A RISCy APPROACH TO COMPUTER DESIGN

by David A. Patterson

Computer Science Division
University of California
Berkeley, California 94720

Introductlisn

Computer architects are facing two major ques-
tions:

What do you do with all those transisiors?

How da you support High-level languages ([7LL)?
Most architects argue that support of HLL implies the
addition of instructions that look like HLL statements.
They also argue that you need a very rich instruciion
set to allow a variety of cost-performance implementa-
tions. Examples of this philosophy towards increasing
architectural complexity are the DEC VAX 11 family? ,
the militzry standard computer family Nebula®, and the
Intel iAPX-432. 3

Complexity has its cost in a longer design cyele and
in less eflective use of VLE! technology. 4 The cost of
delay of one successfui computer has been eslimated as
one million dollars per day. ® Hanover argues a success-
ful computer product has essentially an unlimited
number of customers. The on'y limil is the product life-
time i.e., from introduction until it becormes technically
obsolete. Since the VAX 11/780 produces 1M per day in
sales, delaying introduction to market would have cost
DEC $1M per day.

In addition to slowing the introduction of new com-
puters, the added architectural complexity may not
benefit HLL programs. The compiler writer must bal-
ance the potentia! performance gains of new instruc-
tions with the added compiler complexity and increased
compile time needed to use the new instructions. Thus
it is not unusual for a ELL compiler to generate less
than half of the instructions of an architecture. &

Qur conclusion is that architects are proposing
more complex machines that are more expensive and
difficult to build, and these complex machines can only
be programmed effectively in assermnbly language. Ve
call this class of computer Complex Instruction Set
Computers (CISC). Drawing an analogy from the auio-
motive industry, Figure 1 is our symbol of CISC's.

An alternative to this design style suggests that
simplicity is a better match to VL3I and ELL. Simplify-
ing the design reduces the elapsed design time and thus
makes it considerably easier to track the VLS! growth
curve. Simplifying the instruction set avcids dediceling
hardware to features that cannot be used by ELL com-
pilers; this hardware savings can be dedicated to
increasing the performance of the simpler instruction
set. We cal! this allernative class Reduced Instruction
Set Computers (RISC). 4 Examples are the 801 7.8 at 1B\,
RISC I at Berkeley, and MIPS @ at Stanford. Figure 2 is
our automotive symbol of a RISC.

This paper describes RISC 1, & single VLSI chip RiSC
developed at Berkeley. An architectural summary is fol-
lowed by a description of our scheme to support ELL
procedure calls. The VLSI design of RISC] is cor
to other microprocessors and the performance of Rz
is compared to microprocessors and minicomputers.
We conclude with a discussion of some of the controver-
sial issues associated with RISC's. Detailed informeation
about RISC | has been published elsewhere!®. 11,12 ang
there are several other articles discussing RIZC's versus
CISC's. 4,13,14,15, 18

Architecture
At the onzet of the design of RISC 1 we defined the
following goals and constraints: (a} find a reasonable
compromise between high performance farlhigh-level
language programs and a simple, single ciip implemen-
tation; (b) make the size of all instructions egual to one
word and execute all instructions in one machine cycle;

" (c) emphasize register oriented instructions and res-

trict memory access to the LCAD and STOLL insirie-
tions. The resulting architecture has 31 instructicns in
two formats, uses 32-bit addresses, and supports B-,16-,
and 32-bit data. Figure 3 shows the data paths of RISC L

The simple instruction set gave us two choices:
make a less expensive machine by implementing RISC I
with less hardware or make a higher performance RISC.
We chose the latier course. In particular, we decidec to
improve the performance of the HLL procedurc call,
which is probably the most expensive ELL constructl
10,17, 18

Figure 1. CISC Symbol

To APPEAR AT

nust not extend below this ling

—_—ee

Compcor | TerruaRy Vet

Figure 2. RISC Symbol

San FRANCLSCO

HLL's generally perform the following operations in
procedure call:

Physical # ProcA ProcB ProcC

(1) Push parameters onto a stack in memory;
(2) Save the return address in memory;

(3) Jump to procedure;

54} Save registers to be restored after the call;
5) Allocate a set of local variables on the stack.

