Second Quarter 1980

This paper presents a convention for the
determination of the inside of polygons that suits the
requirements for processing the geometry of IC masks.
Algorithms for processing such polygons in various ways
are also presented.

Inside and Outside—Existing Conventions

Several conventions are in common use for determininy
whether a given point is to be considered inside or
outside of a polygon. These include the Surrounded, the
Parity, and the Oriented Multiply-Covered conventions.
Each of these is briefly examined below. '

Surrounded Convention

A conceptually straightforward approach would be to
declare that all points within the outermost boundary of
a pelygon are inside the polygon. While this convention
works well for simple polygons, and even for some seit-
intersecting ones, as in Figure !, it has the unfortunate
consequence that it is not possible, using a single
polygon, to define any structure having a hole; the
inner area would always be filled. This convention has
the advantage that it is easy to implement on a raster
scanned device.

Parity Convention

A common convention used in many computer graphics
packages determines the state of a2 point by the parity of
the number of intersections between edges of the
polygon and a straight line drawn from the point w

" infinity in any direction. Again, this convention works

well for simple polygons, and for some self-intersecting
polygons. Moreover, it atlows the definition of polygons
including holes, and is straightforward to implement.
The main problem with this convention is that while it
provides a perfectly consistent definition of inside and
outside in the abstract, in the domain of IC musk
specification it is counterintuitive. For example, if «
polygon is being used to represent the outline of a wire
that crosses itself, then the area of self-intersection 1
not filled in, as in Figure 2; yet if the wire crosses this
region a third time, it is filled in. Material does not
behave like that. This is more than an idealisuc
objection; as was mentioned above, a simple polygon can
become self-intersecting as the result of being expanded.
In such a case, it would be wrong to leave a hole where
the two expanded regions overlap.

Oriented Multiply-Covered Convention
Another convention in use in some circles involves

defining an orientation for the boundary of a polygon
such that, for exwuple, counterclockwise boundaries
define material and cockwise boundaries define holes,
as in Figure 3. Material that overlaps material is simply
material. Fach hole is able w annihilate exactly one
layer of material. Moreover, holes in space are ignored.
This convention, like the others, works well for simple
polygons, except that now care must be taken to ensure
that the orientation of polygons is counterclockwise.
Polygons with holes can be accommodated without
awkward self-intersecting boundaries—the hole may be
defined simply as another polygon defined in a
clockwise direction. Among the disadvantages of this
convention is that the polvgon of Figure 1 will have
only one loop filled in, the one whose boundary is
counterclockwise. Furthermore, whenever a mirror
operation is performed, care must be taken to reverse
the order of definition of every polygon (or to reverse
the clockwise/counterclockwise convention). In summary,
the main objection to this convention is the asymmetry it
exhibits. There is much to be said for a convention
under which it is possible to determine inside and
outside from a picture of the edges, without knowing in
what order the vertices were defined and how many
times the polygon has been mirrored.

From the above discussion desirable properties for an
inside~outside convention can be identified:

® [t should be possible to define polygons involving
concavities and holes.

B Multiply-covered regions should be treated intuitive-
ly; for example, if a polygon is used to describe the out-
line of a wire, then regions where the wire crosses itself
should be filled in.

B It should be possible to determine inside and out-
side from a picture of the edges of a polygon, without
knowing in what order the vertices were defined or how
many times the polygon has been mirrored,

The Nonzero Winding Number Convention

Another way of describing the Oriented Multiply-Covered
convention above is to say that a point is considered, to
be inside the polygon if the winding number of the
boundary with respect to that point is strictly positive
{not zero or negative). The winding number, sometimes
called the wrap number, of a boundary with respect to a
given point is defined as the net number of times that a
point on the boundary wraps around the given point
while the boundary point makes one complete traversal
of the boundary. The asymmetry of the Oriented
Multiply-Covered convention results directly from the
asymmetry of the condition on the winding number. To
overcome this, the proposed Nonwro Winding Number
convention specifies that:

A point is considered to be inside the polygon if the winding
number of the boundary with respect to that point is nonzero.

FIGURE 1. Self-intersecting polygon

FIGURE 2. Parity convention

N\

L

FIGURE 3. Oriented muliply-covered

N\

This convention comes close to satisfying all of the
criteria given in the previous section. Both loops of the
polygon in Figure 1 are filled in. Reversal of the order
of definition of the vertices has no effect on which

regions are considered inside. Muliply covered regions
are filled in unless, by self-intersection, the orientation
of part of the polygon is reversed, in which case it can-
cels material. Note that this behavior is very similar to

LAMBDA Second Quarter 1980 21

that of the Oriented Multiply-Covered convention, except
that no a priori specification is made concerning which
direction delines material and which defines holes.

The following interpretation of winding number may
help to clarify the convention. Consider representing the
boundary of the polygon using a closed loop of string
on a board. To determine whether a given point is
outside the polygon, stick a pin into the board at that
point and attempt to pull the string from around the
pin. If you succeed then the winding number of the
string with respect to the pin was zero, and the point
was outside the polygon.

