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Abstract

The main purpose of this paper is to promote the

study of computational aspects, primarily the conver-

gence rate, of nonlinear dynamical systems from a

combinatorial perspective.

We identify the class of symmetric quadratic sys-

tems. Such systems have been widely used to model

phenomena in the natural sciences, and also provide

an appropriate framework for the study of genetic algo-

rithms in combinatorial optimisation. We prove sev-

eral fundamental general properties of these systems,

including a characterisation of the set of �xed points

to which the system converges.

We go on to give a detailed analysis of a quadratic

system de�ned in a natural way on probability distri-

butions over the set of matchings in a graph. In par-

ticular, we prove that convergence to the limit requires

only polynomial time when the graph is a tree. This

result demonstrates that such systems, though nonlin-

ear, are amenable to quantitative analysis.

1 Introduction

1.1 Dynamical systems

Many natural phenomena can be described by dy-

namical systems in Euclidean space. In such a de-

scription there is a �xed set of types, one for each
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dimension, and a point in the system (often called a

state or a population) speci�es how many elements of

each type exist at a given time instant. The system

evolves under a �xed map f , which attempts to cap-

ture the underlying phenomenon. We mention below

a few examples; for a detailed treatment see, e.g., [7].

In Physics, the systemmight describe the behaviour

of gas molecules in a container. Here the types corre-

spond to, say, velocity values, and the state p speci�es

how many molecules of each type there are at a cer-

tain point in time. The map f includes the Newtonian

laws so as to produce from each state p a new state

f(p) in the next time step, under some assumption

about the spatial distribution of the molecules [11].

(One can also easily de�ne a continuous-time analogue

of this system). This view of dynamics is quite general

and can in principle be used to describe a wide range

of physical phenomena.

In Biology, the types may be the genotypes of some

species (speci�ed by the values of their genes). A pop-

ulation p is then simply the number of individuals of

each type. The map f determines the population in

the next generation according to a �xed set of rules

that includes the genetic outcome of mating, the sur-

vival capacity of di�erent types, random mutations

etc. [2]. A completely di�erent biological example de-

scribes the ecological coexistence of di�erent species.

Here the types are species, p speci�es the number of

creatures of each type, and f describes the outcome

of their interaction: for example, one species may be

the food supply of the other, or compete with it for

the same resource [7].

The basic object of study in any such system is

the trajectory of a point p in the state space, i.e.,

the sequence of points p; f(p); f(f(p)); : : : . There are

many questions one can ask about these objects, each

of which has given rise to a major research area: for

example, there are geometric and topological studies

of the structure of the limit points or sets (attractors)

of trajectories and of the initial points converging to

them; ergodic and measure-theoretic questions on the

recurrence of visits of trajectories to subsets of the



state space; \chaos"-type questions on the sensitivity

of the trajectory and its limit to small perturbations in

the initial point; and computational questions regard-

ing the time it takes for transient behaviour to die out

and the system to reach its limiting behaviour. This

last type of question is of central importance both to

understanding the phenomenon captured by the dy-

namical system and in computer simulations of the

system, which are often performed as a means of real-

ising complex limiting behaviour. Our main interest is

in the last type of question, though when studying it

one often needs to tackle the other questions as well.

The simplest dynamical systems arise from linear

maps f . The ubiquitous example of a linear system

is a Markov chain, viewed as acting on the simplex

of probability distributions over types. (When f pre-

serves the \size" of the population, it is often more

convenient to take the state space to be just these

probability distributions rather than all of Euclidean

space; we shall adopt this view throughout.) It is well

known that, if f is irreducible and aperiodic, there

is a unique limit point (or stationary distribution)

which attracts all initial points. Moreover, there is a

beautiful spectral theory that explains how the second

largest eigenvalue of the matrix representing f con-

trols the rate of convergence of any trajectory to the

limit. Although originally motivated by the study of

natural phenomena, this theory has proved extremely

useful in many mathematical disciplines. In partic-

ular, there has been a recent upsurge of interest in

algorithmic applications of arti�cial Markov chains in

Computer Science, spurred by the development of new

tools for analysing the rate of convergence. Exam-

ples include probabilistic algorithms for approximate

counting [6, 10], pseudo-random number generators [1]

and \simulated annealing" type algorithms for combi-

natorial optimisation [9, 10, 15].

For nonlinear systems, in stark contrast, there are

almost no global convergence rate bounds available

(but see [3]). We now identify a class of nonlinear

systems known as symmetric quadratic systems, and

argue that they capture several natural and arti�cial

phenomena for which obtaining convergence rate in-

formation is computationally important. Then we de-

scribe our results, which demonstrate that these sys-

tems are sometimes amenable to quantitative analysis.

1.2 Symmetric quadratic operators

We illustrate this class of systems by its oldest ex-

ample, namely the (space homogeneous) kinetic gas

model of Maxwell. Gas molecules interact by means of

elastic collisions that change the distribution of their

velocities. Thus the types are velocity vectors in R

3
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and when two types i; j collide they disappear and

are replaced by a random pair k; l which preserves

momentum and energy. (In classical mechanics the

resulting pair would be uniquely determined, but sta-

tistical mechanics makes the outcome random by pos-

tulating a uniform distribution on all possible relative

positions of the balls at collision.) Note that in this

system the event that the pair i; j produces k; l has

the same probability as its time reversal, in which k; l

produces i; j . We call systems having this property

symmetric. Moreover, it is clear that the map f de�n-

ing this system is quadratic, i.e. f(p) is a quadratic

function of p , since outcomes depend only on pairwise

collisions.

