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We argue for the importance of the interaction between recognition, reconstruction and re-organization, 

and propose that as a unifying framework for computer vision. In this view, recognition of objects is 

reciprocally linked to re-organization, with bottom-up grouping processes generating candidates, which 

can be classified using top down knowledge, following which the segmentations can be refined again. 

Recognition of 3D objects could benefit from a reconstruction of 3D structure, and 3D reconstruction can 

benefit from object category-specific priors. We also show that reconstruction of 3D structure from video 

data goes hand in hand with the reorganization of the scene. We demonstrate pipelined versions of two 

systems, one for RGB-D images, and another for RGB images, which produce rich 3D scene interpretations 

in this framework. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

The central problems in computer vision are recognition, recon-

struction and reorganization ( Fig. 1 ). 

Recognition is about attaching semantic category labels to ob-

jects and scenes as well as to events and activities. Part–whole

hierarchies (partonomies) as well as category–subcategory hierar-

chies (taxonomies) are aspects of recognition. Fine-grained cate-

gory recognition includes as an extreme case instance level identi-

fication (e.g. Barack Obama’s face). 

Reconstruction is traditionally about recovering three-

dimensional geometry of the world from one or more of its images.

We interpret the term more broadly as “inverse graphics” – esti-

mating shape, spatial layout, reflectance and illumination – which

could be used together to render the scene to produce an image. 

Reorganization is our term for what is usually called “percep-

tual organization” in human vision; the “re” prefix makes the anal-

ogy with recognition and reconstruction more salient. In computer

vision the terms grouping and segmentation are used with approx-

imately the same general meaning. 
✩ This paper has been recommended for acceptance by Rama Chellapp. 
∗ Corresponding author. Tel.: +1 510 642 7597. 
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Mathematical modeling of the fundamental problems of vision

an be traced back to geometers such as Euclid [10] , scientists such

s Helmholtz [41] , and photogrammetrists such as Kruppa [51] . In

he twentieth century, the Gestaltists led by Wertheimer [85] em-

hasized the importance of perceptual organization. Gibson [26]

ointed out the many cues which enable a moving observer to per-

eive the three-dimensional structure of the visual world. 

The advent of computers in the middle of the twentieth century

eant that one could now develop algorithms for various vision

asks and test them on images, thus creating the field of computer

ision. [64] is often cited as the first paper in this field, though

here was work on image processing and pattern recognition even

efore that. In recent years, progress has been very rapid, aided not

nly by fast computers, but also large annotated image collection

uch as ImageNet [16] . 

But is there a unifying framework for the field of computer vi-

ion? If one looks at the proceedings of a recent computer vision

onference, one would notice a variety of applications using a wide

ange of techniques such as convex optimization, geometry, prob-

bilistic graphical models, neural networks, and image processing.

n the early days of computational vision, in the 1970s and 1980s,

here was a broad agreement that vision could be usefully broken

p into the stages of low level, mid level and high level vision.

58] is perhaps the best articulation of this point of view, with low

evel vision corresponding to processes such as edge detection, mid

http://dx.doi.org/10.1016/j.patrec.2016.01.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.01.019&domain=pdf
mailto:malik@cs.berkeley.edu
mailto:malik@eecs.berkeley.edu
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J. Malik et al. / Pattern Recognition Letters 72 (2016) 4–14 5 

Recognition

Reconstruction Reorganization

Section 2

Section 3Se
ct

io
n 

4
Se

ct
io

n 
6

Section 5

Section 7

The 3 R’s of Computer Vision

Fig. 1. The 3R’s of vision: recognition, reconstruction and reorganization. Each of 

the six directed arcs in this figure is a useful direction of information flow. 
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CNN
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4. Classify 
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Fig. 2. R-CNN – Region-based Convolutional Network: object detection system 

overview. Our system (1) takes an input image, (2) extracts around 20 0 0 bottom- 

up region proposals, (3) computes features for each proposal using a large convolu- 

tional network (CNN), and then (4) classifies each region using class- specific linear 

SVMs. We trained an R-CNN that achieves a mean average precision (mAP) of 62.9% 

on PASCAL VOC 2010. For comparison, [78] report 35.1% mAP using the same re- 

gion proposals, but with a spatial pyramid and bag-of-visual-words approach. The 

popular deformable part models perform at 33.4%. On the 200-class ILSVRC2013 

detection dataset, we trained an R-CNN with a mAP of 31.4%, a large improvement 

over OverFeat [67] , which had the previous best result at 24.3% mAP. 
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evel vision leading to representation of surfaces, and high level vi-

ion corresponding to object recognition. The process was thought

f a being primarily feed-forward and bottom up. In the 1990s,

his consensus gradually dissipated. Shape-from-X modules, with

he exception of those based on multiple view geometry, proved

o be not robust for general images, so the bottom up construc-

ion of Marr’s desired 2.5D sketch proved infeasible. On the other

and, machine learning approaches to object recognition based on

liding windows started to succeed on real world images e.g. Viola

nd Jones’ [80] work on face detection, and these didn’t quite fit

arr’s paradigm. 

Back in the 1990s, one of us, [57] argued that grouping and

ecognition ought to be considered together. Bottom up grouping

ould produce candidates for consideration by a recognition mod-

le. Another paper from our group, [63] advocated the use of su-

erpixels for a variety of tasks. This got some traction e.g. multiple

egmentation hypotheses were used by Hoiem et al. [42] to esti-

ate the rough geometric scene structure and by Russell et al. [66]

o automatically discover object classes in a set of images, and Gu

t al. [32] showed what were then state of the art results on the

TH-Z dataset. But the dominant paradigm remained that of slid-

ng windows, and the state of the art algorithms on the PASCAL

OC challenge through 2011 were in that paradigm. 