The only case in which this convention does not
satisfy all the criteria given is that of a polygon with
multiple disjoint boundaries, where two or more of the
component polygons overlap. Such polygons are useful
for defining holes as separate boundaries of the same
polygon, or when the separate disjoint pieces are most
conveniently thought of as parts of a single object. For
consistent interpretation it is necessary to know the
relative direction of definition of the multiple bounda-
ries, even though reversing all directions will sull not
affect which regions are considered to be inside. For

example, consider a polygon that has two disjoint boun-

daries, each of which is simple, as in Figure 4, If the
two regions thus defined should overlap, then the reg-
ion of overlap will be considered either inside or outside
depending on whether the two boundaries were defined
in the same or different orientations, respectively,

An interesting, if unusual, example of the application
of the Nonzero Winding Number convention is shown in
Figure 5-b. The result may be jusiified as follows: the
hole, B, in Figure 5-b is to be expected on the basis that
it is topologically similar to the hole, A, in Figure 5-a.
The hole, C, in Figure 5-b is to be expected from the
symmetry of the figure about the line S$S.

Algorithm for Direct Raster Conversion
Implementation of the Nonzero Winding Number
convention for output on raster scanned devices is

FIGURE 4. Ambiguity

22 LAMBDA Second Quarter 1980

reasonably straightforward, We shall define the x and y
directions to be those of faster and slower scan,
respectively. The boundary of the polygon is stored as
an edge st of oriented edges, each edge being tagged
with a direction (+! or -1} to indicate whether it was
defined in increasing or decreasing y value. These edges
are sorted on their lowermost (minimum y) end. An
active list is maintained o hold the subset of edges that
intersect the current scan line. The current x coordinate
of the intersection with the current scan line of each
edge in the active list is maintained with each edge, and
the edges in the active list are kept sorted by this x
coordinate. The change, dx, in x for a unit change in y
is also held with the edge. The basic loop for stepping
from one scan line to the next, and for generating dots
for output is as follows (in a language of dubious
lineage}:

until active-list empty and edge-list empty do
begin
{deal with initial entry or disjoint boundaries:}
if active-list empty then ycurr « ymin(first edge in
edge-list)
{introduce edges from edge list into active list:}
foreach edge in edge-list while ymin({edge)=ycurr do
begin
transfer edge from edge-list to active-list
xcurr(edge) <~ x(lower-end(edge))
end '
sort active-list on xcurr
{generate regions to be filled in on current scan line:}
wrap « 0
left « first edge in active-list
foreach edge in active-list do
begin
wrap < wrap + direction{edge)
if wrap=0 then
begin
FilllnLineSegment(xcurr(left),xcurr{edge))
left « next edge in active-list
end
end
yourt < ycurr + 1
{update edges in active list:}
foreach edge in active-list do
begin
if y(upper-end(edge)} = ycurr
then remove-edge-from-active-list
else xcurr(edge) < xcurr(edge) + dx(edge)
end
end

Further Polygon Processing Requirements

The direct scan conversion of polygons, while useful for
such applications as plotting, does not provide a basis
for the many other operations that ofien have to be
carried out on polygons. These operation include such
processes as elipping, for removing parts of the image
that lie outside of the region of interest in display and
plotting applications; expanding and shrinking, for the

FIGURE 5. A result of the Nenzero Winding Number convention.

purposes of compensating for photolithographic distort-
ions and for accommodating fabrication design rules;
design rule checking, that requires a knowledge of inside
and outside, and may use expansion or contraction tech-
niques to check for adequate clearance or overlap; fast
display, in which area filling hardware cannot be used if
polygons are first scan converted to separate scan lines:
conversion fo input for mask-making machines, which
requires either rectangles or trapezoids, the latter be-
coming far more widespread with the increasing use of
electron beam machines,

All of these operations can benefit from techniques
for dealing with general polygons at a level higher than
a raster converted image. For most of the above
processes, algorithms exist for handling mask specifi-
cations involving only simple, convex polygons. To use
these algorithms for general polygons, the given poly-
gons must first be reduced to a set of convex polygons,
preferably nonoverlapping.

Algorithm for Conversion to Trapezoids

Some of the processes listed in the previous section can
benefit greatly from the reduction of a given polygon
into a particular set of convex polygons, namely,
nonoverlapping convex trapezoids having top and
bottom edges parailel to the fast scan, or x, direction.
An algorithm for generating a minimum set of such

trapezoids from a general polygon is presented here.
The input and data structures are the same as for the
scan conversion algorithm above. The main difference is
that instead of stepping from each scanline to the next
one, larger steps are made to the next vy value on which
something “interesting” happens, and then trapezoids
are output only where relevant, not necessarily on every
scan line, and not necessarily even for every interesting
y value. The basic loop of the algorithm is:

until active-list empty and edge-list empty do

begin

if active-list empty then ycurr < ymin(first edge in
edge-list)

introduce-edges-from-edge-list-into-active-list

find-ynext

generate-trapezoids-between-ycurr-and-ynext
remove-terminating-edges-from-active-list
yeurr < ynext

end

where the functions of the called procedures are as
follows:

.z'mmduce-edges-from-edge-!ist-into-active-list:

transfer- edges that intersect yeurr, as in the raster
conversion algorithm. The edges in the active list are
then sorted in x.