137
HIGH,

132
131 m‘
LOCALA

Return from procedure simply reverses these opera-

tions. 122 Rlﬁa

121 R15
Low,/HIGHg A

An obvious first step in improving performance is to
remove the need for (4). One solution would be to
remove registers from the architecture. Ve decided
instead to have several sets, or windows, of registers.
The programmer gets a new window of registers on pro-
cedure call and gets the old window of registers on pro-
cedure return. If it is convenient to have some registers
that are not affected by procedure call, then the regis-

118

R10,

LOCAL B

ters can be divided into two groups: Local (a new set
every call) and Globa! (not effected by calls).

It is not feasible to limit the the depth of nested
calls, so we use these sets of registers to buffer the sav-

R15
LOWp/HIGH B

R!OB Rﬂc

ing and restoring of register windows. We dump the R25,
buffer inte memory when it is full and load it from
memory when it is empty. This scheme would not work

if programs normally have long sequences of cails fol-

LOCALC
R16,

lowed by long sequences of returns. Halbert and Kessler
found that there is "locality" of procedure nesting as
shown in Table 1. 1% Based on nine large recursive C pro-
grams, it appears that 6 to B windows is a sufficient

R1ac

Low,

buffer size. We chose 8 in RISC 1.

This improvement still requires memory accesses]
in steps (1) and (2) of call plus it requires memory
accesses for every parameter or local variable. Halbert
and Kessler propesed having a larger se' of registers 0

GLOBAL

RO, Rop ROc

with registers dedicated to the different types of

storage needed by a procedure. RISC 1 splits the 32 visi-

ble registers into 4 groups:

Local(R16-R25): Used for variables local to a procedure;

High(R26-R31): Used to hold the parameters being
passed to the current procedure;

Low (R10-R15): Used by the current procedure to pass
parameters to a procedure that is being called;

Global(R0-R9): Used for global variables and not affected

Figure 4. Three Overlapped Register Windows

The procedure call in RISC now becorm.es:

(1) Put the parameters into the LOW registers;
(2) Save the return address in a LOW register;
(3) Jump to the procedure.

If there are too many parameters or locals, the RISC I

by procedure calls.

Note that the low registers of the calling procedure
must become the high registers of the called procedure.
This can be accomplished by simply adjusting the
pointer to a window of registers so that the low registers
of the calling frame overlap the high registers of the cal-
ling frame. Figure 4 illustrates the approach. In this
figure procedure A calls procedure B and B calls C. A
parameter shared between A and B is considered as a
low register of A and a high register of B, e.g., R15inAis
the same as R31 in B. We call this scheme overlapped

compiler simply allocates the rest in a stack in memory.
This does not occur frequently as 6 parameters and 10
locals will handle 98% of the procedure calls in the C
programs listed in Table 1. 19

Overlapped register windows gives RISC a typical
call time of 2 usec versus 20 usec for a typical call on
the VAX 11/780. In addition, overlapped register win-
dows improve performance of all instructions since local
and parameter variables are found in registers instead
of memory. This scheme reduces overall accesses to

r ro. 10
register windous, data memory by a factor of two.

TABLE 1. Percent of procedure calls that required register frame saves.