This has changed. The “selective search” algorithm of [78] popu-

arized the multiple segmentation approach for object detection by

howing strong results on PASCAL object detection. EdgeBoxes [88]

utputs high-quality rectangular (box) proposals quickly ( ∼0.3 s

er image). Other methods focus on pixel-wise segmentation, pro-

ucing regions instead of boxes. Top performing approaches in-

lude CPMC [12] , RIGOR [45] , MCG [4] , and GOP [49] . For a more

n-depth survey of proposal algorithms, [43] provide an insightful

eta-evaluation of recent methods. 

In this paper we propose to go much further than the link be-

ween recognition and reorganization. That could be done with

urely 2D reasoning, but surely our final percept must incorpo-

ate the 3D nature of the world? We will highlight a point of view

hat one of us (Malik) has been advocating for several years now,

hat instead of the classical separation of vision into low level,

id level and high level vision, it is more fruitful to think of vi-

ion as resulting from the interaction of three processes: recogni-

ion, reconstruction and reorganization which operate in tandem,

nd where each provides input to the others and fruitfully ex-

loits their output. We aim for a grand unified theory of these pro-

esses, but in the immediate future it may be best to model vari-

us pairwise interactions, giving us insight into the representations

hat prove most productive and useful. In the next six sections, we

resent case studies which make this point, and we conclude with

 pipeline which puts the different stages together. 

Note that the emphasis of this paper is on the relationship be-

ween the 3R’s of vision, which is somewhat independent of the

very important) choice of features needed to implement particular

lgorithms. During the 1970s and 1980s, the practice of computer
ision was dominated by features such as edges and corners which

ffered the benefit of massive data compression, a necessity in a

ime when computing power was orders of magnitude less than

oday. The community moved on to the use of linear filters such

s Gaussian derivatives, Gabor and Haar wavelets in the 1990s. The

ext big change was the widespread use of histogram based fea-

ures such as SIFT [55] and HOG [15] . While these dominated for

ore than a decade, we are now completing yet another transition,

hat to “emergent” features from the top layers of a multilayer con-

olutional neural network [53] trained in a supervised fashion on

 large image classification task. Neural networks have proved very

ompatible to the synthesis of recognition, reconstruction and re-

rganization. 

. Reorganization helps recognition 

As noted earlier, the dominant approach to object detection

as been based on sliding-window detectors. This approach goes

ack (at least) to early face detectors [79] , and continued with

OG-based pedestrian detection [15] , and part-based generic ob-

ect detection [20] . Straightforward application requires all objects

o share a common aspect ratio. The aspect ratio problem can be

ddressed with mixture models (e.g. [20] ), where each component

pecializes in a narrow band of aspect ratios, or with bounding-box

egression (e.g. [20,67] ). 

The alternative is to first compute a pool of (likely overlapping)

mage regions, each one serving as a candidate object, and then

o filter these candidates in a way that aims to retain only the

rue objects. By combining this idea with the use of convolutional

etwork features, pretrained on an auxiliary task of classifying Im-

geNet, we get the Region-based Convolutional Network (R-CNN)

hich we describe next. 

At test time, R-CNN generates around 20 0 0 category-

ndependent region proposals for the input image, extracts a

xed-length feature vector from each proposal using a convolu-

ional neural network (CNN) [53] , and then classifies each region

ith category-specific linear SVMs. We use a simple warping

echnique (anisotropic image scaling) to compute a fixed-size CNN

nput from each region proposal, regardless of the region’s shape.

ig. 2 shows an overview of a Region-based Convolutional Network

R-CNN) and Table 1 presents some of our results. 

R-CNNs scale very well with the number of object classes to

etect because nearly all computation is shared between all object

ategories. The only class-specific computations are a reasonably

mall matrix-vector product and greedy non-maximum suppres-

ion. Although these computations scale linearly with the num-

er of categories, the scale factor is small. Measured empirically,

t takes only 30 ms longer to detect 200 classes than 20 classes

n a CPU, without any approximations. This makes it feasible to
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Table 1 

Detection average precision (%) on VOC 2010 test. AlexNet is the CNN architecture from [50] and VGG16 from [71] . R-CNNs are most directly comparable to UVA and 

Regionlets since all methods use selective search region proposals. Bounding-box regression (BB) is described in [29] . DPM and SegDPM use context rescoring not used by 

the other methods. SegDPM and all R-CNNs use additional training data. 

