
c

 Copyright 1998 IEEE. To appear in Proc. 39th Symp. on Foundations of Computer Science (FOCS), 1998.

Local Divergence of Markov Chains and the Analysis of

Iterative Load-Balancing Schemes
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Abstract

We develop a general technique for the quantitative analy-

sis of iterative distributed load balancing schemes. We il-

lustrate the technique by studying two simple, intuitively

appealing models that are prevalent in the literature: the

diffusive paradigm, and periodic balancing circuits (or the

dimension exchange paradigm). It is well known that such

load balancing schemes can be roughly modeled by Markov

chains, but also that this approximation can be quite inac-

curate. Our main contribution is an effective way of char-

acterizing the deviation between the actual loads and the

distribution generated by a related Markov chain, in terms

of a natural quantity which we call the local divergence.

We apply this technique to obtain bounds on the number of

rounds required to achieve coarse balancing in general net-

works, cycles and meshes in these models. For balancing

circuits, we also present bounds for the stronger require-

ment of perfect balancing, or counting.

1. Introduction

Background. In the standard abstract formulation of load

balancing in a distributed network, processors are modeled

as the vertices of a graph and links between them as edges.

Each processor initially has a collection of unit-size jobs
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(which we call tokens). The object is to balance the num-

ber of tokens at each processor by transmitting tokens along

edges according to some local scheme. This problem has

obvious applications to job scheduling and other coordina-

tion tasks in parallel and distributed systems. It also arises

in the context of finite element computations, and in simu-

lations of physical phenomena.

In this paper we present a generic method for ana-

lyzing the performance of typical iterative load-balancing

schemes. We demonstrate the power of this method in the

analysis of two simple, popular schemes that have been

widely studied: the diffusive paradigm [9, 5, 6] and peri-

odic balancing circuits [4] (as well as the closely related

dimension exchange paradigm [9, 17]). For simplicity we

will assume that the network is regular of degree d, though

our results can be generalized easily to arbitrary networks.

In the diffusive paradigm, the balancing process is gov-

erned by an ergodic, doubly stochastic matrix P = (pi j),

with pi j = 0 if i and j are not adjacent. In one round each

pair i; j of adjacent processors with current loads xi;x j shifts

tokens between i and j. Assuming, without loss of general-

ity, that pi jxi � p jix j, the pair shifts
�

pi jxi� p jix j

�

tokens

from i to j. (This is just a discretization of the familiar

diffusion in which i sends a fraction pi j of its current load

to j. See Section 2 for further discussion of the model and

some of its variants.) A standard choice for P is uniform

diffusion, in which pi j =
1

d+1
for each adjacent pair i; j, and

pii =
1

d+1
.1 Under this scheme each processor simply aver-

ages the loads of its neighbors at each step. The diffusive

model is popular due both to its simplicity and to its appeal-

ing performance in practice, even in dynamic and asynchro-

nous settings.

A (periodic) balancing circuit is composed of a se-

quence of wires connected in pairs by simple toggling de-

vices called balancers. Its purpose is to balance the flow

of tokens along the wires (see Section 2 for details). This

model is equivalent to the following load-balancing para-

digm, often called dimension exchange (reflecting its semi-

nal application to hypercubes). Assume that the network is

1Making pii non-zero is a simple device to avoid periodicity problems.

1



decomposed into a sequence M1; : : : ;Md of perfect match-

ings, and also that the edges are oriented. Each balancing

round consists of d steps, one for each matching. In step k,

each pair i; j of processors that are paired in matching Mk

balance their loads as closely as possible: i.e., their loads

become d
xi+x j

2
e and b

xi+x j

2
c, with the excess token (if it ex-

ists) following the direction of the edge fi; jg. (This is the

most commonly discussed version. In its full generality, di-

mension exchange allows an uneven balancing of the loads

on paired processors, analogous to non-uniform diffusion.)

Like the diffusive paradigm, this model is simple, fully dy-

namic and asynchronous. In contrast to the diffusive model,

which favors a multi-port architecture, the dimension ex-

change model is particularly suited to single-port architec-

tures. Moreover, both theoretical analysis and experimen-

tal evidence suggest that the resulting token distribution is

more finely balanced in the dimension exchange model. On

the other hand, in a multi-port setting, the diffusive model

seems to produce coarse balancing more rapidly. (See [24]

for a discussion of both models and for numerical evalua-

tions.)

Example. Figure 1 illustrates a two-dimensional torus

with N = 16 nodes (i.e., the square mesh of side length 4

with wrap-around edges), and a decomposition of the torus

into four perfect matchings. In the uniform diffusive model,

in each round every processor transmits about one fifth

of its tokens to each of its neighbors. In the dimension

exchange model, each round consists of four steps, one

for each matching. In such a step, each pair of matched

processors balance their tokens as evenly as possible. We

assume all edges are directed from higher-numbered to

lower-numbered processors, so that excess tokens follow

the snake-like ordering of nodes. (This choice of directions

is inessential for most of our analysis, but will play a role

when we discuss perfect balancing in Section 5.) 2
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Figure 1. The 2­dimensional torus with N = 16, and

its four matchings.