Sind-ynext:

this is the minimum of 3 values:

1. The lowest upper y in active-list;

2. The y coordinate of the lower end of the next edge
in edge-list;

3. The lowest intersection between edges in active-list.
Edges that intersect can be detected by checking if their
x values at the currently proposed ynext are in sort. If
a pair of edges is found out of sort then their
intersection is computed and the current proposal for
ynext is backed down to the y value of the intersection,
and the check for edges being in sort at the new ynext
is started again from the beginning. Note that if an
intersection defines ynext, it is necessary to create two
new edges between the intersection point and the upper
ends of the intersecting pair, and to merge these back
into the edge-list; it is also necessary to cut back the
intersecting pair to the intersection point.

generale-trapezoids-between-ycurr-and-ynext:

create a trapezoid for each pair of edges that border on
a region of zero wrap number; this is analogous to the
part labeled “generate regions to be filled in on current scan
line” in the scan conversion algorithm,
remove-terminating-edges-from-active-list:

these are edges that do not extend above ynext.

This algorithm, as it stands, does not generate ga
minimum set of trapezoids, since an entire swath of
trapezoids is produced for every ycurr~ynext pair of
horizontal fines. To overcome this shortcoming, instead
of simply outputting all the trapezoids created in one
swath, they are saved. However, when an edge of a
newly created trapezoid is found to be already in use in

LAMBDA Second Quarter 1980 23

the definitdon of an existing trapezoid from an earlier
swath, this existing traperzoid is output. A trapezoid is
also ouwtput if one of its edges is about to terminate at
ynext.,

This scheme can be implemented in various ways. For
example, the edges that define trapezoids (i.e., that
bound regions having zero wrap number), are each
assigned a mate, that is, the other edge with which the
given edge has been paired to define a trapezoid.
Trapezoids are output whenever the pairing of mates
changes frem one swath to the next. Zero, one, or two
trapezoids may be output, one for each of the newly
paired edges that already had a mate. The mates are
marked as single after their trapezoids have been
output, to avoid generating the same trapezoid twice.

An example is shown in Figure 6. In swath 1 edges H
and G are paired, but no trapezoid is output. In swath
2 edges F and E are newly paired, but still no output is
generated. In swath 3 it is found necessary to pair F
with D. Since F's existing mate is not D the trapezoid
between F and its existing mate, E, is output, F is then
paired with D. In swath 4 it is found necessary to pair
H with B, and C with G. Since H'’s existing mate is not

B, the trapezoxd between H and its existing mate, G,
output, and both H and G are marked single. H is then
paired with B. C will also be paired with G, but no
trapezoid will be generated because by now G has no
existing mate. In swath 5 it is found necessary to pair
edges C and ‘D. This will cause two trapezoids to be
generated since C and D are both changing mates,
These two trapezoids are those between C and G and
between F and D. Also in swath 5 the trapezoid between
H and B is output because atleast one of those edges
{in this case, H) terminates at the top of the swath. In
swath 6 the trapezoid between A and B is output
because both of these edges terminate at the top of the
swath. Finally the trapezoid between C and D is output
in swath 7 for the same reason.

A serious precision difficulty exists in this algosichm in

FIGURE 6. An example of polygon with seven swaths.

the computation of intersections. This arises because
intersections have to be computed in two ditferent ways:
as x(y) to obtain the x coordinate of an edge where it
crosses a horizontal line, and as Intersection{el,e?) to
find the intersection of two edges. Great care must be
taken to ensure that subsequent comparisons of values
resulting from these computations are free trom
inconsistencies due to rounding errors. Incidentally, a
convenient formulation for computing the intersection,
(x, v}, of wwo edges, vV, and Vv, that are known 1o
intersect is: _]

pe (v, Xv)X(v,Xv)

x « p(1)/p(3), y « p2)/p(3)
where p is a 3-vector, v, are the end vertices expressed
as homogeneous 3- vectors (x ¥» 1), and the operator X
is the cross product. .

Conclusiens

A convention for interpreting general polygons has hecn :
proposed, together with algorithms for processing such -
polygons. This convention, as well as the algorithms for

dealing with it, has been designed to fulfill the

requirements found in processing the geometry of IC

masks. A proposal for the adoption of this convention

has been made in Chapter 7 of the new edition of A

Guide to LSI Implementation. (Hon and Sequln 1980). The

convention, and algorithms presented here, were used

-for preparing the mask specifications for the recent

MPC79 multi- -university chip set. This article explains
and, it is hoped, justifies the reasons for choosing this
convention.

References

Hon, R. and Sequin, C.H. 1980. A Guide to LSI Fmplementation, Xerox
PARC, Palo Alio California.

Mead, C.A. and Conway, L.A. 1980. Introduction to VLSI Systems,
Boston: Addison-Wesley.

Sequin, C.H. and Newell, M.E,, 10 be published. “Cutting Corners when
Comstrugting CIF Wires and Offse. Boundaries around Polygens'. LA]

o el =

24 LAMBDA Second Quarter 1980