Many other physical theories assume pairwise inter-

actions and hence de�ne quadratic systems. Moreover,

the outcomes of local interactions in physical systems

are often de�ned in a symmetric fashion. In genet-

ics, the feature of pairwise interaction (of parents)

to produce the next generation is almost universal.

Here symmetry is less common, but exists in simple

genetic models where, for example, a child randomly

picks each gene from either the father's or the mother's

DNA (as can be seen by introducing a \complemen-

tary" child who makes the opposite choices).

The importance of understanding the evolution of

natural systems of this kind, and in particular the

computational issue of the rate at which they approach

limiting behaviour, is well known. Further motivation

for the study of these questions is provided by a fam-

ily of arti�cial systems called genetic algorithms [8],

which have recently gained acceptance as a general

heuristic for solving combinatorial optimisation prob-

lems. The Appendix explains why similar questions

about limit points and convergence rate arise when

trying to understand these heuristics and estimate

their e�ciency.

1.3 Summary of results

We consider only discrete-time, �nite-dimensional

systems. For any symmetric quadratic system of this

form, we prove that every trajectory that does not

approach the boundary of the simplex converges to

a �xed point; this is enough to imply global conver-

gence of many naturally occurring systems. This is

a strong property not shared by general, asymmetric

systems. We go on to give a characterisation of all

�xed points, and describe all the linear invariants of

the system. Our main analytical tool is the fact that

entropy is strictly increasing along any non-trivial tra-

jectory. This is a discrete analogue of Boltzmann's

2



famous H-Theorem, which he proved when studying

the kinetic gas model described above. Although such

results, and sometimes much more, are known for cer-

tain special cases studied in Physics, our setting is

more general and focuses on the combinatorial struc-

ture of the system.

Next we de�ne a natural quadratic system on prob-

ability distributions over the matchings in a graph,

motivated both by its inherent combinatorial inter-

est and its application to algorithms for generating

matchings at random from certain probability distri-

butions. We give a complete analysis of this system

when the underlying graph is a tree. The analysis is in

two parts. The �rst part gives an explicit closed-form

formula for the limitdistribution in terms of simple pa-

rameters of the initial distribution. The second, and

more signi�cant part is a proof that the system always

converges to its limit in time that depends only poly-

nomially on the size of the tree. This is a strong result

in view of the fact that the number of matchings in

the tree is in general exponentially large. Moreover, it

appears to be the �rst bound of its kind for a complex

nonlinear system de�ned on combinatorial structures.

2 De�nitions and basic properties

In this section we formallyde�ne the dynamical sys-

tems of interest to us and establish some fundamental

general results about their behaviour.

2.1 Symmetric quadratic operators

For convenience we shall adopt throughout termi-

nology appropriate to the genetic applications men-

tioned in the Introduction, though the systems we de-

scribe have more general applicability. We consider a

quadratic operator, which we shall refer to as a \mat-

ing" operator, of the following form. Let N be a �nite

set of \types", with jN j = N . For each quadruple

(i; j; k; l) 2 N

4

, let �

ijkl

denote the probability that,

in a mating between the two \parent" types i and j ,

the two types k and l are produced as \o�spring".

Since any mating must have a de�nite outcome, we

always have

P

k;l2N

�

ijkl

= 1 for all i; j 2 N .

We will adopt the view that the order of parents and

o�spring is not signi�cant, so that � is symmetric in

i and j , and in k and l , i.e., �

ijkl

= �

jikl

= �

ijlk

.

We also impose the further symmetry condition that

�

ijkl

= �

klij

; this means that the mating operation is

locally reversible. If � satis�es all the above symme-

try conditions, we call it symmetric. As indicated in

the Introduction, the operators encountered in many

applications of interest are symmetric so this does not

constitute a severe restriction. Moreover, as we shall

see presently, symmetric operators have much useful

structure which we will be able to exploit. Finally, we

call � aperiodic if �

ijij

> 0 for all i; j 2 N . Ape-

riodicity is a technical requirement, again satis�ed in

most applications, that simpli�es the statement of our

results.

Now let p = (p

i

) be a probability distribution

on N , which we shall often refer to as a \popula-

tion." Given a symmetric � as above, we de�ne the

population p� p by

(p� p)

l

=

X

i;j;k2N

p

i

p

j

�

ijkl

8l 2 N : (1)

(In the notation of the Introduction, the map f is de-

�ned by f(p) = p � p .) It should be clear that these

equations describe a mating process in which two par-

ents are selected independently at random from the

population p and mated to form random o�spring ac-

cording to the distribution speci�ed by � . The oper-

ator � (or, equivalently, � ) de�nes a (deterministic)

quadratic mapping from the simplex of probability dis-

tributions over N to itself.

By repeated application of this operator, we can

de�ne a time-dependent process (or a dynamical sys-

tem) in the obvious way: denote by p(0) the popula-

tion at time 0, and for all t 2 N de�ne p(t + 1) =

p(t) � p(t). We shall refer to the sequence of points

p(0); p(1); p(2); : : : as the trajectory of the point p(0).