The problem. Define the discrepancy of a load vector x=

(xi) as D(x) = maxi j jxi � x jj. For a given load-balancing

algorithm, our goal will be to determine the number of

rounds required to reduce the discrepancy to some speci-

fied value `: we refer to this as `-smoothing. Aside from

supplying analytic bounds on the performance of various al-

gorithms, fulfilling this goal may help in tuning a paradigm

to its best possible performance on a particular network (for

instance, by guiding the choice of the matrix P). Formally,

Definition 1 A load-balancing algorithm `-smooths an ini-

tial vector x (in T rounds) if the final vector y (after applying

T iterations of the algorithm) satisfies D(y)� `. It counts x

(in T rounds) if it 1-smooths x (in T rounds), and in addition

the final vector y is a sorted (non-increasing) sequence.

In general, the number of rounds required to `-smooth an

initial vector x will depend on both ` and the discrepancy of

x, as well as on various parameters of the network itself.

It is easy to see that, if tokens were not integral but could

be arbitrarily subdivided, then both of the above paradigms

(and indeed several others) could be represented by a linear

iteration of the form

ξ(t+1)
= ξ(t)P; (1)

where ξ(t) is the vector of processor loads after t rounds and

P is a doubly stochastic matrix. In the diffusive model, P is

just the matrix that governs the balancing process. (Thus,

in the uniform case, P is simply the transition matrix of

standard random walk on the network, with holding prob-

ability 1
d+1

at each node.) For a periodic balancing cir-

cuit, P is a product ∏d
k=1 P(k), where the (i; j) entry of P(k)

is 1
2

if fi; jg 2 Mk or i = j, and 0 otherwise. (Thus P(k)

corresponds to the balancing performed by the kth match-

ing.) In both cases, the iteration (1) is just a Markov chain

which converges to the uniform load vector;2 we shall re-

fer to this Markov chain as the idealized process. The ide-

alized process is relatively straightforward to analyze: we

can appeal to a battery of established analysis techniques

for Markov chains to determine the number of rounds re-

quired for `-smoothing.

The problem with this approach is that the vector ξ(t) is

only an approximation to the true vector x(t) of processor

loads: the deviation is caused by rounding to whole tokens

at each local balancing step. As is well known, this nonlin-

earity makes load-balancing schemes hard to analyze in de-

tail. Most analyses ignore this difficulty and simply consider

the idealized process; unfortunately, however, the deviation

can be quite significant (see, e.g., [23]). In this paper we aim

to quantify the deviation between ξ(t) and x(t). This will al-

low us to effectively transfer the analysis of the idealized

process to the load-balancing algorithm. The question of

a precise quantitative relationship between Markov chains

and load-balancing algorithms has been posed by several

authors, notably Ghosh et al. [15], Lovász and Winkler [20],

Muthukrishnan et al. [22, 16], and Subramanian and Scher-

son [23], and seems to be of interest in its own right.

2Conventionally, a Markov chain operates on a probability distribution,

i.e., a non-negative vector of L1 norm 1. Throughout we will neglect to

normalize the vector of loads, so its L1 norm will be equal to the total

number of tokens in the network. This should not cause any confusion.
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Our contributions. Our first contribution is to identify a

natural parameter of the idealized process P that precisely

characterizes the worst-case deviation for both the diffusive

model and the general dimension exchange model. (For

simplicity, we restrict our attention regarding the latter to

periodic balancing circuits.) This quantity, which we call

the local divergence Ψ, measures the sum of load differ-

ences across all edges in the network, aggregated over time

(and suitably normalized). It appears moreover to be of in-

dependent interest, e.g., in the study of the transient behav-

ior of random walks on infinite graphs [3]. The key ingre-

dient in our analysis is an appropriate edge-oriented view

of the rounding errors in each balancing step, which allows

them to be handled independently.

Next we present a simple general upper bound on Ψ in

terms of µ = 1� jλj, where λ is the second largest eigen-

value (in modulus) of P (or, more correctly, of a natural

symmetrization of P). This immediately implies that both

algorithms O((d logN)=µ)-smooth any initial vector with

discrepancy K in O(log(KN)=µ) rounds, where N is the

number of processors. This is a substantial tightening of

the earlier bound of [22] for diffusion, and appears to be the

first bound of its kind for periodic balancing circuits.

We go on to analyze Ψ in more detail for specific net-

works of interest, namely the cycle and the r-dimensional

square mesh. For the cycle we give a tight bound of Ψ =

Θ(N) for both uniform diffusion and balancing circuits; for

the mesh we give a tight bound of Ψ = Θ(rN1=r
) for uni-

form diffusion and for balancing circuits (this latter result

being derived using a general product construction applied

to the cycle). These results are much sharper than the gen-

eral eigenvalue bound above, which gives Ψ = O(N2 logN)

and Ψ = O(N2=r logN) respectively. They immediately im-

ply O(N)-smoothing in O(N2 log(KN)) rounds for the cy-

cle, and O(rN1=r
)-smoothing in O(N2=r log(KN)) rounds

for the r-dimensional mesh.

Our final contribution is a complementary result that ap-

plies only to balancing circuits. Any periodic balancing cir-

cuit satisfying a certain natural condition will, after suffi-

ciently many rounds, count its initial load vector (i.e., 1-

smooth and sort it). Using a novel reduction to sorting,

we show that any periodic balancing circuit satisfying the

condition counts any initial vector with discrepancy K in

O(KN) rounds. This is incomparable with the above re-

sults: although the number of rounds depends linearly on K,

the final vector is perfectly balanced. If we apply this result

to vectors that have already undergone the smoothing de-

scribed above, we obtain a much better bound on the num-

ber of rounds required for such a periodic circuit to count its

input. We find that the additional number of rounds needed

for counting is O((dN logN)=µ) in general, O(N2
) for the

cycle, and O(rN1+1=r
) for the r-dimensional mesh.