VOC 2010 test Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV mAP 

DPM v5 [30] 49 .2 53 .8 13 .1 15 .3 35 .5 53 .4 49 .7 27 .0 17 .2 28 .8 14 .7 17 .8 46 .4 51 .2 47 .7 10 .8 34 .2 20 .7 43 .8 38 .3 33 .4 

UVA [78] 56 .2 42 .4 15 .3 12 .6 21 .8 49 .3 36 .8 46 .1 12 .9 32 .1 30 .0 36 .5 43 .5 52 .9 32 .9 15 .3 41 .1 31 .8 47 .0 44 .8 35 .1 

Regionlets [83] 65 .0 48 .9 25 .9 24 .6 24 .5 56 .1 54 .5 51 .2 17 .0 28 .9 30 .2 35 .8 40 .2 55 .7 43 .5 14 .3 43 .9 32 .6 54 .0 45 .9 39 .7 

SegDPM [21] 61 .4 53 .4 25 .6 25 .2 35 .5 51 .7 50 .6 50 .8 19 .3 33 .8 26 .8 40 .4 48 .3 54 .4 47 .1 14 .8 38 .7 35 .0 52 .8 43 .1 40 .4 

R-CNN AlexNet 67 .1 64 .1 46 .7 32 .0 30 .5 56 .4 57 .2 65 .9 27 .0 47 .3 40 .9 66 .6 57 .8 65 .9 53 .6 26 .7 56 .5 38 .1 52 .8 50 .2 50 .2 

R-CNN AlexNet BB 71 .8 65 .8 53 .0 36 .8 35 .9 59 .7 60 .0 69 .9 27 .9 50 .6 41 .4 70 .0 62 .0 69 .0 58 .1 29 .5 59 .4 39 .3 61 .2 52 .4 53 .7 

R-CNN VGG16 76 .5 70 .4 58 .0 40 .2 39 .6 61 .8 63 .7 81 .0 36 .2 64 .5 45 .7 80 .5 71 .9 74 .3 60 .6 31 .5 64 .7 52 .5 64 .6 57 .2 59 .8 

R-CNN VGG16 BB 79 .3 72 .4 63 .1 44 .0 44 .4 64 .6 66 .3 84 .9 38 .8 67 .3 48 .4 82 .3 75 .0 76 .7 65 .7 35 .8 66 .2 54 .8 69 .1 58 .8 62 .9 

Fig. 3. Finding Action Tubes: our basic model for action detection. We use action 

specific SVM classifiers on spatio-temporal features. The features are extracted from 

the fc7 layer of two CNNs, spatial-CNN and motion-CNN, which were trained to 

detect actions using static and motion cues, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Results of Action Tubes on J-HMDB. We show the regions with red. The 

predicted action label is overlaid. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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rapidly detect tens of thousands of object categories without any

modifications to the core algorithm. 

Despite this graceful scaling behavior, an R-CNN can take 10–

45 s per image on a GPU, depending on the network used, since

each region is passed through the network independently. Recent

work from [40] (“SPPnet”) improves R-CNN efficiency by sharing

computation through a feature pyramid, allowing for detection at

a few frames per second. Building on SPPnet, [27] shows that it

is possible to further reduce training and testing times, while im-

proving detection accuracy and simplifying the training process,

using an approach called “Fast R-CNN.” Fast R-CNN reduces testing

times to 50–300 ms per image, depending on network architecture.

Turning to the task of action recognition, R-CNN can be adapted

to detect actions in space and time efficiently with videos consid-

ered as input, as we show in [31] . 

Most work in the field [1,62,84] has focused on the task of

action classification , i.e. “Is an action present in the video?” The

state-of-the-art approach in this field by [81] uses dense point tra-

jectories, where features are extracted from regions tracked using

optical flow. More recently, [70] use two-stream CNNs to classify

videos. The first CNN operates on the RGB frames, while the second

CNN on the corresponding optical flow. They weight the predic-

tions from the two CNNs and average the scores across frames to

make the final prediction for the whole video. On the other hand,

the task of action detection , i.e. “Is there an action and where is it

in the video?” is less studied despite its higher potential for prac-

tical applications. 

Inspired by the recent progress in object detection, we build

models which localize and classify actions in video in both space

and time. We call our predictions Action Tubes . Fig. 3 shows the de-

sign of our action models. We start from bottom-up region propos-

als, similar to R-CNN. We train two CNNs, one on the RGB signal of

the region (spatial-CNN) and one on the corresponding optical flow

signal (motion-CNN). We combine the fc7 features of the two net-

works to train SVM classifiers to discriminate among the actions

and the background. To produce temporarily coherent predictions,

Action Tubes , we link action detections in time. 
As mentioned earlier, R-CNN can be quite slow since each re-

ion is processed independently. One way around it is to share

omputation between regions. In the case of video, the motion sig-

al is a strong cue and can be used to extract salient regions. In-

eed if regions which don’t contain enough motion are discarded,

5% of the computation can be saved with a loss of only 4% in re-

all. 

Our detection pipeline makes predictions at every frame. Our

oal is to align those predictions in time to produce detection

ubes which follow the action across frames. For linking we use the

patial overlap of predictions in consecutive frames as well as their

onfidence scores. We formulate the problem using dynamic pro-

ramming and infer the regions which comprise the Action Tubes.

ig. 4 shows examples of Action Tubes on J-HMDB [47] . 

Quantitatively, Table 2 shows the performance of Action Tubes

n J-HMDB. The combination of the spatial- and motion-CNN per-

orms significantly better compared to the single CNNs, show-

ng the significance of static and motion cues for the task of ac-

ion recognition. On UCF Sports [65] , we compare Action Tubes

ith other approaches. Fig. 5 shows AUC for various values of

ntersection-over-union, which define the threshold of spatial over-

ap with the ground truth for a correct prediction. 

Finally, we demonstrate that Action Tubes improve action clas-

ification compared to the holistic approach, where spatial-CNN is

rained on the RGB frames and motion-CNN on the optical flow,

imilar to [70] . On J-HMDB, the holistic approach achieves an ac-

uracy of 56.5% while Action Tubes yield 62.5%. This shows that

ocusing on the actor is of great importance both for the case of

ction detection and action classification. 