Remark: We are focusing on systems described by

pairwise interactions, as these capture the majority of

natural examples. However, it should be clear that our

results can be generalised in a straightforward manner

to the case of m-ary interactions (in which m parents

produce m o�spring) for any �xed m , provided the

notion of symmetry is suitably extended.

2.2 Attractors (limit points): existence

and structure

As explained earlier, it is our main aim here to

study the evolution of p(t) with time. The obvious

�rst question to ask is whether p(t) tends to some

limit point � as t ! 1 . Clearly, since � is continu-

ous any such population � must be a �xed point, i.e.,

� � � = � ; we call such a population stationary. In

order to investigate this and other properties of our

systems, we study the entropy of the population. For

a probability distribution p on any set S , de�ne the
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entropy

H(p) = �

X

i2S

p

i

lg p

i

:

Theorem 1 For a symmetric, aperiodic operator � ,

the entropy of any non-stationary population is strictly

increased by mating; i.e., if p is not stationary then

H(p� p) > H(p) .

Proof: It is helpful to work with probability distri-

butions on the set N

2

of ordered pairs of types. For

any population p on N , de�ne the probability distri-

bution ep on N

2

by ep

ij

= p

i

p

j

. The relation between

the entropies of p and ep is easily seen to be

H(ep ) = 2H(p): (2)

We observe �rst that a single application of the

quadratic operator � can be decomposed into two

stages: a linear operation on the pair distribution ep ,

followed by a recomputation of the singleton probabil-

ities. The �rst stage is de�ned by a linear operator B

as follows:

(Bep )

kl

=

X

ij2N

2

�

ijkl

ep

ij

8 kl 2 N

2

:

In the second stage, we compute (p � p)

l

for each

l 2 N by

(p� p)

l

=

X

k2N

(Bep )

kl

:

It is immediate from the de�nition (1) of the opera-

tor � that these two stages do indeed correctly com-

pute p� p . We now proceed to show that, if p is not

stationary, each of the two stages causes the entropy

of the pair distribution to increase; by (2) this will

imply the theorem. I.e., we will show that

2H(p) = H(ep ) < H(Bep ) � H(

]

p� p) = 2H(p� p):

Consider the �rst stage. Note that B = (�

ij;kl

) is

the transition matrix of a Markov chain on N

2

, since

P

k;l2N

�

ijkl

= 1 for all i; j 2 N . By the assumption

on the symmetry and aperiodicity of � , B is sym-

metric and aperiodic. Now partition the state space

N

2

into classes of communicating states, i.e., equiva-

lence classes under the equivalence relation � de�ned

by ij � kl i� B

n

ij;kl

> 0 for some natural number n ,

where B

n

is the nth power of B . Each of these classes

behaves under B as an independent Markov chain,

which is symmetric and aperiodic and thus has the

uniform distribution as its unique stationary distribu-

tion. It is well known (see, e.g., [14, Section 5.6]) that

such a Markov chain causes the entropy of any non-

uniform probability distribution to increase strictly on

every step. This in turn implies that the entropy of

the entire distribution over N

2

increases under B ,

i.e., H(Bep ) > H(ep ), unless ep is uniform on all the

classes.

We turn now to the second stage. The e�ect of this

stage on the pair distribution is to transform it from

Bep into

]

p� p . Note that this operation preserves the

new marginals q

l

=

P

k

(Bep )

kl

but makes the com-

ponents k; l independent, i.e., (

]

p� p )

kl

= q

k

q

l

. It is

a routine matter to check that this latter distribution

has maximum entropy among all distributions on N

2

with the given marginals q

l

, so H(

]

p� p ) � H(Bep )

as claimed.

Finally, we have seen that the increase in entropy in

the �rst stage is strict unless ep is uniform on each

communicating class. But in this case we have Bep =

ep , which implies by the de�nition of the second stage

that p � p = p , so p is stationary. Thus we get a

strict increase in entropy unless p is stationary.

Remark: As mentioned in the Introduction, Theo-

rem 1 is a discrete version of a classical result in sta-

tistical mechanics known as Boltzmann's H-Theorem,

which asserts that the entropy of an ideal gas in-

creases monotonically with time (see, e.g., [11]). Here

the interaction probabilities �

ijkl

have values that de-

scribe the collisions of pairs of gas molecules. The

H-Theorem is generally proved for continuous time

systems and assumed to hold for discrete time with-

out rigorous justi�cation. Theorem 1 gives a rigor-

ous proof in the discrete-time setting and makes clear

the essential combinatorial properties required of � .

Theorem 1 is a powerful analytical tool. We use it

�rst to prove the following fundamental result, which

states that every trajectory that does not approach

the boundary of the simplex converges to some �xed

point (stationary population). To make this statement

precise, for distributions p; q on a �nite set S de�ne

the variation distance

kp� qk =

1

2

X

i2S

jp

i

� q

i

j = max

A�S

jp(A)� q(A)j:

We will write p(t) ! � to denote the fact that

kp(t)� �k ! 0 as t ! 1 . We say that a trajectory

p(0); p(1); : : : ; p(t); : : : does not approach the bound-

ary if there exists some � > 0 (which may depend

on p(0)) such that p

i

(t) � � for all i 2 N and all

su�ciently large t .

Theorem 2 For any symmetric, aperiodic operator �

and any initial population p(0) such that the trajectory

4



from p(0) does not approach the boundary, there exists

a stationary population � such that p(t) ! � .