Related work. The diffusive model has been widely stud-

ied both in theory and in practice (see, e.g., [9, 5, 22] and

the references given there). Cybenko [9], Bertsekas and

Tsitsiklis [5], and Boillat [6] pioneered the use of Markov

chains for analyzing diffusive load-balancing algorithms,

but did not require the tokens to be integral. This work

was extended by Subramanian and Scherson [23], who also

addressed the question of the integrality of the tokens but

did not quantify this effect. By analyzing the deviation be-

tween the idealized process and the token process, Muthukr-

ishnan, Ghosh and Schultz [22, Theorem 4] showed that

the diffusive model in general networks achieves O(dN=µ)-

smoothing3 in O(log(KN)=µ) rounds. Our general result

therefore gives an N
logN

factor improvement in the smooth-

ing obtained. For specific networks, of course, our results

are even better.

Balancing circuits were introduced in the seminal pa-

per of Aspnes, Herlihy and Shavit [4], whose main focus

was universal counting circuits (i.e., fixed, non-periodic

balancing circuits that count an arbitrary input sequence).

Klugerman and Plaxton [18] proved the existence of univer-

sal counting circuits of depth O(logN). All such construc-

tions inherently require N to be a power of two: Aharonson

and Attiya [1] showed that universal `-smoothing circuits

do not exist for any N that is not a power of two and any

` � 1. A matrix formulation of universal counting circuits

was given by Busch and Mavronicolas [8]. Periodic balanc-

ing circuits were analyzed in terms of a linear system by

Hosseini, Litow, Malkawi, McPherson and Vairavan [17].

These authors explicitly addressed the deviation between

the idealized process and the token process, but obtained

results that are much weaker than ours; in particular, the

amount of smoothing they achieved depends on the total

number of tokens (whereas ours depends only on the net-

work).

Finally, we note that the load-balancing algorithms stud-

ied in this paper allow an arbitrary number of tokens to tra-

verse an edge in one time step. There has been much work

on an alternative class of models in which only a single to-

ken may use an edge at any time. Notably, Ghosh, Leighton,

Maggs, Muthukrishnan, Plaxton, Rajaraman, Richa, Tarjan

and Zuckerman [15], improving upon previous results of

Aiello, Awerbuch, Maggs and Rao [2], present asymptoti-

cally tight bounds for load balancing in this alternative set-

ting using very different methods.

Organization of paper. In Section 2 we give a more for-

mal description of the two load-balancing models. In Sec-

tion 3 we introduce the local divergence Ψ and use it to

bound the error between the true balancing process and the

3Actually these authors measure discrepancy in terms of the L2 norm,

rather than the L∞ norm as we do. The bound stated here is an adaptation

of their argument to the measure we use. Translating our result to their

measure gives an analogous improvement.
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idealized process for both the diffusive model and balancing

circuits; this leads to our general upper bounds for smooth-

ing in both models. Section 4 presents tighter bounds for

smoothing on the cycle and the r-dimensional torus. Fi-

nally, in Section 5 we present our results on counting with

periodic circuits. Due to lack of space, several of our proofs

are abbreviated or deferred to the full version of the paper.

2. More on the models

2.1. The diffusive model

In the load-balancing literature, the term “diffusion”

refers to any discretization of the iteration ξ(t+1)
= ξ(t)P

where ξ(t) is the load vector at time t and P is an ergodic,

doubly stochastic matrix (i.e., P is non-negative, irreducible

and aperiodic, and all its row and column sums are 1).

These conditions on P are necessary and sufficient to ensure

that ξ(t) converges to the uniform load vector for any initial

vector ξ(0). Under this scheme, each processor i transmits

to its neighbor j a fraction pi j of its current load xi, so that

the net load transfer from i to j is pi jxi� p jix j.

There are at least two natural ways to discretize this

scheme: one can round either the individual load transfers

pi jxi and p jix j, or the net load transfer pi jxi � p jix j. We

follow [22] in choosing the second approach, leading to the

scheme defined in the Introduction. However, it should be

clear from Section 3 that our analysis is quite robust and

applies (with minor modifications) to any reasonable dis-

cretization.

2.2. Periodic balancing circuits

A balancing circuit4 [4] is a collection of N wires, each

with an input terminal and an output terminal, connected in

pairs by a sequence of balancers. We refer to a balancer

connecting wires i and j with i < j as an [i: j]-balancer. At

any given time, a balancer is in one of two states, " or #. A

token injected at the input terminal of some wire proceeds

through the circuit as follows. When the token arrives at an

[i: j]-balancer (on either wire i or wire j), it emerges from

the balancer along wire i if the state of the balancer is ",

and along wire j otherwise. At the same time, the state of

the balancer is toggled. Thus successive tokens arriving at

an [i: j]-balancer emerge alternately along the two wires i

and j. The parity of this switching process is controlled

by the initial state of the balancer; we assume that this is

given as part of the description of the circuit. It is a stan-

dard fact [4] that the order in which tokens pass through

the circuit does not affect the number of tokens output on

each wire. This means that we can view a balancing circuit

as transforming any input sequence x = (x1; : : : ;xN) into an

4In [4] the term balancing network is used. We use the term circuit to

avoid confusion with networks of processors.

output sequence y=(y1; : : : ;yN), where xi;yi count the num-

ber of tokens input and output respectively on wire i.