. Recognition helps reorganization 

Object proposal generation methods such as those described

arlier typically rely on the coherence of color and texture to seg-

ent the image out into likely object candidates. However, such
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Table 2 

Results and ablation study on J-HMDB (averaged over the three splits). We report AP for the spatial and motion component and their combination (full). The combination 

of the spatial- and motion-CNN performs significantly better, showing the significance of static and motion cues for the task of action recognition. 

AP (%) Brush 

hair 

Catch Clap Climb 

stairs 

Golf Jump Kick 

ball 

Pick pour Pullup push Run Shoot 

ball 

Shoot 

bow 

Shoot 

gun 

Sit Stand Swing 

baseball 

Throw Walk Wave Mean 

spatial-CNN 67 .1 34 .4 37 .2 36 .3 93 .8 7 .3 14 .4 29 .6 80 .2 93 .9 17 .4 10 .0 8 .8 71 .2 45 .8 17 .7 11 .6 38 .5 20 .4 40 .5 19 .4 37 .9 

motion-CNN 66 .3 16 .0 60 .0 51 .6 88 .6 18 .9 10 .8 23 .9 83 .4 96 .7 18 .2 17 .2 14 .0 84 .4 19 .3 72 .6 61 .8 76 .8 17 .3 46 .7 14 .3 45 .7 

full 79 .1 33 .4 53 .9 60 .3 99 .3 18 .4 26 .2 42 .0 92 .8 98 .1 29 .6 24 .6 13 .7 92 .9 42 .3 67 .2 57 .6 66 .5 27 .9 58 .9 35 .8 53 .3 

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

IOU threshold

A
U

C

Ours
Jain et al.
Wang et al.
Tian et al.
Lan et al.

Fig. 5. AUC on UCF Sports for various values of intersection-over-union threshold of 

σ ( x -axis). Red shows our approach. We consistently outperform other approaches 

in [46] , [82] [72] and [52] . The biggest improvement is being achieved at high val- 

ues of overlap ( σ ≥ 0.4). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 6. An image of a dog (left), bottom-up contours (center) and segmentation pre- 

dicted using top-down information (right). 

c  

t  

m  

H  

t  

m  

s  

i

 

n  

o  

a  

p  

f

 

 

 

 

 

 

e  

t

3

 

o  

c  

T  

f

 

t  

p  

i  

l  

a  

m  

t  

S  

n  

r

 

p  

m  

e  

b  

o  

t  

v  

h

 

r  

t  

a  

c  

t  

i  

r  

t  

r  

d  

T  

C  

i

 

t  

p  

a

3

 

n  
ues can often make mistakes. For instance, the boundary between

he dog in Fig. 6 and the wall is barely perceptible, while the

eaningless contour between the dog’s face and its torso is sharp.

owever, once an object detection approach such as R-CNN detects

he dog, we can bring to bear our knowledge about dogs and seg-

ent out the dog much more accurately. Recognition of the dog

hould thus aid us in accurate segmentation. See [6] for an early

mplementation of this idea. 

We explored this relationship between recognition and reorga-

ization in two papers [37,38] where we presented the Simultane-

us Detection and Segmentation (SDS) task: detect all instances of

 category in an image and, for each instance, correctly mark the

ixels that belong to it. Our algorithm for this task consists of the

ollowing steps: 

1. We use R-CNN ( Section 2 ) to first detect objects of all categories

along with coarse bounding boxes. We keep the non-maximum

suppression threshold low to avoid prematurely removing any

correct detection. 

2. For each detected object, we make a top–down, category-specific

prediction of the figure-ground. 

3. We then use the predicted segments to rescore the detections. 
4. We finally run a round of non-max suppression to remove du-

plicate detections. 

Next we describe how we predict the figure-ground mask for

ach detection and how we use the predicted segments to rescore

he detections. 

.1. Top-down prediction of figure-ground 

Given a detection, we predict a heatmap on the bounding box

f the detection, which we splat onto the image. This heatmap en-

odes the probability that a particular location is inside the object.

hus, the task of predicting figure-ground masks reduces to classi-

ying each location as being inside the object or not. 

As in R-CNN, we use features from the CNN to do this classifica-

ion. Typically, recognition algorithms such as R-CNN use the out-

ut of the last layer of the CNN. This makes sense when the task

s assigning category labels to images or bounding boxes: the last

ayer is the most sensitive to category-level semantic information

nd the most invariant to “nuisance” variables such as pose, illu-

ination, articulation, precise location and so on. However, when

he task we are interested in is finer-grained, as is the case in

DS, these nuisance variables are precisely what carries the sig-

al. For such applications, the top layer is thus not the optimal

epresentation. 

The information that is generalized over in the top layer is

resent in intermediate layers, but intermediate layers are also

uch less sensitive to semantics. For instance, bar detectors in

arly layers might localize bars precisely but cannot discriminate

etween bars that are horse legs and bars that are tree trunks. This

bservation suggests that reasoning at multiple levels of abstrac-

ion and scale is necessary, mirroring other problems in computer

ision (such as optical flow) where reasoning across multiple levels

as proved beneficial. 