Program Calls Number of windows '
2 4 5] 8 10 12 16 24 32
cc - C compiler 96610 | 46.3 14.4 6.4 3.0 1.6 08 0.2 0.0+ 0.0+
cp - copy file 54 3.7 0.0 - - - - - - -
finger - find person 7353 | 11.8 1.3 0.0+ - - - - - -
more - print text 1137 | 16.8 1.7 0.1 - - . - - -
pi - pascal interp. 37865 | 43.5 104 1.8 0.9 0.6 0.4 0.2 0.0+ -
printenv 692 3.5 1.3 0.1 - - - - - -
sort 3659 5.8 0.3 0.1 0.0+ - - - - -
troff - typeset text 159542 | 44.5 8.6 2.8 1.3 0.4 0.2 0.0+ - -
w - whe's logged in 2948 | 19.5 1.2 0.0+ - - - - - -

e 5
5 . L}
e i T = T e e

iy T T

i m
_
-

DATAI/OL2N] o A

i —sall] TS
-] (e

l‘
¥,
0
f
G
s34
i3
B
i
i1l
R
i.
IIl
|1

REGISTER FILE

il
3

Tl T loe

Figure 5. Chip Plan of RISC]

HTo/r:eoH MEM. Jl
DATA I/0 Laal

REGISTER FILE

v Figure 3. RISC I Data Paths

Figure 6. Photomicrgraph of RISC 1

TABLE 2. Design metries for Z8000, MC68000, iAPX-432, and RISC 1.

e Layout Time

{man months)

Zilog Motorola Intel i1APX-432 RISC1
Z8000 68000 43201 43202 43203
Total Devices 17.5k 68k 110k 49k 60k 44k
Total minus ROM 17.5k 37k 44k 49k 44k 44k
Drawn Devices 3.5k 3.0k 5.6k 9.5k 5.7k 1.8k
Regularization factor 5.0 12:1 7.9 5.2 7.7 25 o
Size of chip [mils) 238Bx251 | 246x281 | 318x323 366x313 356x326 | 406x305
(Area in mil®) - B0k 69k 103k 115k 117k 124k B
Size of Control (mil®) 37k 42k 67k 45k 47k Tk
Percent Control 53 % 62 % 85 % 39 % 40 % 6 %
Elapsed Time to
first silicon {(months) 0 Al & 33 - 19 N
Design Time
(men months) 80 100 170 170 130 15 o
70 70 90 100 50 12

ALL MATERIAL IN THIS SPACE WILL BE DELETED
——

VLSi Implementation

Circuit design of RISC I began January 6, 1981 and
mask descriptions were completed June 22, 1981. The
chips were fabricated over the summer and we received
first silicon October 23, 1981. We followed the Mead-
Conway design philosophy for NMOS with lambda at 2
microns and no buried contacts. Figure 5 shows the
area occupied by the blocks in Figure 3 and Figure 6is a
photomicrograph of RISC I.

We collected statistics on the design and layout of
RISC I. 12 Table 2 compares these results to the more
complex architectures implemented in VLEL. The most
visible impact of the reduced instruclion set is the
reduced control area: control (labeled 'PLA’ in Figure 4)
is only 8 % of RISC | compared to 50 % in others. RISCI
also more regular. Lattin defined the regulcrity factor
as the total number of transistors {less those in RCM)
divided by the number of individually drawn transistors.
20 By this measure RISC I is 2 to 5 times more regular
than the Z8000, 68000, or 432. The time from the first
discussion of the RISC | architecture to first silicon was
19 months, only half the time of other machines. The
reduced design and layout eflort was due in part to the
reduced instruction set and in part to the good Berkeley
CAD software. The primary interface was Caesar, an
excellent color graphics mask editor developed by
Ousterhout. ?!

As we go to press, we are just testing the RISC I
chips. We know that there was improper processing of
the polysilicon layer. We are trying to determine
whether the behavior of the chip is due to processing
mistakes or due to our design errcrs. Ye now have 2
better layout rules checker and have found a aboul a
half-dozen layout rules violations, but none explain the
varying behavior of the chips. We have not found any
circuit design errors. The only repeatable phencmencn
is that power consumption is consistently less than 700
milliwatts, about half our original estimate.

s

Performance
Prototype versions of a RISC I C compiler, optim-
izer, linker, assembler, and simulator have been

developed to predict the performance of RISC I on ELL
programs. Our first result is that RISC prcgrams ere
typically 50% larger than the corresponding VAX pro-
grams. 10.12 This is better than we had expected since
we consciously ignored optimization of program size.

