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Abstract

We study the average case performance of the Best Fit

algorithm for on-line bin packing under the distribu-

tion Ufj; kg, in which the item sizes are uniformly dis-

tributed in the discrete range f1=k; 2=k; : : :; j=kg. Our

main result is that, in the case j = k � 2, the expected

waste for an in�nite stream of items remains bounded.

This settles an open problem posed recently by Co�man

et al [4]. It is also the �rst result which involves a de-

tailed analysis of the in�nite multi-dimensional Markov

chain underlying the algorithm.

1 Introduction

In the one-dimensional bin packing problem, one is given

a sequence a

1

; : : : ; a

n

2 (0; 1] of items and asked to

pack them into bins of unit capacity in such a way as

to minimize the number of bins used. This problem is

well known to be NP-hard, and a vast literature has

developed around the design and analysis of e�cient ap-

proximation algorithms for it. The most widely studied

among these is the Best Fit algorithm, in which the items

are packed on-line, with each successive item going into

a partially �lled bin with the smallest residual capacity

large enough to accommodate it; if no such bin exists, a

new bin is started.
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Best Fit was �rst analyzed in the worst case by John-

son et al [9], who proved that the number of bins used

is always within a factor 1.7 of that used by an optimal

algorithm. When items are drawn from the uniform dis-

tribution on (0; 1], the expected waste of Best Fit was

shown by Shor [12] to be �(n

1=2

log

3=4

n). (The waste

is the di�erence between the number of bins used and

the sum of the sizes of all the items, and is the standard

measure of performance of bin packing algorithms in the

average case.) Thus among on-line algorithms Best Fit

is currently the best available, in the sense that no al-

gorithm is known which beats it both in the worst case

and in the uniform average case. This, together with

its intuitive appeal and ease of implementation, makes

it the algorithm of choice in most applications.

With the goal of achieving a better understanding of

the Best Fit algorithm, researchers have recently consid-

ered its behavior under various other input distributions,

notably the class of discrete distributions Ufj; kg for in-

tegers j < k. Here the item sizes, instead of being chosen

from the continuous real interval (0; 1], are selected uni-

formly from the �nite set of equally spaced values i=k,

for 1 � i � j. Equivalently, we may think of the bins

as having capacity k and the item sizes being uniformly

distributed on the integers f1; : : : ; jg. This family of dis-

tributions is of interest for two reasons. Firstly, it is an

important step towards exploring the robustness of Best

Fit under non-uniform distributions (because the distri-

bution is biased towards smaller items); and secondly, it

applies to the more realistic case of discrete rather than

continuous item sizes. (For more extensive background,

the reader is referred to [4] and the upcoming survey [3].)

Very little is known in rigorous terms about the per-

formance of Best Fit under this distribution, with the

exception of a few extreme cases: when j = k � 1,

the behavior can be related to that for the continuous

uniform distribution on (0; 1], yielding expected waste
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�(n

1=2

) [2]; and if j is very small compared to k (speci�-

cally, if j �

p

2k + 2:25�1:5) then the expected waste is

known to be bounded by a constant as n!1 [2]. The

expected waste is also easily seen to be bounded when

j � 2 for all k > 3.

Nonetheless, there is much experimental evidence to

suggest that the behavior of Best Fit for various pairs

(j; k) is complex and interesting. For example, it ap-

pears that the expected waste remains bounded when j

is su�ciently close to k or to 1, but that it grows linearly

when the ratio j=k is close to a critical value around 0:80.

Moreover, in all cases (except j = k � 1) where the ex-

pected waste is unbounded it appears to grow linearly

with n. Some large scale simulation results, together

with some conjectures, are described in [4].

In an attempt to explain this behavior, Co�man et al

introduced an interesting approach based on a view of

the algorithm as a multi-dimensional Markov chain [4].

The states of the chain are non-negative integer vectors

(s

1

; : : : ; s

k�1

), where s

i

represents the current number

of open bins of residual capacity i. Note that such a

vector contains all relevant information about the state

of the algorithm: in Best Fit, the ordering on the open

bins is insigni�cant, and since we are measuring waste

we need not concern ourselves with bins that have al-

ready been �lled. It is a simple matter to write down

the new vector s

0

that results from the arrival of any

item i 2 f1; : : : ; jg; since each item arrives with proba-

bility 1=j, this immediately gives the transition proba-

bilities of the chain. (See Section 2.1 below for a more

formal de�nition.) Thus we have a Markov chain on the

in�nite (k � 1)-dimensional space Z

k�1

+

. The expected

waste of Best Fit is intimately related to the asymptotic

behavior of this chain.