Proof: Consider the trajectory p(0); : : : ; p(t); : : :,

and de�ne the function h(t) = H(p(t)). By Theo-

rem 1, h(t) increases monotonically with t , and since

it is evidently bounded above (by lgN ) it must tend

to some �nite limit, h say, as t ! 1 . Note that this

is not su�cient to ensure that p(t) itself converges.

However, since the simplex is a compact set, there ex-

ists a convergent subsequence fp(t

j

) : j = 0; 1; : : :g

with some limit � . By our assumption that the tra-

jectory does not approach the boundary, � must have

full support (i.e., �

i

� � > 0 for all i 2 N ). More-

over, it is easy to verify using continuity of the func-

tions H and � that � must be stationary and that

H(�) = h .

We will show that p(t) ! � . To do this, we consider

the information divergence, de�ned for distributions

p; q on N by D(pjjq) =

P

i2N

p

i

lg(p

i

=q

i

); note that

D(pjjq) � 0, with equality i� p = q . By the well-

known relationship (see, e.g., [4, page 58]) between

variation distance and information divergence, it suf-

�ces to show that D(p(t)jj�) tends to zero as t ! 1 .

Now for any t 2 N we may write

D(p(t)jj�) =

X

i2N

p

i

(t) lg p

i

(t)�

X

i2N

(lg�

i

)p

i

(t): (3)

The �rst term in (3) is just �h(t), while the sec-

ond term is constant in time: this can be seen by

noting that it is just the invariant function �

�

(p) �

P

i2N

(lg�

i

)p

i

, de�ned in Theorem 4, evaluated at the

point p(t). But since � is the limit of the subsequence

p(t

j

), by continuity the value of the invariant �

�

(p(t))

must be �

�

(�) = �H(�) = �h . Thus (3) yields

D(p(t)jj�) = �h(t) + h ! 0;

as required.

Remarks: (a) Theorem 2 is a very special property

that depends crucially on the symmetry of the oper-

ator � . It is well known that asymmetric quadratic

systems need not converge to a point but may exhibit

more complex behaviour such as cycling [7].

(b) The above proof actually tells us rather more:

it su�ces to make the weaker assumption that some

convergent subsequence has a limit with full support.

Thus a trajectory can only fail to converge to a limit

point if it approaches a connected set of equi-entropic

stationary points on the boundary of the simplex. The

analysis of trajectories close to the boundary is rather

subtle and will be discussed in the full version of the

paper.

(c) For many naturally occurring quadratic systems,

it is possible to show that the trajectory from every

initial population p(0) with full support satis�es the

condition in the above theorem, and hence converges

to a limit point (with full support). This holds in

particular for the quadratic system on matchings in

graphs which is the subject of Sections 3 and 4 of this

paper.

A further corollary of Theorem 1 is the following

elegant characterisation of the stationary populations.

Theorem 3 For a symmetric, aperiodic operator � ,

a population p is stationary i� it satis�es

p

i

p

j

= p

k

p

l

8ijkl with �

ijkl

> 0 : (4)

Proof: Recall from the proof of Theorem 1 that (4)

is precisely the condition that the pair distribution

ep

ij

= p

i

p

j

is a stationary distribution for the Markov

chain B de�ned in the �rst stage. But this condition is

in turn equivalent to stationarity of p for the quadratic

process, since p itself changes if and only if ep changes

in the �rst stage; to see this, note that the second

stage has no e�ect if ep is unchanged in the �rst stage,

and that it cannot undo any change in the �rst stage

since it causes entropy to increase.

Note that the characterisation of Theorem 3 is

purely structural, i.e., it depends only on which of the

�

ijkl

are non-zero and not on their numerical values.

Theorem 3 con�rms that in general there will be

a continuum of stationary populations, corresponding

to the set of solutions of the system of equations (4).

Each stationary population will have a certain domain

of attraction in the simplex. The question then arises

of how to determine, for a given initial population sat-

isfying the condition of Theorem 2, the particular sta-

tionary population which attracts it. The answer is to

look for invariants of the operator � , i.e., functions �

on populations that satisfy �(p� p) = �(p) for all p .

The following family of linear invariants plays a cru-

cial role in our systems. Recall that a population p

has full support if p

i

> 0 for all i 2 N .

Theorem 4 Let � be any stationary population with

full support. Then the function �

�

(p) =

P

l2N

(lg�

l

) p

l

is an invariant.

Proof: For each l 2 N de�ne the function �p

l

(t) =

p

l

(t + 1)� p

l

(t). We may expand �p

l

as

�p

l

(t) =

X

ijk

�

p

i

(t)p

j

(t) � p

k

(t)p

l

(t)

�

�

ijkl

; (5)

5



where we have used (1) to rewrite p

l

(t + 1) and sym-

metry of � to rewrite p

l

(t).

Now let �

l

= lg�

l

, and note from Theorem 3, since

� is stationary, that

�

i

+ �

j

= �

k

+ �

l

8ijkl with �

ijkl

> 0 : (6)

Now using (5) we may write

�

�

(p� p) � �

�

(p) =

X

ijkl

�

l

(p

i

p

j

� p

k

p

l

)�

ijkl

=

1

4

X

ijkl

(�

k

+ �

l

� �

i

� �

j

)(p

i

p

j

� p

k

p

l

)�

ijkl

;

where we have used the symmetry properties of � .