To capture such reasoning, we developed the hypercolumn rep-

esentation. We define the “hypercolumn” at a given input loca-

ion as the outputs of all CNN units that lie above that location

t all layers of the CNN, stacked into one vector. (Because adja-

ent layers are correlated, in practice we need not consider all

he layers but can simply sample a few.) Fig. 7 shows a visual-

zation of the idea. We borrow the term “hypercolumn” from neu-

oscience, where it is used to describe a set of V1 neurons sensi-

ive to edges at multiple orientations and multiple frequencies ar-

anged in a columnar structure [44] . The notion of combining pre-

ictions from multiple CNN layers is also described in [54,56,68] .

here has also been prior work on semantic segmentation using

NNs [19] , though such work does not group pixels into individual

nstances. 

Given such a hypercolumn representation for each pixel, we can

hen use these as features to train pixel classifiers to label each

ixel as figure-vs-ground. The full details of the implementation

re in [38] . 

.2. Scoring region candidates 

Once we have produced a segmentation for each detection, we

ow rescore the detection. As for action recognition, we use a
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Convolutional 
Network

Hypercolumn

Fig. 7. The hypercolumn representation. The bottom image is the input, while the 

other images represent feature maps of different layers in the CNN. The hypercol- 

umn at a pixel is the vector of activations of all units that lie above that pixel. 

Fig. 8. The region classification network. 

Table 3 

Performance of various systems on the SDS task. 

Network AP r at 0.5 AP r at 0.7 

Top layer only AlexNet 44 .0 16 .3 

Hypercolumn (Layers 7, 4, 2) AlexNet 49 .1 29 .1 

Hypercolumn (Layers 7, 4, 3) VGG16 56 .5 37 .0 

+ Rescore VGG16 60 .0 40 .4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Qualitative results. In black is the bounding box and in red is the predicted 

segmentation. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 10. Automatic object reconstruction from a single image. Our method leverages 

estimated instance segmentations and predicted viewpoints to generate a full 3D 

mesh and high frequency 2.5D depth maps. 
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two-stream architecture as shown in Fig. 8 . The first stream oper-

ates on the cropped bounding box of the detection (the “box” path-

way) while the second stream operates on the cropped bounding

box with the predicted background masked (the “region” pathway).

Features from the two streams are concatenated and passed into

the classifier, and the entire network is trained jointly end-to-end. 

3.3. Evaluation metric 

We evaluate our performance using an extension of the bound-

ing box detection metric [37,73,87] . The algorithm produces a

ranked list of detections where each detection comes with a pre-

dicted segmentation. A detection is correct if its segmentation over-

laps with the segmentation of a ground truth instance by more

than a threshold. As in the classical bounding box task, we penalize

duplicates. With this labeling, we compute a precision recall (PR)

curve, and the average precision (AP), which is the area under the

curve. We call the AP computed in this way AP r . We report AP r at

overlap thresholds of 0.5 and 0.7 in Table 3 . 
We observe that 

1. Using three different layers to make the figure-ground predic-

tion almost doubles AP r at 0.7, validating the intuition behind

the hypercolumn representation. 

2. Using a larger network leads to large performance gains (about

8 points). 

3. Rescoring detections using segment-based features also pro-

vides a significant boost (about 3 points). 

Qualitative segmentations are shown in Fig. 9 . 

. Recognition helps reconstruction 

Consider Fig. 10 . As humans, we can easily perceive the 3D

hape of the shown object, even though we might never have

een this particular object instance. We can do this because we

on’t experience this image tabula rasa , but in the context of our

remembrance of things past”. We can recognize that this is the

mage of a car as well as estimate the car’s 3D pose. Previously

een cars enable us to develop a notion of the 3D shape of cars,

hich we can project to this particular instance using its deter-

ined pose. We also specialize our representation to this particu-

ar instance (e.g. any custom decorations it might have), signaling

hat both top-down and bottom-up cues influence our percept –

ee also [59] . 

In order to operationalize these observations into an approach

hat can perceive the shape of novel instances we need recogni-

ion systems that can infer the location and pose of objects as well

s category-specific shape models that capture knowledge about

reviously seen objects. We previously described a simultaneous

etection and segmentation (SDS) system that can give us the in-

tance segmentations of the objects present in the image. We now

escribe our pose (viewpoint) estimation, originally published in

77] , and category-specific shape modeling systems – from [48] .

e then show that building upon these object recognition and re-

onstruction systems, 3D object reconstruction from a single image

n the wild can be readily addressed as shown in Fig. 10 . 
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Fig. 11. Viewpoint predictions for unoccluded groundtruth instances using our algorithm. The columns show 15th, 30th, 45th, 60th, 75th and 90th percentile instances 

respectively in terms of the error. We visualize the predictions by rendering a 3D model using our predicted viewpoint. 

Table 4 

Mean performance of our approach for simultaneous 

detection and viewpoint estimation. 

AVP 

Number of bins 4 8 16 24 

[86] 19 .5 18 .7 15 .6 12 .1 

[60] 23 .8 21 .5 17 .3 13 .6 

[25] 24 .1 22 .3 17 .3 13 .7 

Ours 49 .1 44 .5 36 .0 31 .1 
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Fig. 12. Overview of our training pipeline for learning deformable shape models. 

Fig. 13. Mean shapes learnt for rigid classes in PASCAL VOC using our formulation. 

Color encodes depth when viewed frontally. 
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.1. Viewpoint prediction 

We formulate the problem of viewpoint prediction as predicting

hree Euler angles (azimuth, elevation and cyclo-rotation) corre-

ponding to the instance. We train a CNN based architecture which

an implicitly capture and aggregate local evidences for predicting

he Euler angles to obtain a viewpoint estimate. Our CNN architec-

ure additionally enables learning a shared feature representation

cross all categories. 