We note in passing that similar Markov chains have

been an object of study in queueing theory for over four

decades (see, e.g., [13]); in computer science they have

also received attention, for example in the stochastic

analysis of packet routing [10]. Despite this extensive

body of research few general analytical tools exist, and

even the simplest questions, such as whether such a chain

is ergodic, seem hard to answer. The chief exception is

the method of constructive use of Lyapunov functions,

developed in recent years mainly by Malyshev, Men-

shikov and Fayolle (see [5] for a comprehensive account).

The range of situations in which they are able to apply

their method appears to be quite limited, however; the

highlights are a complete classi�cation of two- and three-

dimensional jump-bounded space-homogeneous Markov

chains (i.e., the transitions are limited to geometrically

close states). Obviously, the Markov chains that arise in

the analysis of Best Fit are jump-bounded, but of much

higher dimension.

This was the starting point for Co�man et al , who pro-

ceeded to analyze the Best Fit Markov chain for small

values of j and k, using a novel approach. In the ab-

sence of analytical tools for high dimensional Markov

chains, they used a computer program to search in an

appropriate class of functions for a Lyapunov function

(i.e., a potential function obeying certain properties, no-

tably a systematic drift over some bounded number of

steps). The existence of a suitable Lyapunov function

for a given pair (j; k) implies bounded or linear expected

waste. Co�man et al were able to classify the expected

waste as bounded or linear for values of k up to 14 and

most corresponding values j < k � 1.

This approach, while interesting, su�ers from several

obvious drawbacks, as observed by the authors them-

selves. Evidently, there is no prospect that it can lead

to proofs for in�nite sequences of (j; k) pairs; in fact, the

time and space resources consumed by the search make it

infeasible to extend the study beyond a very small �nite

range of values for j and k. Perhaps most importantly,

the technique seems to yield almost no useful insight into

why the algorithm performs as it does: for example, the

Lyapunov function that proves bounded expected waste

for j = 5, k = 7 is a linear function based on 23 steps

of the Markov chain, while that for j = 7, k = 10 is

a 15-step quadratic function, neither of which has any

intuitive basis.

In this paper, we aim at analytical results on the be-

havior of Best Fit for an in�nite sequence of values (j; k).

Speci�cally, we explore the line j = k � 2; this is the

\smallest" interesting case beyond j = k � 1, which is

the discrete analog of the continuous uniform distribu-

tion. Co�man et al exhibit computer proofs that the

expected waste is bounded in this case for k � 10, and

also conjecture on the basis of simulations that it re-

mains bounded for larger values of k. Our main result

proves this conjecture for all k:

Theorem 1 The expected waste of the Best Fit algo-

rithm under the discrete uniform distribution Ufk�2; kg

is bounded for all k.

Note the dramatic contrast with the apparently very sim-

ilar case j = k � 1, in which the expected waste grows

unboundedly with n.

Of at least as much interest as this result itself, in our

view, are the techniques we use to prove it. Our start-

ing point is again the multi-dimensionalMarkov chain of

Co�man et al. However, we develop an alternative view

of the chain that seems rather easier to visualize: in this

view, the state s of the chain at any time is represented

by k�1 tokens placed on the non-negative integers, with

token i at position s

i

. The tokens move around as a dy-

namical system under the in
uence of item insertions.

With the aid of this view, and the intuition that comes

with it, we are able to design an explicit Lyapunov func-

tion that proves bounded expected waste for all pairs

(j; k) with j = k � 2. The Lyapunov function is essen-

tially just the waste in the algorithm.
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The analysis of the Lyapunov function is somewhat

subtle, which perhaps explains why it had not been done

before. In order to establish the drift in the Lyapunov

function, we have to consider T (j) steps of the Markov

chain, where T (j) is an exponential function of j; the

drift is proved by a detailed comparison of the time evo-

lution of the Lyapunov function with a random walk on

the non-negative integers. More speci�cally, the Lya-

punov function is a linear combination of the coordinate

values of the multi-dimensional chain, and we are able to

relate the behavior of the individual coordinates to one-

dimensional symmetric random walks that are biased by

a limited adversary. This adversary model corresponds

to a worst case assumption on the e�ect of other coordi-

nates, and we believe it to be of independent interest. It

is similar in 
avor to, but di�ers essentially from, the bi-

ased random walk model considered by Azar et al [1] in a

di�erent context. The model in [1] is allowed to bias the

transition probabilities slightly on every step, whereas

our adversary may intervene overwhelmingly but only

on a limited number of steps.

In addition to settling an open problem posed in [4],

our result, more signi�cantly, is the �rst proof that ex-

ploits the detailed structure of the multi-dimensional

Markov chain, and thus the �rst that provides an un-

derstanding of its behavior. We believe it is likely that

our techniques can be extended to analyze the Best Fit

Markov chain for other pairs of values (j; k), and perhaps

also to other situations in the analysis of algorithms in

which homogeneous multi-dimensionalMarkov chains of

this kind arise.