A periodic balancing circuit consists of multiple repeti-

tions of a fixed elementary circuit; each repetition is called

a round. The initial state of the balancers in every round

is assumed to be the same (i.e., we think of the state of

each balancer as being reset to its initial value at the be-

ginning of each round).5 We shall assume that the elemen-

tary circuits have a simple, natural structure. We formalize

this by requiring the balancers in the elementary circuit to

form a sequence of d disjoint perfect matchings of the wires

f1; : : : ;Ng, i.e., the elementary circuit consists of d levels,

each of which is a collection of N=2 independent balancers.

(It is not hard to generalize our results to allow non-perfect

or non-disjoint matchings. In fact, our results on coarse bal-

ancing can be adapted readily to handle general (uneven) di-

mension exchange schemes, and any reasonable discretiza-

tion of the idealized process.)

It should be clear that this model is equivalent to the

dimension exchange model on a d-regular network of N

processors defined in the Introduction. The processors of

the network correspond to wires, and the edges to balancers;

edge fi; jg is oriented towards i if the initial state of the

[i: j]-balancer is " and towards j otherwise. The operation of

each level of balancers in the elementary circuit corresponds

precisely to the balancing scheme for each matching as de-

scribed in the Introduction: each pair of matched processors

balance their loads as far as possible, with the excess token

(if any) following the direction of the edge between them.

Example. Let N be even, N � 4, and consider the two

matchings M1 =

�

f2i� 1;2ig j i = 1; : : : ;N=2
	

and M2 =

�

f2i;2i+ 1g j i = 1; : : : ;N=2
	

(where we interpret N + 1

as 1). The initial state of all balancers is ". The corre-

sponding network here is the cycle on f1; : : : ;Ng (as shown

in Figure 2 for N = 4), with the following balancing pro-

tocol: in each round, all odd-numbered processors first

balance with their clockwise neighbor (corresponding to

matching M1) and then with their counter-clockwise neigh-

bor (matching M2). In every balancing step, excess tokens

go to the lower-numbered processor. The reader may find it

instructive to reverse-engineer the 2-dimensional torus net-

work of Figure 1 into an elementary balancing circuit. 2

M
2

M
1

M
2

M
1

processor

network

1 2

34

1

2

3

4

circuit

balancing

Figure 2. The 4­cycle.

5An interesting variant allows the initial states of all balancers to be set

randomly and independently after each round. We will discuss this variant

in the full version of the paper.
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3. Smoothing in general networks

We begin our investigation with the problem of coarse

balancing and show that, until a certain threshold discrep-

ancy is reached, the balancing process can be accurately

modeled using a Markov chain. This threshold depends

only on the network itself, not on the number of steps or

the number of tokens.

3.1. The idealized process

As explained in the Introduction, the idealized process

corresponding to a given load-balancing algorithm is a sim-

plified version of the algorithm in which tokens are not re-

quired to be discrete but can be arbitrarily subdivided. Thus

in the diffusive model, the net load transferred from i to

j is exactly pi jxi � p jix j, and in a balancing circuit, when

processors i; j balance locally their new loads will both be

exactly
xi+x j

2
.

Consider first the diffusive balancing process governed

by a matrix P. If ξ(t) denotes the vector of processor loads

after t rounds of the idealized process, then ξ(t) = ξ(t�1)P =

ξ(0)Pt . Now the matrix P, being stochastic, can be viewed

as the transition matrix of a Markov chain on the space

of processors f1; : : : ;Ng. Since P is also assumed to be

ergodic,6 the vector ξ(t) converges to a fixed limit π regard-

less of the initial load distribution ξ(0). And since P is dou-

bly stochastic π must be uniform, i.e., πi =
1
N ∑ j ξ(0)j .

Next consider the periodic balancing circuit model

whose elementary circuit consists of perfect matchings

M1; : : : ;Md . The idealized process here is a similar iteration

ξ(t) = ξ(t�1)P, with P defined as follows. For 1 � k � d,

define the matrix P(k) by P
(k)

i j =

1
2

if i = j or [i: j] is an edge

of Mk, and P
(k)
i j = 0 otherwise. Thus P(k) consists of N=2

disjoint 2� 2 blocks, reflecting the effect of the balancers

in Mk. The matrix corresponding to a complete round of

the balancing process is therefore P = ∏r
k=1 P(k). Clearly

each P(k) is a doubly stochastic matrix, so P is also doubly

stochastic. Moreover, since the network is connected P is

also ergodic, and therefore converges to the uniform distri-

bution π.

Thus in both models the idealized process corresponds to

an ergodic Markov chain with doubly stochastic transition

matrix P. In both cases, we refer to P as the round matrix.

Now by the standard theory of Markov chains, the rate

of convergence of P depends on its second largest (in mod-

ulus) eigenvalue λ. If P is symmetric then the eigenvalues

are real, and the distance from the uniform vector π decays

geometrically at rate 1� µ, where µ = 1�jλj is the eigen-

value gap. Specifically, kξ(t)� πk � KN2
(1� µ)t , where

6This is equivalent to demanding that P is irreducible (i.e., every state

is reachable from every other) and aperiodic (for which it is enough to

have pii > 0 for some i).

kξ(t)�πk � 1
2 ∑i jξ

(t)

i �πij is the variation distance from π
and K = D(ξ(0)) is the initial discrepancy.

When P is not symmetric we can appeal to the theory de-

veloped more recently by Mihail [21] and Fill [14]: namely,

we can relate the rate of convergence of P to that of an asso-

ciated symmetric matrix bP, called the symmetrization of P.

For ease of exposition we will take bP = PPT, where PT is

the transpose of P; other choices are possible (and may be

easier to work with in practice). Then one has [21, 14] that

kξ(t)�πk � KN2
(1�µ)t=2, where now µ is the eigenvalue

gap of bP.