But (6) implies that every term in this sum is zero, so

�

�

is indeed invariant.

Remarks: (a) The invariants �

�

de�ned above are,

up to scalings, the only linear invariants of the system,

in the sense that any invariant of the form

P

l2N

�

l

p

l

de�nes a family of stationary populations (with full

support) of the form �

i

= c

�

i

=Z , where c is a positive

constant and Z a normalising factor. We omit the

proof.

(b) Equation (5) above indicates how to de�ne an

analogous system in continuous time: simply replace

�p

l

(t) on the left-hand side by the derivative dp

l

=dt .

This makes little essential di�erence to our results.

The signi�cance of the above invariants is expressed

in our next theorem, which states that they completely

determine the stationary population with full support

to which a given initial population is attracted (as-

suming such a limit point exists).

Theorem 5 Suppose p(t) ! p

�

and q(t) ! q

�

,

where p

�

and q

�

have full support. If �

�

(p(0)) =

�

�

(q(0)) for all invariants �

�

as above, then p

�

= q

�

.

Proof: We know in particular that �

p

�

(p(0)) =

�

p

�

(q(0)), and hence by continuity of the operator �

that �

p

�

(p

�

) = �

p

�

(q

�

). Similarly, �

q

�

(p

�

) = �

q

�

(q

�

).

Writing out these two equalities yields

X

l

(lg p

�

l

)p

�

l

=

X

l

(lgp

�

l

)q

�

l

X

l

(lg q

�

l

)p

�

l

=

X

l

(lg q

�

l

)q

�

l

which can be subtracted to give

X

l

(lg p

�

l

=q

�

l

)p

�

l

=

X

l

(lg p

�

l

=q

�

l

)q

�

l

:

But by Jensen's inequality applied to the convex func-

tion x lgx , the left-hand side of this equation is al-

ways positive and the right-hand side always negative.

Hence both sides must in fact equal zero, which hap-

pens i� p

�

= q

�

.

Theorem 5 gives us a �nite system of equations

whose unique solution is the limit point of the tra-

jectory of p(0). The equations consist of (4) to-

gether with a �nite basis for the set of linear equa-

tions �

�

(p) = c

�

, where the values c

�

are determined

by p(0), i.e., c

�

= �

�

(p(0)).

More can be said about the general systems de-

scribed above. However, having established some key

facts, we leave further development of the general set-

ting to the full paper [12] and instead show how the

above ideas may be applied to a speci�c example.

3 Matchings in graphs

We de�ne below a symmetric quadratic operator

that acts on probability distributions over matchings

in graphs. This operator is a natural one to choose as

part of an algorithm for generating a random match-

ing in a graph from a certain probability distribution.

Applications of this include approximate counting of

matchings and computation of the partition function

of monomer-dimer systems [10], as well as a genetic

algorithm for �nding a large matching. This latter

application is discussed in the Appendix.

Let G = (V;E) be an undirected graph and M(G)

the set of matchings in G . Given matchings i; j 2

M(G), construct a random pair of o�spring k and l

according to the following scheme. Let G

0

(i; j) =

(V;E

0

) be the subgraph of G whose edge set E

0

is

the symmetric di�erence of the edge sets of i and j .

Thus each connected component of G

0

(i; j) is a path

or a cycle whose edges belong alternately to i and

to j . For each such component independently, 
ip a

fair coin; if the coin comes up heads, make k agree

with i and l agree with j on the component; if it

comes up tails, reverse the roles of i and j . Also,

include in both k and l all edges common to both i

and j , and no other edges. (Thus the unions of the

edge sets of i and j and of k and l , viewed as multi-

sets, are equal.) It is a simple matter to check that the

above scheme speci�es a symmetric, aperiodic opera-

tor as de�ned in the previous section. We shall refer

to this operator as �

match

.

First let us consider the stationary populations un-

der �

match

. Using Theorem 3 we can obtain a simple

6



description of these. We call a population p on M(G)

normal if it is of the form

p

i

=

1

Z

Y

e2i

�

e

;

where �

e

2 R

+

for each edge e in G , and Z =

P

i2M(G)

Q

e2i

�

e

is a normalising factor.

Theorem 6 Under the operator �

match

, a population

with full support is stationary i� it is normal.

Proof: It is easy to check that any normal popula-

tion is stationary. For the other direction, let p be a

stationary population on M(G), and for each edge e

of G de�ne �

e

= p

feg

=p

0

, where 0 denotes the empty

matching and feg denotes the matching consisting

of the single edge e . Since we are assuming that p

has full support, each �

e

is positive and �nite. Now

we claim that, for each matching i , p

i

= p

0

Q

e2i

�

e

;

note that this is enough to establish the theorem. We

proceed by induction on the size of i . The claim is

trivially true when the size of i is 0 or 1. Suppose

i = j [ ffg , where the edge f does not belong to

matching j . Then it is easy to check that �

match

i0jffg

> 0,

so Theorem 3 implies that p

i

p

0

= p

j

p

ffg

= �

f

p

0

p

j

.

The claim now follows by applying the inductive hy-

pothesis to j . This concludes the proof of the claim

and the theorem.