The remainder of the paper is structured as follows.

In Section 2 we introduce the token model as a conve-

nient representation of the Markov chain underlying the

algorithm, and establish various fundamental properties

of it. In Section 3 we de�ne our Lyapunov function and

analyze its behavior using comparisons with biased ran-

dom walks, concluding with the proof of Theorem 1.

2 The token model

2.1 De�nitions

As advertised in the Introduction, we describe the behav-

ior of the Best Fit algorithm over time in terms of the

evolution of a dynamical system. In this system, k�1 to-

kens move among the non-negative integer points under

the in
uence of item insertions, as follows. The tokens

are labeled 1; 2; : : : ; k�1. At any time instant t, the posi-

tion of token i is the number of open bins at time t with

residual capacity exactly i. We shall denote the state

of the system at time t by s(t) = (s

1

(t); : : : ; s

k�1

(t)), a

vector random variable taking values in Z

k�1

+

. Initially,

the state of the system is s(0) = (0; : : : ; 0), re
ecting the

fact that there are no open bins.

Now suppose the state of the system at time t is s(t)

and the next item to be inserted is `, where ` has been

chosen uniformly from the set f1; : : : ; jg. Let i be the

smallest index such that i � ` and s

i

(t) > 0, if such

exists: in this case, the algorithm inserts item ` into a bin

with capacity i, so we have s

i

(t+1) = s

i

(t)�1 and, if i >

`, s

i�`

(t+ 1) = s

i�`

(t) + 1; all other components of s(t)

are unchanged. If no such i exists, then the algorithm

inserts item ` into an empty bin, so we have s

k�`

(t+1) =

s

k�`

(t)+1 and all other components of s are unchanged.

This completes the description of the dynamical system.

Note that the above system is nothing other

than a convenient pictorial representation of a multi-

dimensional Markov chain, with state space Z

k�1

+

, in

which token i executes a random walk in dimension i.

The motions of individual tokens are, of course, not in-

dependent. However, the transition probabilities of any

given token at any time depend only on which of the to-

kens are at zero at that time, i.e., on the set fi : s

i

= 0g.

This is an important property which makes analysis of

the chain feasible.

Our goal is to investigate the behavior of the waste

in the algorithm after packing t items, which is just the

quantity

P

k�1

i=1

is

i

(t). (The weights i appear in this sum

because we have scaled the bin sizes from 1 to k.) In

particular, we will be concerned with determining, for

given pairs (j; k), whether or not the expected waste

remains bounded for an in�nite stream of items, i.e.,

as t ! 1. As explained in the Introduction, we will

focus on the case where j = k � 2, and we assume this

relationship from now on.

2.2 Classi�cation of tokens

It will be convenient for us to partition the tokens into

two classes, which we will call \large" and \small." This

idea is motivated by the fact that tokens behave in two

distinct ways, as we shall see in a moment. The small

tokens are tokens i with 1 � i � d

j

2

e. The large tokens

are tokens k�i with 1 � i � d

j

2

e. Note that the numbers

of small and large tokens are equal. In the case that

j is even there is actually an additional token, namely

d

j

2

e+1, which is neither small nor large: we call this the

middle token.

We �rst establish a fundamental constraint on the

states that are reachable from the initial state s(0). This

fact is implicit in [4]; the proof, which is a straightfor-

ward induction on time, is left as an instructive exercise

for the reader.

Proposition 2 State s is reachable from the initial

state s(0) only if

1. For distinct indices i and i

0

with i + i

0

� k, either

s

i

= 0 or s

i

0

= 0. (I.e., no two tokens whose index

sum is k or greater can simultaneously be at non-

zero positions.)
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2.

P

i not small

s

i

� 1. (I.e., the large and middle tokens

cannot move beyond position 1; moreover, at most

one of them can be away from 0 at any time.)

It is not hard to see that all states satisfying the con-

ditions of Proposition 2 are in fact reachable from the

initial state. From now on, we shall therefore assume

that the state space of our Markov chain is precisely this

set S of reachable states.

The above proposition expresses general constraints

on the motions of the tokens. In the following three sub-

sections, we establish further properties of the behavior

of tokens under certain assumptions about the distribu-

tion of other tokens. These properties will be used in

our analysis in the next section.

2.3 Behavior of large and middle tokens

We have already seen that the large and middle tokens

behave in an extremely restricted fashion: namely, they

can take on values only 0 and 1, and at most one of them

can be non-zero at any time. Their behavior becomes

even more restricted under the condition that s

dj=2e

> 0.

This condition will arise naturally in our analysis in the

next section.

Proposition 3 Suppose that s

dj=2e

remains strictly pos-

itive throughout some time interval. Then during this

interval:

� all large tokens remain at 0; and

� the middle token (if it exists) oscillates between 0

and 1 independently of the positions of all other to-

kens.