We visualize the predictions of our approach in Fig. 11 . It can

e seen that our predictions are accurate even for the 75th per-

entile instances. To evaluate for the task of simultaneous detec-

ion and viewpoint estimation, we use the AVP metric introduced

y Xiang et al. [86] . Each detection candidate has an associated

iewpoint and the detection is labeled correct if it has a correct

redicted viewpoint bin as well as a correct localization (bound-

ng box IoU > 0.5). As shown in Table 4 , our approach significantly

utperforms previous methods. 

.2. Category-specific shape models 

Unlike prior work that assumes high quality detailed annota-

ions [13] , we are interested in reconstructing objects “in the wild”.

t the core of our approach are deformable 3D models that can

e learned from 2D annotations available in existing object de-

ection datasets and can be driven by noisy automatic object seg-

entations. These allow us to overcome the two main challenges

o object reconstruction in the wild: (1) Detection datasets typi-

ally have many classes and each may encompass wildly different

hapes, making 3D model acquisition expensive. (2) 3D shape in-

erence should be robust to any small imperfections that detec-

ors produce, yet be expressive enough to represent rich shapes.

e use the learned deformable 3D models to infer the shape

or each detection in a novel input image and further comple-

ent it with a bottom-up module for recovering high-frequency

hape details. The learning and inference steps are described

elow. 

Fig. 12 illustrates our pipeline for learning shape models from

ust 2D training images, aided by ground truth segmentations and

 few keypoints. We first use the NRSfM framework of [76] , ex-

ended to incorporate silhouette information, to jointly estimate
he camera viewpoints (rotation, translation and scale) for all train-

ng instances in each class. 

We then learn the category level shape models by optimiz-

ng over a deformation basis of representative 3D shapes that

est explain all silhouettes, conditioned on the camera viewpoints.

e model our category shapes as deformable point clouds – one

or each subcategory of the class. Our shape model M = ( S , V )

omprises of a mean shape S (learnt mean shapes for several

lasses are shown in Fig. 13 ) and linear deformation bases V =
 V 1 , . . . , V K } . We formulate our energy primarily based on image

ilhouettes and priors on natural shapes. These energies enforce

hat the shape for an instance is consistent with its silhouette

 E s , E c ), shapes are locally consistent ( E l ), normals vary smoothly

 E n ) and the deformation parameters are small (‖ αik V k ‖ 2 F ) . Fi-

ally, we solve the constrained optimization in Eq. (1) using block-

oordinate descent to learn the category level shape model. We

efer the reader to [48] for detailed descriptions of the energy
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Fig. 14. Contour detection: color image, depth image, contours from color image, contours from colour and depth image, contour labels. (For interpretation of the references 

to color in this figure text, the reader is referred to the web version of this article.) 
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ity of bottom-up contours and region proposals. 
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formulation and optimization. 

min 

S̄ ,V,α
E l ( ̄S , V ) + 

∑ 

i 

( 

E i s + E i 
kp 

+ E i c + E i n + 

∑ 

k 

(‖ αik V k ‖ 

2 
F ) 

) 

subject to: S i = S̄ + 

∑ 

k 

αik V k 

(1)

5. Reconstruction helps reorganization 

RGB-D sensors like the Microsoft Kinect, provide a depth im-

age in addition to the RGB image. We use this additional depth

information as ‘reconstruction’ input and study the reorganization

problems. In particular we study the problem of contour detection

and region proposal generation. 

5.1. Contour detection 

Depth images have C 0 and C 1 discontinuities corresponding to

depth and surface normal edges in the scene. We design local gra-

dient functions to capture both these sets of discontinuities. We

call these gradients Depth Gradients ( DG ) and Normal Gradients

NG . We distinguish between convex and concave normal gradi-

ents NG + and NG −. This distinction is useful given concave nor-

mal gradient edges (such as those between the bed and the floor

in Fig. 14 ) are more likely to correspond to object boundaries than

convex gradient edges (such as those within the bed). We com-

pute these gradients by estimating local planar approximations and

computing the distance between these planes to compute DG and

the angle between them to estimate NG + and NG −. 

We can then use this set of estimated gradients from depth

images in existing contour detection systems for RGB and RGB-D

images. We experimented with two such state-of-the-art systems,

RGB only gPb-ucm [3] and RGB-D Structured Edges [17] on the

NYUD2 dataset [69] , and see improvements over both these meth-

ods. We show the precision recall curves for contour detection in

Fig. 15 (left) and see that adding our gradients improves perfor-

mance across the board [34,36] . 
Fig. 14 shows visualizations for the obtained contours. As ex-

ected, we get less distracted with albedo, recall faint but impor-

ant scene surface boundaries, weigh important object boundaries

ore, and get more complete objects out. We can also go a step

urther and label each boundary as being an occlusion boundary,

onvex normal edge (blue) or a concave normal edge (green). 

.2. Region proposals 

With this improved contour signal, we can generate region pro-

osals for RGB-D images. For this we generalize MCG [4] which is

he state-of-the-art algorithm for generating region proposals on

GB images, to RGB-D images. MCG works by (a) completing con-

ours to form closed regions at multiple scales, (b) combinatorially

ombining these closed regions to produce millions of candidates,

nd (c) re-ranking these candidates to obtain a ranked list of about

0 0 0 regions. 