Now consider an arbitrary initial population p(0)

over M(G). We shall say that p(0) generates M(G)

if some point p(t) on the trajectory from p(0) has full

support (i.e., if the trajectory from p(0) enters the

interior of the simplex). It is not hard to see that a

su�cient condition for this is that p(0) assigns posi-

tive weight to the empty matching in G and, for each

edge e of G , to some matching containing e . Now

it can be shown that no trajectory of the above form

can approach the boundary of the simplex; the proof,

which is left to the full paper, involves exhibiting, for

each boundary facet of the simplex that contains a sta-

tionary point, an invariant that vanishes on the facet

but is strictly positive on every interior point. The-

orem 2 then ensures that every such trajectory con-

verges to a stationary population with full support.

Thus we see from Theorem 6 that, if p(0) is any ini-

tial population that generates M(G), repeated appli-

cation of �

match

to p(0) results asymptotically in a

normal population.

Remark: With rather more work, it is possible to

derive necessary and su�cient conditions for p(0) to

generate M(G). This question turns out to be inti-

mately related to the structure of the matching poly-

tope of G ; we defer a detailed discussion, which is of

independent interest, to the full paper [12].

We turn now to the problem of determining the

normal population to which the trajectory of a given

initial population p(0) converges. Following the ap-

proach of the previous section, we identify a family of

invariants of �

match

. Let e be any edge of G , and de-

�ne q

e

=

P

i3e

p

i

, the probability that a matching in

population p contains e . It is easy to check that, for

every e 2 E , q

e

is an invariant of �

match

. This gives

us a family of polynomial equations satis�ed by the

parameters �

e

of our normal population. De�ne the

matching polynomial of a graph G = (V;E) over vari-

ables x = (x

e

)

e2E

by g(G; x) =

P

m2M(G)

Q

e2m

x

e

.

Then we may write the system of equations as follows:

q

e

=

�

e

g(G=e; �)

g(G; �)

8e 2 E; (7)

where G=e denotes the graph obtained from G by

removing the endpoints of e , and the values q

e

are

determined by the initial population p(0).

It is not hard to show that the invariants fq

e

g

e2E

form a basis for the family of linear invariants �

�

de�ned in Theorem 4. Thus, by Theorem 5, they

uniquely determine the stationary population. We

summarise this discussion as follows.

Theorem 7 Let p(0) be any initial population that

generates M(G) . Then the equations (7) have a

unique solution f�

e

g

e2E

which determines the normal

population corresponding to p(0) .

For general graphs, the solution to these equations

is not a rational function of the quantities q

e

. How-

ever, as we shall see in the next section, in the case

that the underlying graph G is a tree the equations do

have a simple closed-form solution. More signi�cantly,

we shall also show in this case that the quadratic sys-

tem de�ned by �

match

converges to a normal popu-

lation very rapidly, in time bounded by a low-degree

polynomial in the size of the tree.

4 Matchings in trees

In this section, we present a complete analysis of

the mating operator �

match

in the case where the un-

derlying graph G is a tree T .

7



4.1 The stationary population

First, we give an explicit formula for the station-

ary population corresponding to any initial population

which generates M(T ). This formula will be in terms

of the invariants q

e

and r

v

, where for each vertex

v 2 V we de�ne r

v

= 1�

P

e=(v;u)

q

e

, the probabil-

ity that v is not covered by a matching.

Theorem 8 Let T be a tree and p(0) an initial pop-

ulation that generates M(T ) . Then p(t) converges to

the normal population � de�ned by

�

e

=

q

e

(1� q

e

)

r

v

r

u

;

for each edge e = (v; u) of T , where the values of

q

e

and r

v

are determined by p(0) . The population �

satis�es

�

i

=

Q

e2i

q

e

Q

v=2i

r

v

Q

e=2i

(1� q

e

)

8i 2 M(T ):

(The notation v =2 i indicates that vertex v is not

covered by the matching i .)

Theorem 8 is readily veri�ed by considering the

structure of the matching polynomial; the details are

left for the full paper.

4.2 Rate of convergence

In order to analyse the rate of convergence of �

match

on M(T ), we split the process conceptually into a se-

quence of stages. Each stage is associated with a par-

tition of M(T ) into equivalence classes, with the par-

tition becoming successively �ner. During each stage,

we analyse the time for the probability distribution

over its classes to converge. The crucial observation is

that this process on equivalence classes can be viewed

as a linear system, which can then be tackled using

established techniques plus some additional insight.

Let v be a leaf of T , and e = (u; v) the edge adja-

cent to v . Let T

0

be the subtree obtained by remov-

ing e and v from T . Now partition the set M(T )

into equivalence classes by placing two matchings in

the same class i� they agree on T

0

; thus each class

contains at most two matchings. Note that there is

a 1-1 correspondence between equivalence classes and

matchings in T

0

. To �x notation, let [i] denote the

equivalence class of matching i 2 M(T

0

), and if i

contains two elements denote them i

+

and i

�

accord-

ing to whether or not they contain e . Also, for any

population p on M(T ) de�ne the population p

0

on

M(T

0

) by p

0

i

=

P

j2[i]

p

j

.

Our �rst claim is that the operator �

match

acting

on the equivalence classes of M(T ) induces a similar

mating process on M(T

0

).

Lemma 9 For any population p on M(T ) , we have

(p� p)

0

= p

0

� p

0

.