Proof. The �rst claim is immediate from condition 1 of

Proposition 2. To see the second claim, note that, be-

cause all larger tokens are at 0, insertions of item d

j

2

e+ 1

are placed alternately in an empty bin (thus creating a

bin with capacity d

j

2

e + 1) and in this newly opened

bin. No other insertions can a�ect token d

j

2

e+ 1, which

therefore oscillates between 0 and 1 as claimed.

In view of the second claim of Proposition 3, we will

assume from now on that j is odd, so that there is no

middle token to worry about. This assumption is justi-

�ed because our analysis will hinge on the behavior of the

system when s

dj=2e

> 0; but Proposition 3 then tells us

that the behavior of the middle token under this condi-

tion is degenerate. With this observation, the argument

we will give for j odd trivially extends to the case when

j is even.

2.4 Behavior of small tokens

Most of this paper is concerned with the detailed behav-

ior of the small tokens: since the other tokens remain

very severely bounded, it is really only the small tokens

that are interesting from the point of view of the asymp-

totic behavior of the algorithm. In the next proposition,

we isolate an essential feature of the motion of the small

tokens under a certain condition that will again arise

naturally from our analysis in the next section.

Proposition 4 The motion of a small token i has the

following properties:

Property A Whenever s

i�1

> 0, the motion of s

i

at all

positions other than 0 is a (non-time-homogeneous)

random walk on Z

+

with non-negative drift and

holding probability at most 1�

2

j

.

Property B The time spent by s

i

on each visit to 0 is

stochastically dominated

y

by a random variable D

with constant expectation (that depends only on j).

Proof. Consider �rst the case when s

i

> 0, and assume

also that s

i�1

> 0. Since s

i�1

> 0, the only way in

which s

i

can decrease is through the insertion of item i.

On the other hand, s

i

will certainly increase on insertion

of item k� i; to see this, note from condition 1 of Propo-

sition 2 that s

i

0

= 0 for all i

0

� k � i, so the algorithm

must insert item k � i into an empty bin. Hence s

i

de-

creases with probability

1

j

and increases with probability

at least

1

j

, which is exactly equivalent to Property A.

Now consider what happens when s

i

= 0. If s

i

0

= 0 for

all i

0

� k�i, then as above we can conclude that s

i

moves

to 1 with probability at least

1

j

. However, now we cannot

exclude the possibility that s

i

0

= 1 for some i

0

� k� i, in

which case item k � i will be inserted into the bin with

capacity i

0

so s

i

cannot leave 0. On the other hand, in

this situation we see that two consecutive insertions of

item k� i will certainly have the e�ect of moving s

i

to 1.

This crude argument indicates that the time spent by

token i at 0 is stochastically dominated by the random

variable D de�ned as follows over the sequence of item

insertions immediately following the arrival of s

i

at 0:

D =

�

1 if �rst insertion is k � i;

N otherwise,

where N is the number of insertions until the �rst pair of

consecutive insertions of k� i has occurred. Notice that

the events that item k � i is inserted at time t are mu-

tually independent for all t, and all have probability

1

j

.

Hence it is easy to see that the tail of D has the form

Pr[D > n] � �

n

for some constant � < 1 that depends

only on j. This in turn implies that the expectation ofD

is bounded above by a constant that depends only on j.

y

Recall that a random variable X is stochastically dominated

by a random variable Y if Pr[X � r] � Pr[Y � r] for all r.
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2.5 Behavior of the waste

Next we investigate what happens to the waste, again

under the assumption that s

dj=2e

> 0. De�ne f(t) =

P

dj=2e

i=1

is

i

(t), which is just the waste due to the small

tokens at time t. By Proposition 2, the total waste is

bounded above by f(t)+k�1. The following proposition

shows that f(t) has negative drift under our assumption

about s

dj=2e

.

Proposition 5 Suppose that s

dj=2e

(t) > 0. Then

E[f(t + 1) � f(t) j f(t)] = �1=j.

Proof. We consider the change in f under the insertion

of each possible item i. There are two cases.

Case 1: 1 � i � d

j

2

e. Suppose �rst that s

i

> 0. Then the

item is inserted into a bin of capacity i, so s

i

decreases

by 1 and the change in f is �i. Suppose on the other

hand that s

i

= 0. Then the item is inserted into a bin of

capacity ` for some i < ` � d

j

2

e, so s

`

decreases by 1 and

s

`�i

increases by 1, and the net change in f is again �i.

Case 2: i = k � i

0

with 2 � i

0

� d

j

2

e. In this case,

since s

d

j

2

e

> 0, Proposition 2 implies that there can be

no open bin large enough to accommodate the item, so

it must be inserted into an empty bin. As a result s

i

0

increases by 1, and the change in f is +i

0

.