Our main architectural goal was high performance.
Table 3 compares the the relative performance of
several minicomputers and mieroprocessors on eleven C
programs. The first five programs are FLL versions of
the “"EDN" benchamrks. 22 The other C programs renge
from toy programs (e.g., towers of hanoi) to programs
from the UNIX environment that are used every day
(e.g., sed, a batch-oriented text editor). Th= min.com-
puters under test are the VAX-11/720, a 32-bit
Schottky-TTL machine with a 200 ns microcycle time;
the PDP 11/70, a 16-bit Schottky-TTL machine with a
135 ns cycle time; and the BBN C/70, a 20-bit Schotlky-
TTL machine with a 150 ns microcycle time. Both the
VAX and PDP-11 have a cache. The microprocessors
under test are RISC 1, Z8001, and MCB8000. RISC lis a
32-bit microprocessor with 32-bit addresses thal uses
NMOS technology nearly as good as as that used by the
728001 and 68000. The Z8001 is a 16-bit computer with a
16-bit address while the 68000 works eflectively as
either a 16-bit or 32-bil computer with a 24-bit address,
Both the MC88000 and Z8001 come with & varicly of
clock rates; we assumed 10 MHz for the 68000 and 6
MHz for the Z8001. RISC 1 is designed to run at 400 ns
per instruction (read 2 registers, 32-bit adc, write ~egis-
ter, and prefetch the nex! instruction) which implies the
same speed memory as the 10 MEz 68000. We don't
have working hardware for the either the 68000 or RiSC
I, so we used simulators to predict performance. Hasad
solely on lechnology, one would expect the performiance
to follow the order VAX 11/780, PDP 11/70, C/70,
MCB8000, Z8001 with RISC 1 being in the same perfor-
mance range as the MC68000 and Z8001. As we cen vee
from Table 3, RISC I does not follow expectations.

TABLE 3. C Benchmarks: RISC | Execution Time and
RISC I Performance Ratio (+ standard deviation).

RISC1 | VAX 11/780 | 11/70 | 68000 | 28001 | C/70

BENCHMARK msecs Number of Times Slower Thar RISC 1

E - string search | AB | 1.3 i 09 | 28 1.6 | 22
F - bit test i .06 | 45 i 82 | 45 .2 | 8.2
H - linked list .10 1.2 | 1.9 1.6 2.4 2.5
X - bit matrix 43 3.0 4.0 4.0 5.2 9.3 |
1 - quicksort 50.4 3.0 3.6 4.1 5.2 58 |
Ackermann(3,8) | 3200 1.6 1.6 - 2.8 ---
recursive gsort 800 2.3 3.2 — 5.9 1.3
puzzle(subscript) | 4700 2.0 1.6 — 4.2 3.4
puzzle(pointer) 3200 1.3 2.0 4.2 2.3 2.1
sed(batch editor) | 5100 1.1 11 — 4.4 2.8 —_—
towers hanoi(18) | 6800 1 1.8 2.3 - 4.2 1.6

Average | 21x1.1 26+15 | 35+18 | 41+16 | 4.0+28

Discussion

It is not surprising that an idea as unconventional
as RISC resulits in controversy. Listed below are fre-
quently heard comments (in italics) followed by a short
discussion of that comment.

CISC's have raised the "level” of the archifecture
by including HLL primitives (CASE CALL) while
RISC's have lowered the level. Thus CISC's provide
beiter support of HLL.