Proof (sketch): Since the mating operator is bilin-

ear, and the operation p 7! p

0

is linear, it su�ces to

show that, for any two matchings m

1

;m

2

2 M(T ), if

p

1

and p

2

are populations concentrated at m

1

;m

2

re-

spectively then (p

1

� p

2

)

0

= p

0

1

� p

0

2

, where we have

extended the de�nition of � in the obvious way to

allow parents to be taken from di�erent populations.

This fact is straightforward to check by a simple case

analysis depending on whether one, both or neither of

m

1

;m

2

contains e .

In the light of Lemma9, we can understand the evo-

lution of the mating process on M(T ) inductively as

follows. First we view the process as working on equiv-

alence classes: by Lemma 9, this is equivalent to a

mating process on matchings in the smaller tree T

0

, so

we may argue inductively about its behaviour. Then,

assuming that the process on equivalence classes has

reached stationarity, we may reason about the e�ects

of mating within the classes. As we shall see in a mo-

ment, this latter process is much more tractable than

the original quadratic system.

Let us call a population p on M(T ) pseudo-

stationary if the induced population p

0

on M(T

0

) is

stationary. Our next observation is that, if we start

with a pseudo-stationary population, the mating op-

erator on M(T ) may be viewed as a linear system. In

fact, it de�nes a Markov chain on the space M(T )

+

of those matchings in T that include the edge e .

Lemma 10 Let p be any pseudo-stationary popula-

tion on M(T ) . Then the probability distribution on

matchings in M(T )

+

behaves under �

match

as a time-

homogeneous Markov chain with transition probabili-

ties

�

i

+

l

+
=

X

jk

p

0

j

�

0

ijkl

8i

+

; l

+

2 M(T )

+

(8)

where �

0

ijkl

de�nes the mating operator in T

0

.

Proof (sketch): Let l

+

2 M(T ). By de�nition

of the system (and ignoring the possibility that some

matching appearing in the sum may not be de�ned),

we may write (p� p)

l

as

X

[i][j][k]

�

p

i

+
p

j

+
�

i

+

j

+

k

+

l

+
+ p

i

�
p

j

+
�

i

�

j

+

k

�

l

+

+ p

i

+
p

j

�
�

i

+

j

�

k

�

l

+

�

(9)
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Consider �rst the case where both [i] and [j] consist

of two elements. It is not hard to check that in this

case �

i

+

j

+

k

+

l

+ = 2�

i

�

j

+

k

�

l

+ = 2�

i

+

j

�

k

�

l

+ = �

0

ijkl

.

Using these relationships and the fact that p

i

�
=

p

0

i

� p

i

+
, we may write the corresponding term in

the sum (9) as

1

2

(p

0

i

�

0

ijkl

)p

j

+
+

1

2

(p

0

j

�

0

ijkl

)p

i

+
. The

case where [i] consists of two elements and [j] of one

contributes only a single term to (9), which may be

written as p

i

+p

j

��

i

+

j

�

k

�

l

+ = (p

0

j

�

0

ijkl

)p

i

+ . The re-

maining case ([i] consists of one element and [j] of

two) is symmetrical.

Bringing all these terms together we obtain

(p � p)

l

+

=

X

i

+

�

X

jk

p

0

j

�

0

ijkl

�

p

i

+ =

X

i

+

�

i

+

l

+p

i

+ :

(10)

Since q

e

is invariantwe have

P

l

+

(p� p)

l

+
=

P

i

+

p

i

+
,

so (10), suitably normalised, does indeed de�ne a

Markov chain as claimed.

Suppose now that p is a pseudo-stationary popula-

tion on M(T ). Then clearly p

0

i

=

P

j2[i]

�

j

, where �

is the normal population corresponding to p . Now it

is easy to verify the following:

Proposition 11 The Markov chain de�ned in Lemma

10 is reversible and converges to the stationary distri-

bution b�

l

+ = �

l

+=q

e

over M(T )

+

.

We now address the question of the rate of conver-

gence of the above Markov chain. Let �(t) denote the

variation distance of the distribution at time t from b�

maximised over initial states, and for � 2 (0; 1) de�ne

� (�) = minft : �(t

0

) � � for all t

0

� tg : (11)

A bound on � (�) may be obtained by viewing the

chain as a network whose vertices are the states and

which has an oriented edge of capacity C(i

+

; l

+

) =

b�

i

+�

i

+

l

+ between vertices i

+

and l

+

. Suppose it

is possible to route b�

a

+b�

b

+ units of a commodity

(a

+

; b

+

) from a

+

to b

+

, for each pair of distinct states

a

+

and b

+

simultaneously, in such a way that no ori-

ented edge (i

+

; l

+

) carries more than �C(i

+

; l

+

) units

of 
ow in total and the length of any 
ow-carrying

path is at most ` . Then Corollary 6

0

of [17] provides

the following bound (see also [5, 10]):

Theorem 12 [17] The quantity � (�) satis�es

� (�) � �`

�

ln b�

�1

min

+ ln �

�1

�

;

where b�

min

= min

i

+ b�

i

+ .

The key to rapid convergence is the construction of

a good 
ow in our Markov chain:

Theorem 13 For the Markov chain of Lemma 10,

there exists a 
ow with � � 2q

�1

e

and ` = 2 .