These results lead via some simple manipulations to the

following theorem:

Theorem 1 In the idealized process corresponding to the

diffusion model or the balancing circuit model with round

matrix P, the number of rounds t required for `-smoothing

is bounded above by

t �
2

µ
ln
�KN2

`

�

;

where K is the initial discrepancy and µ is the eigenvalue

gap of (the symmetrization of) P.

3.2. The deviation

We shall adopt the view that the quantity µ, which gov-

erns the rate of convergence of the idealized process, is easy

to compute (or at least estimate) analytically. This is cer-

tainly the case for networks with a uniform structure: it is

easy to see that µ = Θ(1=N2
) for the cycle, µ = Θ(1=N2=r

)

for the r-dimensional torus, and µ = Θ(1=(logN)

2
) for

the de Bruijn network [11], for both the uniform diffusive

model and balancing circuits.7 We shall estimate the rate of

convergence of the actual load-balancing process by bound-

ing the difference between it and the idealized process.

Specifically, let ξ(t) and x(t) be the vectors of token loads

after t rounds of the idealized process and the true balanc-

ing process respectively, starting with common initial load

ξ(0) = x(0). Our aim is to bound the maximum deviation at

any processor, maxi jξ
(t)
i � x

(t)
i j, at all times t.

We shall bound the deviation in terms of a natural pa-

rameter of the round matrix, which we call the local di-

vergence Ψ(P). Informally, this measures the sum of load

differences across all edges of the network, aggregated over

time (and suitably normalized).

7In the uniform diffusive model these values come from the spectra

of simple random walk on the respective graphs, which are well known.

The results can easily be carried over to balancing circuits (where P is

not symmetric) by comparing the corresponding symmetrized chains with

these random walks, using the techniques of [12]. We omit the details.
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Definition 2 In the diffusive model with round matrix P, the

local divergence Ψ(P) is defined as

Ψ(P) = max
l

∞

∑
t=0

∑
fi; jg2E

jPt
li �Pt

l jj;

where E is the set of edges in the network.

Remarks: (i) Note that Ψ(P) is in fact always finite due to

the geometric convergence of the Pt
i j.

(ii) The quantity Ψ seems to be quite natural in the Markov

chain context, and measures the extent to which the prob-

ability distribution induced by the chain deviates over time

between adjacent states. We believe that this quantity may

be of independent interest in studying local transient prop-

erties of Markov chains. 2

The definition for balancing circuits is slightly more

complicated because we have to take account of all balanc-

ing steps within a given round. Accordingly, we introduce

the matrix P(t;k)
= Pt�1P(1)

: : :P(k), corresponding to t � 1

complete rounds plus the first k matchings of round t. The

matrix P(t;k)�1 is defined as P(t;k�1) if k > 1, and as P(t�1;d)

if k = 1. P(1;1)�1 is the identity matrix.

Definition 3 In the balancing circuit model with round ma-

trix P = ∏d
k=1 P(k), the local divergence Ψ(P) is defined as

Ψ(P) = max
l

∞

∑
t=1

d

∑
k=1

∑
[i: j]2Mk

jP
(t;k)�1

li �P
(t;k)�1

l j j:

Note that here Ψ(P) actually depends on the decomposition

P = P(1)
: : :P(d). For simplicity, we suppress this depen-

dence.

Our main result of this section bounds the deviation

between the idealized process and the true load-balancing

process in terms of Ψ for both load-balancing models:

Theorem 2 In both the diffusive model and the balancing

circuit model, the maximum deviation between the idealized

process and the token process satisfies

max
i
jξ(t)i � x

(t)
i j � Ψ(PT

) for all t;

where P is the round matrix and PT its transpose.

Note that the deviation depends on Ψ(PT
) rather than

on Ψ(P). However, PT bears a very simple relationship to P

itself: in particular, in the uniform diffusive model PT
= P

since P is symmetric; in the balancing circuit model, PT is

just the round matrix for the same elementary circuit with

the order of matchings reversed. Thus for simple networks

with a regular structure, Ψ(P) and Ψ(PT
) are essentially the

same. Moreover, we shall give in Section 3.3 a general up-

per bound on Ψ(PT
) in terms of P alone.

Combining this theorem with Theorem 1, which bounds

the rate of convergence of the idealized process, immedi-

ately yields:

Corollary 3 In both the diffusive model and the balancing

circuit model, O(Ψ)-smoothing of any initial vector with

discrepancy K is achieved within O(log(KN)=µ) rounds,

where µ is the eigenvalue gap of (the symmetrization of) the

round matrix P, and Ψ = Ψ(PT
).

The remainder of this subsection is devoted to a proof of

Theorem 2. We will give only the proof for the diffusive

model, which is notationally simpler. Recall that the source

of the deviation is the rounding that occurs on each edge

of the network in each round. The idea of the proof is to

introduce an explicit error term for every edge and every

round, and to track the overall contribution of these errors

over time. This edge-oriented view of errors is essential,

and ensures that individual errors do not interact with one

another.