Note that cases 1 and 2 together cover all items since

we are assuming that j is odd. Putting together the

above cases, we see that the average change in f over all

item insertions is

1

j

�d

j

2

e

X

i=1

(�i) +

d

j

2

e

X

i

0

=2

i

0

�

= �

1

j

;

as claimed.

3 Analysis of the Markov chain

This section is devoted to proving our main result, The-

orem 1 stated in the Introduction. Our proof makes use

of the following result of [5], which establishes a general

condition, in terms of the existence of a suitable Lya-

punov function, for a multi-dimensional Markov chain

to be ergodic. For more specialized variations on this

theme, see [7, 11, 8, 4].

Lemma 6 [5, Corollary 7.1.3] LetM be an irreducible,

aperiodic Markov chain with state space S �Z

k

, and b a

positive integer. Denote by p

b

ss

0

the transition probability

from s to s

0

in M

b

, the b-step version of M. Let � :

S ! R

+

be a non-negative real-valued function on S

which satis�es the following conditions:

1. There are constants C

1

; � > 0 such that �(s) >

C

1

ksk

�

for all s 2 S.

2. There is a constant C

2

> 0 such that p

b

ss

0

= 0 when-

ever j�(s) ��(s

0

)j > C

2

, for all s; s

0

2 S.

3. There is a �nite set B � S and a constant � > 0

such that

P

s

0

2S

p

b

ss

0

(�(s

0

) ��(s)) < �� for all s 2

S nB.

Then M is ergodic with stationary distribution � satis-

fying �(s) < Ce

���(s)

for all s 2 S, where C and � are

positive constants.

To interpret this lemma, view � as a potential function

that maps the state space to the non-negative reals, so

that the image of the Markov chain under � becomes a

dynamical system on the real line. Condition 1 requires

that � grows polynomially with ksk =

P

i

s

i

, while con-

dition 2 requires that the process is well-behaved in the

sense that it has bounded variation. The key is condi-

tion 3, which says that, except for a �nite set of states,

� has negative drift over an interval of some constant

length b. This implies that M is ergodic with a sta-

tionary distribution that decays at least exponentially

with �.

In our application, M will be the Markov chain that

governs the movements of the tokens, whose state space

is the subset S ofZ

k�1

+

de�ned by Proposition 2, and �

will be the function �(s) =

P

dj=2e

i=1

is

i

+k�1. Note that

� is just f +k�1, where f is the waste function appear-

ing in Proposition 5. Since k � 1 is an upper bound on

the waste due to the large and middle tokens, �(s) is an

upper bound on the total waste in any state s. It is easy

to check that conditions 1 and 2 hold for this �, with

any choice of constant b. All our work will be devoted

to proving the negative drift condition 3, for suitably

chosen b, B and �. Theorem 1 will then follow immedi-

ately, since asymptotically the expected waste is at most

P

s2S

�(s)�(s), which by Lemma 6 is bounded.

The following is an informal sketch of our strategy for

proving condition 3:

(i) We consider an interval of length b, and show that �

has negative drift over this interval provided it is

large enough at the start of the interval: i.e., we

will take B to be the �nite set of points on which

� is \small." Thus for s 2 S n B, we can be sure

that, for some small token i, s

i

is large at the start

of the interval, and hence positive throughout the

interval.

(ii) Since s

i

> 0 throughout the interval, by Proposi-

tion 4 the motion of s

i+1

is a random walk with

non-negative drift: hence the time that s

i+1

spends

at 0 during the interval is dominated by the time

spent at 0 by a symmetric random walk, which is

small (about const �

p

b).

(iii) Iterating this argument, appealing to Proposition 4

each time, we can conclude that each of the tokens

s

i+2

; : : : ; s

dj=2e

spends little time at 0.
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(iv) Finally, since we have established that s

dj=2e

> 0

during most of the interval, Proposition 5 tells us

that f (and hence �) has negative drift on most

steps, and hence an overall negative drift over the

entire interval.

The tricky part of the above argument is step (iii):

at each stage we need to use the fact that s

i

0

> 0 to

deduce from Proposition 4 that s

i

0

+1

has non-negative

drift. However, occasionally s

i

0

will be at 0, and at these

times we have no control over the motion of s

i

0

+1

. We

therefore assume that s

i

0

+1

has non-negative drift most

of the time, but that an adversary is able to bias its mo-

tion on a small number of steps. Accordingly, we need to

prove a lemma that quanti�es the e�ect that such an ad-

versary can have on the amount of time s

i

0

+1

spends at 0.

This we now do. Actually, for simplicity we will analyze

the e�ect of such an adversary on a symmetric random

walk: since s

i

0

+1

has non-negative drift, it is clear that

the time it spends at 0 will be stochastically dominated

by the symmetric walk (see Proposition 9 below for a

precise statement).