We generalize MCG in the following ways: (a) we use our im-

roved RGB-D contour signal from Section 5.1 and (b) use features

omputed from the depth image for re-ranking the candidates. We

easure the quality of our region proposals using standard region

verlap metrics in Fig. 15 . We plot the number of regions on X -

xis and the average best overlap on the Y -axis, and observe that

ith only 200 RGB-D region proposals per image, we can obtain

he same average best overlap as one would get with 20 0 0 regions

sing RGB based MCG [36] , illustrating the quality of our contours

nd the utility of using reconstruction input in the form of depth

mages for the re-organization problem. 

. Reconstruction helps recognition 

We can also use the depth image from a Kinect sensor to aid

ecognition. More specifically, we study how reconstruction input

n the form of a depth image from a RGB-D sensor can be used to

id performance for the task of object detection. 

We conduct these experiments on the NYUD2 dataset [69] . The

et of categories that we study here included indoor furniture cat-

gories like chairs, beds, sofas, and tables. 

We frame this problem as a feature learning problem and use

 convolutional neural network to learn features from RGB-D im-

ges. To do this, we build on the R-CNN work [28] . We propose a

ovel geocentric embedding of depth images into horizontal dis-

arity, height above ground and angle with gravity (denoted HHA)

we automatically estimate the direction of gravity [34] and the

eight above ground from the depth image). This embedding cap-

ures basic physical properties that defines such object categories.

or instance, consider a chair, it is characterized by a horizontal

urface of a particular area at a particular height and a vertical sur-

ace of a particular area in a specific location relative to the hori-

ontal surface. Our proposed embedding exposes this information

o the feature learning algorithm. 

In our experiments (reported in [36] ), we observe the follow-

ng: (a) a CNN learned on color images (in our case a CNN [50]

earned for image classification on ImageNet [16] ) learns features
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Table 5 

Results for object detection on NYUD2 [69] : we report detection average precision, and compare against three baselines: RGB DPMs, RGBD-DPMs, and RGB R-CNN. For 

details refer to [36] . 

Mean Bathtub Bed Book shelf Box Chair Counter Desk Door Dresser Garbage bin Lamp Monitor Night stand Pillow Sink Sofa Table Television Toilet 

RGB DPM 9 .0 0 .9 27 .6 9 .0 0 .1 7 .8 7 .3 0 .7 2 .5 1 .4 6 .6 22 .2 10 .0 9 .2 4 .3 5 .9 9 .4 5 .5 5 .8 34 .4 

RGBD-DPM 23 .9 19 .3 56 .0 17 .5 0 .6 23 .5 24 .0 6 .2 9 .5 16 .4 26 .7 26 .7 34 .9 32 .6 20 .7 22 .8 34 .2 17 .2 19 .5 45 .1 

RGB R-CNN 22 .5 16 .9 45 .3 28 .5 0 .7 25 .9 30 .4 9 .7 16 .3 18 .9 15 .7 27 .9 32 .5 17 .0 11 .1 16 .6 29 .4 12 .7 27 .4 44 .1 

Our 37 .3 44 .4 71 .0 32 .9 1 .4 43 .3 44 .0 15 .1 24 .5 30 .4 39 .4 36 .5 52 .6 40 .0 34 .8 36 .1 53 .9 24 .4 37 .5 46 .8 

Fig. 16. Segmentation-based non-rigid structure from motion. Occluded trajectories on the belly dancer, that reside beyond the image border, are completed. (For interpre- 

tation of the references to color in this figure text, the reader is referred to the web version of this article.) 
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hich are general enough and transfer well to depth images, and

b) using our proposed HHA embedding boosts performance over

ust using the depth image. Finally, when we combine our learned

eatures on depth images with those coming from color images,

e achieve state-of-the-art performance for object detection [36]

 Table 5 ). To summarize the results briefly, RGB based Deformable

art Models (DPM) [20] (long standing state-of-the-art detection

ethod) give a mean average precision of 9.0%, RGB-D DPMs [33]

oost performance to 23.9%, current state-of-the-art RGB detection

ethod R-CNN gives 22.5%. In contrast, our method which effec-

ively learns features from depth images, achieves a mean average

recision of 37.3%. The performance for the challenging chair cat-

gory is at 43.3%, up from 7.8% a couple of years ago, taking per-

eption a step closer to being useful for robotics. 

. Reorganization helps reconstruction 

Consider Fig. 16 . The leftmost column depicts a video scene that

ontains multiple moving objects. We want to reconstruct their

patio-temporal 3D shapes. Extensive literature exists on recon-

tructing static scenes from monocular uncalibrated videos, a task

lso known as rigid Structure-from-Motion (SfM). Some works em-

loy scaled orthographic cameras with rank shape priors, such as

he seminal factorization work of [75] , while others assume per-

pective cameras and make use of epipolar constraints [61] . The

ase of deforming objects (a.k.a. Non-Rigid Structure-from-Motion

NRSfM)) has attracted less attention. Most NRSfM approaches as-

ume as input pre-segmented, full-length point trajectories ex-

racted from the deforming surface [2,7,14,24,39] . 