The CISC approach to architectural support for ELLis to
narrow the gap between semantics of the assembly
language and the semantics of a ELL. However, support
can also be viewed as how expensive is it to use a HLL on
an architecture. If the architect provides a feature that
"“looks'" like the HLL construct, but it runs very slowly,
it is likely that (a) the compiler writer will not use that
architectural feature, or, if the compiler writer does use
the feature, then (b) the HLL programmer will realize
that a HLL feature is very slow and will avoid the feature
in his HLL programs. A recent study indicates that
CISC's do far more to penalize the use of HLL than
RISC's. 23

Since o compiler must produce more RISC instrue-
tions than CISC instructions for each HLL stole-
ment, it must be more difficult to build a R/SC
compiler than a CISC compiler.
A recent paper by Wulf 24 helps explain why this is not
true. He says that compiling is essentlially a large “case
analysis.” The more ways there are to do something
(more instructions), the more cases must be con-
sidered. Since the compiler writer musl balance tke
speed of the compiler with hic desire to get good cocde,
he may not have the time to perform the case analysis
necessary to generate all of the CISC instructions. This
explains Wulf's recommendation that architectures pro-
vide either one way or every way to perform an opera-
tion. In RISC there is generally only one way to perform
a given operation, e.g., if an operand is in memory it
must be loaded into a register. Simple case analysis
implies a simple compiler even if more instructions
must be generated in each case. If a CISC provides
several different ways to do an operation and thus more
cases, the compiler will be more complicated, even if
only a few instructions are generated for each case.

RISC | is toilored to C ond will not perform well
with other HLL.

The first response is that other RISC': have demon-

" strated the viability of Pascal (MIPS) and a PL/I-like
language {801). Perhaps a better reply is that studies of
HLL's 625 indicate that the most frequently executed
operations are the simple HLL operations that RISC's
perform very eflectively. Unless a HLL significantly
changes the way people program, we expect to see simi-
lar results.

The comparisons of the sixz compufers are some-
what unfair in that only the VAX provides a virtual
address space thal dis larger than the physicol
address space. RISC would be much slower if it
had virtual memory.

To answer the question “How much slower?"' we looked
at solutions used by other microprocessors. National
Semiconductor has announced the 16082, a memory
management chip with an address cache that normally
translates virtual addresses into physical addresses in

100 ns. They claim that only 3% of lie memory
addresses will need extra memory accesses because of
misses in the address cache. If we were to put this chip
in a system with a RISC CPU it would add another 107 ns
to every memory access. Since memory is referenced
every 400 ns in RISC], such a combination would reduce
RISC performance by 25%. A more sophisticated
approach would be to reduce or eliminate the viriual
memory overhead for instruction accesses. Since BOR
to 90% of the memory references in RISC 1 are to
instructions, 10 techniques such as translating instruc-
tion addresses only when a page boundary is crossed
{used in the VAX 11/780) or providing a virtual address

‘cache {used in the Dorado) may be very effective. This

technique would reduce the overhead for virtual address
translation to about 5%. A final observation is that even
if the addition of virtual memory cut the performance of
NMOS RISC 1 in half, it would still have performance
comparable to the VAX implemented in Shottky TIL It
does not seem likely that virtual rnermory considerations
will significantly change the results.

The primary reason for the small percent of con-
trol is the large register set.

Comparison of the absolute sizes of control in Teble 2
shows that RISC 1 is smaller by a facter of 5 to 10.
Furthermore, even if RISC had no registers at all, con-
trol would be only 12 % of the area.

The reason for the good performance is the cver-
lapped register windows. The reduced instruction
set has nothing to do with it.

Certainly a significant portion of the speed is due o the
overlapped register windows of RISC I, but that does not
explain the performance of the 801 or MiPS. Alsn, keep
in mind that there would have been no room for register

windows if control had not dropped from 5% to 67.
These results just apply to a particulor technology
and architecture: you cannot generalize a R/SC
into a family of computers with different cost per-
Jormance.

It is true that both RISC and MIPS are NMOS designs, bu'
the 801 was built in ECL and competes with very large
computers, .18 We have done paper studies of RISC I in
other technologies and the advantages of less hardware
with higher performance still apply. We will have to wait
for others to build RISC's in other technologies before
we can tell if this comment is valid.