So, consider a symmetric random walk of a given

length onZ

+

, started at some speci�ed position, and an

adversary whose goal is to maximize the number of times

the walk hits 0.

y

The adversary is allowed to intervene

at some speci�ed number of steps, selected according to

any strategy: on these steps, the adversary may specify

any desired probability distribution on the legal moves

of the process from the current state; on all other steps,

the process behaves as a symmetric random walk with

a perfectly re
ecting barrier at 0. (Note that, since the

only legal move from 0 is to 1, the adversary is not able

to intervene at 0.)

It is perhaps not surprising that the optimal strategy

for the adversary is always to intervene by driving the

process deterministically towards the origin, and to use

up all these interventions as early as possible. However,

this claim requires some justi�cation, which we now pro-

vide.

Lemma 7 Let p(i; n; y;m) be the probability that a sym-

metric random walk of n steps, starting at i and with y

adversary steps, hits the origin at least m times. Let

q(i; n; y;m) be the same quantity for the particular ad-

versary strategy in which downward steps are used as

early as possible. Then p(i; n; y;m) � q(i; n; y;m) for all

i; n; y;m.

To prove Lemma 7, we need a simple technical obser-

vation about symmetric random walk.

Proposition 8 Let p

0

(i; n;m) = p(i; n; 0;m) denote the

probability that a symmetric random walk of length n

started at i hits 0 at leastm times. Then p

0

(2; n;m�1) �

p

0

(1; n+ 1;m).

y

Throughout, for convenience, we shall take \hits 0" to mean

\makes the transition 0! 1."

Proof. Let W

2

be the random walk started from 2 and

W

1

the random walk started from 1. Consider the �rst

time T when W

2

reaches 1, and the �rst time T

0

when

W

1

reaches 1 by a 0 ! 1 transition. Then it is easy

to see that T

0

is equal to T + 1 in distribution. The

remainder of W

2

after T is a random walk started at 1

which must have at least m � 1 hits. The remainder of

W

1

after T

0

is also a random walk started at 1 which

must have at least m � 1 hits. Thus if m > 1, the

probabilities are the same for both walks (conditioning

on the event T = T

0

� 1 � n), and if m = 1, we trivially

have p

0

(2; n; 0) = 1 � p

0

(1; n+ 1; 1).

We now prove Lemma 7. We will consider only de-

terministic strategies: the randomized case follows by

averaging.

Proof of Lemma 7. We use induction on n. Let D

y

R

denote the strategy which uses the y forced down steps

as soon as possible, and then follows the symmetric ran-

dom walk. Let RD

y

denote the strategy which starts

with a truly random step as soon as possible, and then

uses the y forced down steps as soon as possible. Notice

that a transition from 0 to 1 is neither a forced down step

(obviously) nor a truly random step, since it has proba-

bility 1. Let q(i; n; y;m) denote the probability that the

walk of length n de�ned by the strategy D

y

R, started at

i and with y forced down steps has at least m hits; let

r(i; n; y;m) be de�ned similarly for the strategy RD

y

.

We claim that

q(i; n; y;m) � r(i; n; y;m) (1)

Note that the lemma will then follow by induction on n:

consider the �rst time the adversary may intervene. Ei-

ther way, after this step we are left to deal with fewer

than n steps. If the adversary does force a down step,

by induction the best strategy to continue is D

y�1

R, so

the strategy for the entire walk is D

y

R. If the adver-

sary does not intervene, using induction again, the best

strategy to continue is D

y

R, so the strategy for the en-

tire walk is RD

y

R = RD

y

. Inequality (1) shows that

the strategy D

y

R is better than RD

y

.

To prove (1), we also use induction on n. If i = 0,

both strategies start the same way and we are done by

induction. If i � y + 1, both strategies give the same

distribution of positions after y+1 steps, and neither has

hit 0 yet, so the two quantities are equal. The interesting

case is for 1 � i � y. Then, let n

0

= n� (2y� i+2) and

m

0

= m � (y � i+ 1). It is easy to see that

q(i; n; y;m) =

1

2

p

0

(0; n

0

;m

0

) +

1

2

p

0

(2; n

0

;m

0

)

and

r(i; n; y;m) =

1

2

p

0

(0; n

0

;m

0

) +

1

4

p

0

(0; n

0

;m

0

+ 1)

+

1

4

p

0

(2; n

0

;m

0

+ 1):

6



Since p

0

(1; n

0

+ 1;m

0

+ 1) =

1

2

�

p

0

(0; n

0

;m

0

+ 1) +

p

0

(2; n

0

;m

0

+ 1)

�

, the di�erence is

q � r =

1

2

�

p

0

(2; n

0

;m

0

)� p

0

(1; n

0

+ 1;m

0

+ 1)

�

;

which is non-negative by Proposition 8.