Let us fix the initial load vector x(0) = ξ(0), and let

x(t);ξ(t) denote the load vectors after t rounds in the true

process and the idealized process respectively (so that ξ(t) =
ξ(0)Pt ). In the idealized process, the net load transmitted

from i to j in round t is just pi jξ
(t�1)
i � p jiξ

(t�1)
j . In the

true diffusive process, however, the number of tokens trans-

mitted is rounded down to the nearest integer. Thus we can

write

x
(t)
i = piix

(t�1)
i + ∑

j:fi; jg2E

�

p jix
(t�1)
j + e

(t)
i j

�

; (2)

where e
(t)

i j is the excess load allocated to i as a result

of rounding on edge fi; jg in round t, i.e., if pi jx
(t�1)
i �

p jix
(t�1)
j then e

(t)
i j is the fractional part of pi jx

(t�1)
i �

p jix
(t�1)
j , and e

(t)
ji = �e

(t)
i j . Note that e

(t)
i j actually depends

on x(0), but certainly je
(t)

i j j< 1 for all i; j; t.

Defining the vector e(t) by e
(t)

i =∑ j:fi; jg2E e
(t)

i j , we obtain

from (2) the following iteration for x(t): x(t) = x(t�1)P+e(t) ;

thus, upon unwinding,

x(t) = x(0)Pt
+

t�1

∑
s=0

e(t�s)Ps
= ξ(t)+

t�1

∑
s=0

e(t�s)Ps
:

This gives us an exact expression for the deviation jx
(t)

l �

ξ(t)l j at every node l and every round t. We now rewrite this

in a more convenient form:

x
(t)

l �ξ(t)l =

t�1

∑
s=0

∑
i

e
(t�s)

i Ps
il =

t�1

∑
s=0

∑
i

∑
j:fi; jg2E

e
(t�s)

i j Ps
il

=

t�1

∑
s=0

∑
fi; jg2E

e
(t�s)
i j (Ps

il �Ps
jl);

where we have used the fact that e
(t�s)

i j =�e
(t�s)

ji to group

together pairs of terms associated with the two endpoints of

an edge.
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Finally, since je
(s)

i j j< 1, we obtain the bound

jx
(t)

l �ξ(t)l j �

t�1

∑
s=0

∑
fi; jg2E

jQs
li�Qs

l jj;

where Q = PT. Taking t ! ∞ and maximizing over l the

right-hand side becomes precisely Ψ(Q), so we have proved

Theorem 2 for the diffusive model.

The proof of Theorem 2 for balancing circuits is similar

but involves an extra level of complexity because we have

to handle the balancing steps (matchings) within each round

separately. The details can be found in the full version of the

paper. 2

3.3. A general bound on Ψ

We conclude this section by giving a general upper

bound on the local divergence Ψ in terms of the eigenvalue

gap of the (symmetrized) round matrix. Specifically, we

show the following:

Theorem 4 Let P be a round matrix and µ the eigenvalue

gap of (the symmetrization of) P. Then

Ψ(PT
) = O

�

d logN

µ

�

:

This result allows us to compute an upper bound on Ψ
for most standard networks, from our knowledge of the sec-

ond eigenvalue. For example, we get Ψ = O(N2 logN)

for the cycle, Ψ = O(rN2=r logN) for the r-dimensional

torus, Ψ = O((logN)

3
) for the de Bruijn network, and

Ψ = O(d logN) for a degree-d expander, for both the uni-

form diffusive model and balancing circuits. Moreover,

combining Theorem 4 with Corollary 3 allows us to deduce

a smoothing result that depends only on the eigenvalue gap

of the round matrix:

Corollary 5 In both the diffusive model and the balancing

circuit model, O((d logN)=µ)-smoothing of any initial vec-

tor with discrepancy K is achieved within O(log(KN)=µ)

rounds, where µ is the eigenvalue gap of (the symmetriza-

tion of) the round matrix P.

Proof of Theorem 4. We give only the proof for the diffu-

sive model; the proof for balancing circuits is very similar

and we omit it. Let Q = PT. Note that (the symmetrizations

of) P and Q share the same spectrum; let λ be their common

second eigenvalue. From the geometric convergence of the

L1 norm, ∑i jQ
t
li �

1
N
j � N1=2

jλjt=2 [21, 14], we easily get

that ∑i; j jQ
t
li �Qt

l jj � N3=2
jλjt=2. Note also that, for all t,

the fact that ∑i Qt
li = 1 implies that ∑

fi; jg2E jQ
t
li �Qt

l jj � d.

Thus, for any τ, and l achieving the maximum in the defini-

tion of Ψ, we have

Ψ(Q) �

τ�1

∑
t=0

∑
fi; jg2E

jQt
li �Qt

l jj+

∞

∑
t=τ

∑
i; j

jQt
li �Qt

l jj

� dτ+N3=2
∞

∑
t=τ

jλjt=2
= dτ+

N3=2
jλjτ=2

1�
p

jλj
:

Choosing τ = Θ(

logN

1�jλj) to minimize the bound completes

the proof. 2

Remark: In the above proof, we have summed the differ-

ences jPt
li �Pt

l jj over all pairs of nodes i; j, rather than only

over neighboring pairs as in the definition of Ψ. We might

expect that this is quite crude in many cases. We shall see

in the next section that, for several important networks, Ψ is

in fact considerably smaller than this general upper bound

suggests. The question of a sharper upper bound on Ψ is

interesting. For example, a bound of the form Ψ = O(

logN
Φ )

is conceivable, where Φ is the edge expansion of P. 2

4. Local divergence on special networks

In the previous section, we saw that the local di-

vergence of the r-dimensional N1=r-sided torus is Ψ =

O(rN2=r logN), and in particular that Ψ = O(N2 logN) for

the N-cycle. In this section, we improve this bound consid-

erably with an exact analysis of the round matrix for these

networks. In the diffusive model, we investigate uniform

diffusion only, i.e., we take all non-zero pi j = 1=(2r+1).