Conclusion
RISC 1 is a representative of a new style of comput-

" ers that take less time to build and yet provide high

performance. While traditional machines “*support’” HLL
with instructions that look like HLL constructs, this
machine supports the use of HLL with instructions that
HLL compilers can use cfiiciently.

This research area is by no means closed. Some of
the topics to be investigated include the applicability of
RISC to other HLL's (e.g., LISP, COBOL, ADA), the perfor-
mance of an operating system on RISC (e.g., UNIX), the
architecture of co-processors for RISC (e.g.. graphics,
floating point), migration of software to RISC (e.g., 2 370
emulator written in RISC machine language), and the
implementation of RISC in other technologies (CMOS,
TTL, ECL). This list is too big for one university; we are
very interested in helping industry and academia
explore RISCy architectures.

i i\ Text must not extend below this line 1 .

Acknowledgement

Prof. Carlo Séquin shares the management of the
RISC project and shares the authorship of most of the
RISC papers, but is solely to blame for the RISEC acro-
nym. Prof. John Custerhoul created, mainiained, and
revised Caesar, our principle design aid, and con-
sistently provided useful technical and editorial advice.
Lloyd Dickman was actively involved with the desizn of
RISC during his sabbatical at Berkeley and suppliec
technical and managerial expertise. 1 also want to
thank Prof. Richard Newton for dedicating his VLSI class
to the RISC project.

The RISC research was investigated over a four
quarter sequence of graduate courses at Berkesley. I
would like to thank every student who participated, and
give specia! thanks to a few. Manolis Katevenis did the
initial block structure, the initial timing cescription and
provided many important simplifications and ideas
about the implementation and the architecture. Jim
Peek, Korbin Van Dyke, John Foderaro, Den Fitzpairick,
and Zvi Peshkess were the principal VLS] designers of
the RISC chip. Ralph Campbell wrote the initial C com-
piler, the optimizer, assembler, and linker. Michael
Arnold, Dan Fitzpatrick, John Foderaro, and Howard
Landman all wrote CAD tools that were crucial to the
VLSI implementation of RISC 1. Yuval Tamir wrote a
simulator and provided many suggestions in the initial
design of RISC 1. Peter Kessler helped derive the over-
lapped register windows and helped with the CAD
software. Bob Sherburne is currently working with
Katevenis on a more eflicient VLS] implementation of
RISC.

I would also like to thank John Qusterhout, Carlo
Séquin, and Manolis Katevenis for their useful sugges-
tions in improving this paper.

This research was supporied in part by Beli Labora-
tories and in part by Defense Advance Research Projects
Agenecy (DoD), ARPA Order No. 3803, and monitorec by
Naval Electronic System Command under Contract No
N00039-78-G-0013-0004. Ve would like lo thank Duane
Adams, Paul Losleben, and DARPA for providing the
resources that allow universities to attempt projects
involving high-risk.

References

1. Strecker, W.D., “VAX-11/780: A Virtual Address
Extension to the DEC PDP-11 Family,"” Proc. NCC,
po. 967-980 (June 1978).

2. Szewerenko, L., Dietz, W.B., and Ward, I'".E., *"Nebula:
A New Architecture and Its Relationship to Com-
puter Hardware,” Computer 14(2) pp. 35-41 (Febru-
ary 1981).

3. Lattin, W.W., Bayliss, J.A.,, Budde, D.L., Colley, S.R.,
Cox, G.W., Goodman, A.L., Rattner, J.R., Richardson,
W.S., and Swanson, R.C., “A 32b VLSI Micromain-
frame Computer System," Proc. [EEE Inierno-
tional Solid-State Circuits Conference, pp. 110-111
(February, 1981).

4. Patterson, D.A. and Ditzel, D.R., “"The Case for the
Reduced Instruction Set Computer,” Computer
Architecture News B(B) pp. 25-33 (15 October 1980).