In our work [22] , we jointly study video segmentation and 3D

econstruction of deforming objects and present a multiple hy-

otheses approach that deals with inaccurate video segments and

emporally incomplete point tracks. For each object, our input is

 trajectory matrix that holds x , y pixel coordinates of the object’s

D point trajectories. Our output is a 3D trajectory matrix with the

orresponding X , Y , Z point coordinates, and a camera pose matrix

hat holds the per frame camera rotations. We assume scaled or-

hographic cameras which means that camera rotations correspond

o truncated rotation matrices. Extracting 3D shape from monoc-
lar input is an under-constrained problem since many combina-

ions of 3D point clouds and camera viewpoints give rise to the

ame 2D image projections. We use low-rank 3D shape priors to

ght this ambiguity, similar to previous works [7] . 

An overview of our approach is presented in Fig. 16 . Given a

ideo sequence, we compute dense optical flow point trajectories

nd cluster them using normalized cuts on 2D motion similarities.

e compute multiple trajectory clusterings to deal with segmen-

ation ambiguities. In each cluster, 2D trajectories will be tempo-

ally incomplete, Fig. 16 3rd column shows in green the present

nd in red the missing trajectory entries for the belly dancer tra-

ectory cluster. For each trajectory cluster, we first complete the 2D

rajectory matrix using low-rank matrix completion, as in [9,11] .

e then recover the camera poses through a rank 3 factorization

nd Euclidean upgrade of the camera pose matrix, as in [75] . Last,

eeping the camera poses fixed, we minimize the reprojection er-

or of the observed trajectory entries along with the nuclear norm

f the 3D shape, similar to [14] , using the nuclear norm regularized

east squares algorithm of [74] . 

Reconstruction needs to be robust to segmentation mistakes.

otion trajectory clusters are inevitably polluted with “bleeding”

rajectories that, although they reside on the background, anchor

n occluding contours. We use morphological operations to dis-

ard such trajectories that do not belong to the shape subspace

nd confuse reconstruction. 

A byproduct of our NRSfM algorithm is trajectory completion.

he recovered 3D time-varying shape is backprojected in the im-

ge and the resulting 2D trajectories are completed through defor-

ations, occlusions or other tracking ambiguities, such as lack of

exture. 

Fig. 17 presents reconstruction results of our approach in videos

rom two popular video segmentation benchmarks, VSB100 [23]

nd Moseg [8] , that contain videos from Hollywood movies and

outube. For each example we show (a) the trajectory cluster, (b)

he present and missing trajectory points, and (c) the depths of the

isible (as estimated from ray casting) points, where red and blue

enote close and far respectively. Our work was the first to show

ense non-rigid reconstructions of objects from real videos, with-

ut employing object-specific shape priors. 



12 J. Malik et al. / Pattern Recognition Letters 72 (2016) 4–14 

Fig. 17. Reconstruction results on the VSB100 and Moseg video segmentation benchmarks. We show in green and red present and missing trajectory entries, respectively. In 

the depth image red is close, blue is far. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Pipeline to represent objects in RGB-D images with corresponding models 

from a 3D CAD model library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Model placement : color image, placed models projected onto color image, 

depth map of rendered models (blue is closer, red is farther away). (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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8. Putting it together 

In our recent work [35] , we have brought concepts presented in

this paper together to automatically being able to represent objects

in RGB-D images with corresponding models from a 3D CAD model

library. We achieve this using the pipeline illustrated in Fig. 18 ,

where we first detect and segment object instances ( Section 6 ),

and estimate their coarse pose [35] to initialize a search over a

small set of 3D models, their scales and precise placements. Fig. 19

shows some sample results, where we can see that we can suc-

cessfully address this problem in cluttered real world scenes. 

Analogous work for RGB images is presented by [48] . We first

detect and approximately segment objects in images using the ap-

proach from [37] ( Section 3 ). Then, as outlined in Section 4 , for

each detected object we estimate coarse pose for using the ap-

proach from [77] . We use the predicted object mask and coarse

pose to fit the top down deformable shape models that were
earned from data. Finally, we recover high frequency shape de-

ails using low level shading cues by conditioning the intrinsic im-

ge algorithm of [5] on our inferred coarse 3D shape. We present

he first fully automatic reconstructions on the PASCAL VOC dataset

18] and state-of-the-art object reconstruction as benchmarked on

he PASCAL3D + dataset [86] . Example results of reconstruction

rom a single image are shown in Fig. 20 . 

Note that these two systems are merely examples of how

he 3R’s of reconstruction, reorganization and reconstruction can

ointly work towards the grand goal of scene understanding. Proba-

ilistic graphical models or neural network architectures with mul-

iple loss terms are both frameworks which can support such syn-

hesis effort s. Over the next few years, we may expect systems

o keep improving in accuracy at benchmarks such as MS COCO

hich emphasize detection and localization of individual objects,

s well as other benchmarks which emphasize fidelity of geomet-

ic reconstruction. 

But this is not all. Understanding a scene at the level of indi-

idual objects and their geometry is not the only goal of computer

ision. Objects do not exist in isolation, they are in contextual re-

ationships with each other and to humans and other agents that

ct in these environments. We cannot claim to understand a scene
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Fig. 20. Fully automatic reconstructions obtained from just a single image using our system described above. Each panel (from left to right) shows the image with automatic 

detection and segmentation, the 3D model inferred using our method ‘replaced in place’ and the final depth map obtained. 
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ully until we have the ability to parse these relationships, make

redictions about how the scene might evolve, and use our under-

tanding of the scene to manipulate it or to navigate in it. Visual

erception is not an end in itself, it connects to motor control as

ell as to general cognition. The progress that we have made so

ar provides an excellent substrate on which to build these con-

ections. 
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