4.1. The cycle

Theorem 6 For both uniform diffusion and the balancing

circuit model on the N-cycle, the local divergence is Ψ =

Θ(N).

Proof. We give the proof only for the diffusive model by

computing Ψ exactly; the balancing circuit model can be

handled in similar fashion.

In the uniform diffusive model on the cycle, P is the ma-

trix of a general cyclical random walk [13, p. 377]. The

entries of Pt can be computed explicitly [13, p. 434]: if

ωN = e2πi=N denotes an Nth primitive root of unity, then

Pt
ml =

1

N

N�1

∑
j=0

ω j(m�l)
N

�

1
3
+

1
3
ω j

N +

1
3
ω(N�1) j

N

�t

=

1

N

N�1

∑
j=0

cos
�2 j(m� l)π

N

��1

3
+

2

3
cos

�2 jπ
N

��t

:

In the following we identify index i for i < 1 or i > N

with index (i� 1) mod N + 1. By symmetry of the cycle,
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Pt
ml = Pt

m�l+1;1, for all m; l; t. Therefore it is sufficient to

consider only l = 1 in the definition of Ψ. Hence,

Ψ(PT
) =

∞

∑
t=0

�

jPt
11�Pt

N1j+

N�1

∑
m=1

jPt
m1�Pt

m+1;1j

�

:

The following lemma on the entries of the first column of Pt

follows directly from the fact that P describes random walk

on the cycle with uniform transition probabilities.

Lemma 7 Pt
1+k;1 = Pt

1�k;1 for all k; t, and Pt
11 �Pt

21 � �� � �

Pt
1+bN=2c;1

. 2

Applying Lemma 7 yields

Ψ(PT
) =

∞

∑
t=0

bN=2c

∑
m=1

2(Pt
m1�Pt

m+1;1) = 2
∞

∑
t=0

(Pt
11�Pt

1+bN=2c;1)

=

2

N

∞

∑
t=0

N�1

∑
j=0

"

1� cos
�2 jπbN

2
c

N

�

#

�

�1

3
+

2

3
cos

�2 jπ
N

��t

=

2

N

N�1

∑
j=1

1� cos
�

2 jπ
N
� b

N
2
c

�

2
3
�

2
3

cos(
2π j
N
)

=

2

N

N�1

∑
j=1

1� cos
�

2 jπ
N
� b

N
2
c

�

4
3

sin2
(

jπ
N
)

:

If N is even, we obtain

Ψ(PT
) =

3

N

N=2�1

∑
j=0

1

sin2
(

2 jπ
N

+

π
N
)

=

3

N

�N

2

�2

=

3

4
�N ;

where the identity ∑n�1
j=0 sin�2

(

jπ
n

+ φ) = n2 sin�2
(nφ)

(see [7, p. 216]) has been used.

If N is odd, a slightly more complex calculation shows

that Ψ(PT
) =

3
4
(N�

1
N
).

This completes the proof for the diffusive model. 2

Considering the diffusion process with initial load vector

xi = minfi;N � ig, for i 2 f1; : : : ;Ng, shows that the devia-

tion between the idealized process and the token process is

indeed Θ(N) in the worst case.

4.2. The multi­dimensional torus

With a bit more work, we can extend the above analysis

to bound Ψ for uniform diffusion and the balancing circuit

model on the r-dimensional torus (i.e., the r-dimensional

square mesh with wrap-around edges and side-length N1=r).

For the balancing circuit model, the decomposition into

matchings is inherited from that for the cycle by treating

each dimension separately as a collection of cycles. Fig-

ure 1 in the Introduction illustrates this for r = 2.

Theorem 8 For both uniform diffusion and the balancing

circuit model on the r-dimensional torus with side-length

N1=r, the local divergence is Ψ = Θ(rN1=r
).

The proof of this theorem for the diffusive model follows

the lines of the analysis for the cycle. Once again, Pt can

be computed explicitly. For the balancing circuit model, we

can use the fact that multi-dimensional tori are the product

– in the graph-theoretic sense – of cycles, and that Ψ is (at

most) additive under products. The proofs will be presented

in the full version of the paper.

5. Counting in periodic balancing circuits

Our analysis in Section 3 tells us how many rounds are

required to achieve `-smoothing, where ` depends on the

network. Our analysis therefore really applies to coarse

load-balancing. In this final section we address the ques-

tion of perfect balancing, or counting, in the balancing cir-

cuit model. We shall first present a direct argument which

bounds the number of rounds required to count an initial

load vector for periodic circuits satisfying a certain natural

condition. At the end of the section, we shall see how to

combine this direct approach and the results from Section 3

to obtain a better bound for counting.

Our approach will be based on a reduction to sorting. If

we replace the comparators of a sorting circuit C by bal-

ancers, we get a balancing circuit which we call the re-

placement circuit of C . Note that replacing a comparator

by a balancer also determines the initial state of the bal-

ancer. Aspnes et al. [4] show that the replacement circuits

of Bitonic Sort and Periodic Balanced Sort are universal

counting circuits; however, we cannot hope for this prop-

erty if N is not a power of two [1]. However, we shall show

that if we replace the comparators of a periodic sorting cir-

cuit by balancers, we can guarantee that O(KN) rounds of

the replacement circuit count any input with discrepancy K.

A balancing circuit is said to have an almost Hamiltonian

cycle iff it contains the balancers [1:N] and [i:i+ 1] for i =

1; : : : ;N�1. If all balancers have initial state ", then having

an almost Hamiltonian cycle is necessary and sufficient for

periodic counting.