5. Hanover, A, Advanced Design Aid Development at
DEC, U.C. Berkeley Public Lecture. November 20,
1981.

6. Alexander, W.C. and Wortman, D.B., ‘Static and
Dynamic characteristics of XPL. Programs,"” Cam-
puter B (11) pp. 41-46 (November 1975).

I B

]
.!
|
|

e S

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Datamation,, “'IBM Mini a Radical Departure,” Data-
mation, pp. 53-55 (October 1879).

Radin, G., "The 801 Minicomputer," FPrsc. Syrmpso-
stum on Architectural Support for Programming
Languages and Operating Systems , (March 1-3,
1982).

Hennessy, J., Jouppi, N., Baskeit, F., Strong, A

Gross, T., Rowen, C., and Gill, J., “The MiPS
Machine,” Compcon, (February 1982). In this
proceedings.

Patterson, D.A. and Seéquin, C.E., "RISC I A

Reduced Instruction Set VLS] Computer,” Proz.
Fighth International Symposium on Comouler
Architecture, pp. 443-457 (May 1981).

Séquin, C.H. and Patterson, D.A., “The Reduced
Instruction Set Computer,” /mternational Seminar
on the Teaching of Computing Science, (September
8-11, 1951).

Fitzpatrick, D.T., Foderaro, J.K., Katevenis, M.G.E.,
Landman, H.A., Patterson, D.A., Peek, J.B., Pesh-
kess, Z., Séquin, C.HK., Sherburne, RW., and Van
Dyke, K8, "A RISCy Approach to VLSL" VLS/
Design, pp. 14-2C (Fourth Quarter {Oclober, 1581)).
Clark, D.W. and Strecker, W.D., “"Comnments on 'The
Case for the Reduced Instruction Set Computer',"
Computer Archilecture News B(6)pp. 34-38 (15
October 1980).

Denning, P., ""Computer Architecture: Some Old
Ideas that Haven't Quite Made It Yet," Comm. ACH
24(9) pp. 553-554 (September 1981).

Taylor, A., *“Can Simpler Computers Also Be
Better?,”” Computer World XV(27) p. 33 (July 6,
1981).

Bernhard, R., *“More Hardware Means
Software,” [EEE Spectrum 18(12) op.
(Decemnber 1951).

Lunde, A., “Empirical Evaluation of Some Features
of Instruction Set Processor Architecture,” Comm.
ACH 20{3) pp. 143-158 (March 1877).

Wichmeann, B.A., ""Ackermann’s Function: A Study in
the Efficiency of Calling Procedures," F/7 16(1) pp.
103-110 (1976).

Halbert, D. and Kessler, P., Windows of Cveriarping
Registers, CS292R Final Reports June &, 1930.
Lattin, W.W., Bayliss, J.A., Budde, D.L., Rattner, J.R.,
and Richardson, W.S., "'A Methodology for VLSI Chip
Design," Lambda - The Magazine of VLSI Design,
pp. 34-44 (Second Quarter, 1981).

Qusterhout, J.K., *'Caesar: An Interactive Editor for
VLSI Layout,” Compcon, (February 1982). In this
proceedings.

Grappel, R.G. and Hemmengway, J.E., "*A Tale of
Four Microprocessors: Benchmarks Quantify Per-
formance,” FElectronic Design News, pp. 179-265
{April 1, 1981).

Patterson, D.A. and Piepho, R.S., *'RISC Assessment:
A High-Level Language Experiment,” Proc. Ninth
International Symposium on Comgpulter Archilec-
ture, (April 26-29, 1982). Submitted for publica-
tion.

Wulf, W.A., “Compilers and Computer Architecture,”
Computer 14(7) pp. 41-48 (July 1981).

Ditzel, D.R., ""Program Measurements on a High-
Level Language Computer," Computer 13(B) pp. 62-
72 (August 1880). .

Less
30-37