Recall that we simpli�ed our adversary argument by

considering symmetric random walk rather than the

more general random walk with non-negative drift and

holding probabilities that is actually executed by the to-

kens according to Property A of Proposition 4. However,

it should be intuitively clear that this simpli�cation can

only increase the number of hits on 0. To make this

precise, consider an arbitrary stochastic process over the

non-negative integers. Assume it has arbitrary holding

probabilities except at 0, where the holding probability

is zero, and non-negative drift everywhere. Let Z de-

note the number of hits on 0 during the �rst T steps

of this process. Let U be the similar quantity for the

symmetric random walk with zero holding probabilities

and perfectly re
ecting barrier at 0, starting at the same

point. The following fact can be proved by a simple cou-

pling argument, which we omit.

Proposition 9 Z is stochastically dominated by U .

We are now in a position to proceed with the proof

of our main result, following the sketch given after

Lemma 6. As observed there, the main di�culty lies

in step (iii): assuming that s

i

> 0 throughout some

interval, we want to conclude that s

dj=2e

> 0 during

most of that interval. This is the subject of the next

lemma, which makes essential use of our adversary re-

sult, Lemma 7.

Lemma 10 Let T and a be positive constants, and sup-

pose that s

i

(0) > T for some i � d

j

2

e. With probability

at least 1�C=a, where C is a constant that depends only

on j, s

dj=2e

(t) is strictly positive at all but at most a

p

T

time instants t within the interval [0; T ].

Proof.We will prove the claim for i = 1; as will become

apparent, the proof for general i is exactly the same.

So, assume that s

1

(0) > T . For each i, let the random

variable T

i

denote the time spent at 0 by token i during

the interval [0; T ]. Clearly T

1

= 0 with probability 1.

Next let us consider the behavior of the sequence s

2

.

Consider a modi�ed process s

0

2

which is de�ned as fol-

lows. First, run s

2

for T steps. Then, have the token s

0

2

follow a symmetric random walk with a holding time at 0

distributed according to D. Finally, delete from s

0

2

all

stationary steps at 0. Let T

0

2

be the number of hits on 0

of s

0

2

during the time interval [0; T ]. Then we have

T

2

�

T

0

2

+1

X

r=1

D

r

; (2)

where the D

r

are i.i.d. with the same distribution as D,

and T

0

2

is independent of all of the D

r

. (Here � denotes

stochastic domination between the random variables.)

To analyze T

0

2

, we compare it with U , the number

of hits on 0 of symmetric random walk with no hold-

ing probabilities and perfectly re
ecting barrier at 0. By

Proposition 9, T

0

2

is stochastically dominated by U . Tak-

ing expectations in (2) and using this observation, we get

ET

2

� E

�

T

0

2

+1

X

r=1

D

r

�

=

1

X

t=0

t+1

X

r=1

E[D

r

j T

0

2

= t] Pr[T

0

2

= t]

� (EU + 1)ED

= d(EU + 1) ; (3)

where the constant d is the expectation ofD fromPropo-

sition 4.

Now consider token s

`

, where 3 � ` � d

j

2

e. De�ne a

modi�ed process s

0

`

and a random variable T

0

`

in exactly

similar fashion to s

0

2

and T

0

2

. By analogy with (2) we

may write

T

`

�

T

0

`

+1

X

r=1

D

r

: (4)

Now our adversary argument, Lemma 7, implies that T

0

`

is stochastically dominated by U + T

`�1

. To see this,

note that

Pr[T

0

`

� m j T

`�1

= y] � p(s

`

(0); T; y;m)

� q(s

`

(0); T; y;m)

� Pr[U � m � y]:

Taking expectations in equation (4), and using this fact,

we get

ET

`

� (EU + ET

`�1

+ 1)ED = d(EU +ET

`�1

+ 1):

Iterating this bound, and using the base case (3), gives

ET

`

�

�

`�2

X

r=1

d

r

�

(EU + 1) + d

`�2

ET

2

� `d

`

(EU + 1):

But EU � c

p

T for some universal constant c. Hence

by Markov's inequality

Pr

�

T

dj=2e

> a

p

T

�

<

dj=2ed

d

j

2

e

(c+ 1=

p

T )

a

;

which is bounded above by C=a for some constant C as

required.

Remarks: (a) The above proof actually demonstrates

the stronger conclusion that s

i

0

(t) > 0 for all i

0

in the

range i � i

0

� d

j

2

e, for a similar majority of the interval.

7



(b) It is interesting to note that the only properties of

the sequence s(t) we have used in the above proof are

properties A and B of Proposition 4. Thus Lemma 10

actually applies to any sequence of vector random vari-

ables satisfying these rather natural properties. We be-

lieve that this fact may be of independent interest.