Theorem 9 Let B be a balancing circuit on N wires in

which the initial state of all balancers is ".

(a) If B does not contain an almost Hamiltonian cycle, it

cannot be used to perform periodic counting.

(b) If B contains an almost Hamiltonian cycle, then B

counts any input sequence with discrepancy K in

O(KN) rounds.

The proof of Theorem 9 requires a fundamental obser-

vation from the area of periodic sorting. A comparator that
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Figure 3. Reduction to sorting

connects two wires i and j is said to be a standard compara-

tor 8 if, for i< j, the max-output is wire i and the min-output

is wire j. If j = i+1, the comparator is called primitive. The

following fact is due to de Bruijn (and is the reason why we

require all balancers to start in state ").

Fact 1 ([10]) Let C be an arbitrary elementary compara-

tor circuit on N wires consisting of standard comparators

only and including all possible primitive comparators. Then

C sorts any input into non-increasing order in at most N

rounds.

Since standard comparators and balancers perform iden-

tically on a 0-1-input, we have:

Fact 2 Let B be the replacement circuit of a sorting cir-

cuit C . Then B counts any input with at most one token per

wire.

Proof of Theorem 9(a). Assume there is no balancer [i:i+

1] in B . Then the initial load vector x j = 1 for j < i, xi = 0,

xi+1 = 1, xk = 0 for k > i + 1 cannot be changed. If the

balancer [1:N] is missing, then the input (2;1;1; : : : ;1;1;0)

cannot be changed. 2

Proof of Theorem 9(b). Let T (K) denote the number of

rounds of B needed to count any sequence with initial dis-

crepancy K. In view of the Serialization Lemma [4], which

states that the order in which tokens pass through the circuit

does not affect the number of tokens output on each wire, it

is easy to see that T (K)� T (K�1)+T (2), for K > 2: We

may assume w. l. o. g. that some wire has 0 tokens and some

wire has K tokens. Imagine holding back the Kth token

on all wires that have K tokens. The remaining sequence

has discrepancy K � 1, and so is counted after T (K � 1)

rounds. Thus after T (K�1) rounds the entire sequence (in-

cluding the Kth tokens) will have discrepancy at most 2, so

8Knuth [19, p. 234] defines “standard” with max and min interchanged.

Our choice is due to our convention that the odd tokens go to lower-

numbered wires.

a further T (2) rounds suffice. Theorem 9(b) will therefore

follow from:

Claim T (2)� 2N.

To prove the Claim, note from the Serialization Lemma that

it is enough to consider input sequences with 0, 1 or 2 to-

kens per wire. Let x = (x1; ::;xN) be an input sequence with

xi 2 f0;1;2g and discrepancy 2. Define y = (y1; ::;yN) by

yi = minf1;xig, and z = (z1; ::;zN) by zi = xi�yi. Note that

yi;zi 2 f0;1g. Finally, let c = ∑yi; note that 1 � c � N�1.

By Facts 1 and 2 and the Serialization Lemma, we know

that N rounds suffice to count y. During this time, z is

merely permuted to a sequence z0, still with discrepancy 1.

We proceed to reduce the remaining task to a sorting

problem. Let A be the circuit consisting of wires 1; : : : ;c

and the corresponding internal balancers, and let B be the

circuit consisting of wires c+ 1; : : : ;N and the correspond-

ing internal balancers. Let L= f[i: j] j i2A; j 2Bg be the set

of balancers that connect A and B; note that [1:N] 2 L. For

all balancers [i: j] 2 L, replace their initial state " by #, and

consider the input z0 only. Because z0 is a 0-1-sequence we

can now interpret the balancers as comparators. Interchang-

ing the order of A and B results in having only standard

comparators. Figure 3 shows that this reduction results in

applying a periodic “sorter” to z0, because all “comparators”

are standard and all primitive comparators are included, so

that we may apply Fact 1. Call the tokens � from sequence

y “heavy,” and the tokens � from sequence z0 “light.” Now

we show that the above reduction does not alter the paths

of either the light or heavy tokens through the circuit. As is

easy to see, we have in the original situation: (i) No light

token will leave B. (ii) No heavy token will leave A; more

specifically, no heavy token will change its position. (iii) A

light token can leave A only via a balancer from L.

Because of (ii), considering light tokens on A only does

not change their route on the wires of A. Because of (i)

and (iii), reversing the direction of the balancers in L does

not change the route of light tokens. By Facts 1 and 2,

N rounds suffice to balance the light tokens on the wires

c+ 1; : : : ;N;1; : : : ;c. Finally, recombining heavy and light

9



tokens results in a counted sequence.

This concludes the proof of the Claim, and hence of The-

orem 9(b). 2

In addition to its inherent interest, Theorem 9 can be used

in conjunction with our results on coarse balancing to obtain

better bounds for counting. The idea is simply to use the

results of Section 3 to bound the time to reach a certain

threshold discrepancy, and then to switch to Theorem 9(b)

to bound the remaining time required for counting. This

gives us the following:

Corollary 10 A periodic balancing circuit with round ma-

trix P and all balancers initially in state " counts any in-

put sequence with discrepancy K in O(log(KN)=µ +NΨ)

rounds, where Ψ = Ψ(PT
).

For example, this tells us that counting requires

O(N2 log(KN)) rounds on the cycle, and, on the r-dimen-

sional torus, O(N2=r log(KN)+ rN1+1=r
) rounds.
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