We are �nally in a position to complete the proof of

Theorem 1, following our earlier sketch.

Proof of Theorem 1. Recall from the discussion im-

mediately following the statement of Lemma 6 that it

su�ces to establish condition 3 of the lemma for the

function �(s) =

P

dj=2e

i=1

is

i

+ k� 1, with suitable choices

of b, B and �. The set B � S will be de�ned as

B = fs 2 S : 8i; s

i

� Tg;

where T is some constant to be speci�ed shortly.

Assume that s = s(0) 2 S n B, i.e., that for some

coordinate i we have s

i

(0) > T ; necessarily i � d

j

2

e.

Consider the time interval [0; T ]. We will show that the

expected drift of � over this interval is less than �� for

some � > 0, thus establishing condition 3. Since we

are analyzing drift, we may equivalently work with the

function f of Proposition 5, which di�ers from � only

by a constant.

By Lemma 10, with probability at least 1 � C=a we

have s

dj=2e

> 0 at all but at most a

p

T time instants in

the time interval [0; T ].

Now consider the change �f in f after one step. By

Proposition 5, if s

dj=2e

> 0 then E�f � �1=j. In all

other situations, there is the trivial bound E�f � j.

Putting these facts together, and conditioning on the

event A that s

dj=2e

> 0 at all but at most a

p

T time

instants in the interval, we see that the drift of f over

the entire interval [0; T ] is

E[f(b) � f(0) j f(0)]

� E[f(b) � f(0) j f(0) ^A]

+ (1� Pr[A]) E[f(b)� f(0) j f(0) ^ :A]

�

�

�

1

j

�

T � a

p

T

�

+ ja

p

T

�

+

Cj

a

T:

By taking a = 2Cj

2

large enough, and then T large

enough, we can make this expression less than some neg-

ative constant ��.

This completes the veri�cation of condition 3, and

hence the proof of the theorem.

Acknowledgments

We thank David Aldous and Ashwin Nayak for helpful

comments on an earlier draft of this paper.

References

[1] Y. Azar, A.Z. Broder, A.R. Karlin, N. Linial and

S. Phillips. Biased random walks. In Proceedings of

the 24th Annual ACM Symposium on Theory of Com-

puting, 1992, pp. 1{9.

[2] E.G. Co�man Jr., C. Courcoubetis, M.R. Garey,

D.S. Johnson, L.A. McGeoch, P.W. Shor, R.R. Weber

and M. Yannakakis. Fundamental discrepancies between

average-case analyses under discrete and continuous dis-

tributions: A bin-packing case study. In Proceedings of

the 23rd Annual ACM Symposium on Theory of Com-

puting, 1991, pp. 230{240.

[3] E.G. Co�man Jr., M.R. Garey and D.S. Johnson. Ap-

proximation algorithms for bin packing: A survey. To

appear in Approximation Algorithms for NP-Hard Prob-

lems, D.S. Hochbaum, ed., PWS Publishing Company,

Boston, 1996.

[4] E.G. Co�man Jr., D.S. Johnson, P.W. Shor and

R.R. Weber. Markov chains, computer proofs and

average-case analysis of Best Fit bin packing. In Pro-

ceedings of the 25th Annual ACM Symposium on Theory

of Computing, 1993, pp. 412{421.

[5] G. Fayolle, V.A. Malyshev and M.V. Menshikov. Con-

structive Theory of Countable Markov Chains, Part I.

Manuscript, May 1992.

[6] W. Feller. An Introduction to Probability Theory and

its Applications, Volume I (3rd ed.) John Wiley, New

York, 1968.

[7] F.G. Foster. On stochastic matrices associated with cer-

tain queueing processes. Annals of Mathematical Statis-

tics 24 (1953), pp. 355{360.

[8] B. Hajek. Hitting-time and occupation-time bounds im-

plied by drift analysis with applications. Advances in

Applied Probability 14 (1982), pp. 502{525.

[9] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and

R.L. Graham. Worst case performance bounds for sim-

ple one-dimensional packing algorithms. SIAM Journal

on Computing 3 (1974), pp. 299{325.

[10] F.T. Leighton. Average case analysis of greedy routing

algorithms on arrays. In Proceedings of the 2nd Annual

ACM Symposium on Parallel Algorithms and Architec-

tures, 1990, pp. 2{10.

[11] V.A. Malyshev and M.V. Menshikov. Ergodicity, con-

tinuity and analyticity of countable Markov chains.

Transactions of the Moscow Mathematical Society 39

(1979), pp. 3{48.

[12] P.W. Shor. The average case analysis of some on-line

algorithms for binpacking. Combinatorica 6 (1986),

pp. 179{200.

[13] J. Walrand. An introduction to queuing networks. Pren-

tice Hall, Englewood Cli�s, New Jersey, 1988.

8