Proof: Note from (8) that we may view each edge

(i

+

; l

+

) of the Markov chain as a set of parallel edges,

one for each j 2 M(T

0

): the edge associated with j

has capacity b�

i

+
p

0

j

�

0

ijkl

and corresponds to mating i

+

with j

+

and producing l

+

as an o�spring. We refer

to this edge as the j -edge from i

+

to l

+

. We will

describe our 
ow in terms of these edges.

Let a

+

; b

+

be any pair of distinct states in M(T )

+

,

and consider the set P

ab

of paths of length 2 from a

+

to b

+

of the following form: the �rst edge of the path

is any b-edge leaving a

+

, to c

+

say, and the second

edge is the unique c-edge from c

+

to b

+

, where c is

de�ned by c [ c = a [ b (viewed as multisets). We

distribute the b�

a

+
b�

b

+
units of 
ow from a

+

to b

+

evenly over all 2

r

paths in P

ab

, where r is the number

of non-trivial connected components in a

+

[ b

+

.

Now consider any j -edge e from i

+

to l

+

. We may

assume that the equivalence class [j] contains two el-

ements since in the above 
ow we have only used j -

edges for which j

+

2 M(T )

+

. Let us compute the


ow through e . Clearly only two 
ow-carrying paths

use e ; for if e is the �rst edge of a path then this path

must belong to P

ij

, while if it is the second edge of

a path then this path must belong to P

ml

, where m

is the complement of l in the multiset i [ j . Sup-

pose e is the �rst edge of a path from i

+

to j

+

. The


ow along this path is precisely 2

�r

b�

i

+b�

j

+ , where r

is the number of non-trivial connected components in

i

+

[ j

+

. Dividing this by the capacity of e we get

2

�r

b�

i

+
b�

j

+

b�

i

+p

0

j

�

0

ijkl

=

2

�r

�

j

+
=q

e

(�

j

+ + �

j

�)2

�r

�

1

q

e

;

where we have used the fact that �

0

ijkl

= 2

�r

. By a

symmetrical argument, the ratio of 
ow to capacity

in the case where e is the second edge on a path can

be similarly bounded. Hence � � 2q

�1

e

. Evidently all


ow-carrying paths have length 2 so ` = 2.

Finally, we may combine the above results to de-

rive a bound on the rate of convergence of the orig-

inal quadratic mating process. De�ne the quantity

�

match

(�) in analogous fashion to � (�) in (11) but us-

ing the variation distance of p(t) from the correspond-

ing stationary population � de�ned in Theorem 8.

Theorem 14 Let T be a tree with n vertices, and

p(0) any population that generates M(T ) . Then

�

match

(�) satis�es

�

match

(�) = O

�

(n lgn+ n lg�

�1

min

+ lg �

�1

)q

�1

min

�

;

where q

min

= min

e

q

e

and �

min

= min

i2M(T )

�

i

.

9



Proof (sketch): By Lemma 9 we may assume induc-

tively that, after su�ciently many steps, the popula-

tion p

0

is close to stationarity. Lemma 10 now allows

us to view the system as a Markov chain on M(T )

+

.

Strictly speaking, since p

0

is not exactly stationary

the transition probabilities appearing in (8) are not

in fact constant but are perturbed by a small time-

varying amount; however, this error may be e�ectively

bounded. Now we apply Theorem 12 together with the


ow bound of Theorem 13 to obtain a bound on the

rate of convergence of this Markov chain. Clearly, once

the Markov chain is close to its stationary distribution,

near-stationarity of p

0

implies that the population on

M(T ) is also almost stationary. The details are left

for the full paper.

Theorem 14 is a surprisingly strong result. It says

that the time required for the mating process to ap-

proach stationarity depends on the size of the tree only

as a low degree polynomial, despite the fact that the

number of types jM(T )j is in general exponentially

large in n . This is apparently the �rst analysis of its

kind for a combinatorially non-trivial problem. More-

over, although this is a somewhat simpli�ed setting,

we conjecture that the analytical tools introduced in

this paper are applicable to other systems.

Acknowledgements

We thank Eric Carlen, Persi Diaconis, Je� Kahn,

Je� Lagarias, Han La Poutr�e, Noam Nisan, Nick Pip-

penger, Dirk Vertigan and BenjaminWeiss for enlight-

ening discussions on the ideas presented here.

References

[1] M. Ajtai, J. Koml�os and E. Szemer�edi. De-

terministic simulation in LOGSPACE. Proceed-

ings of 19th ACM STOC (1987), p. 132.

[2] E. Akin. The geometry of population genet-

ics. Lecture Notes in Biomathematics, Vol. 31,

Springer-Verlag, Berlin, 1979.

[3] E. Carlen and M. Carvalho. Strict entropy pro-

duction bounds and stability of the rate of con-

vergence to equilibrium for the Boltzmann equa-

tion. Preprint, 1992.

[4] I. Csisz�ar and J. K�orner. Information Theory:

Coding Theorems for Discrete Memoryless Sys-

tems. Academic Press, 1981.

[5] P. Diaconis and D. Stroock. Geometric bounds

for eigenvalues of Markov chains. Annals of Ap-

plied Probability 1 (1991), pp. 36{61.

[6] M. Dyer, A. Frieze and R. Kannan. A random

polynomial time algorithm for approximating the

volume of convex bodies. Proceedings of 21st

ACM STOC (1989), pp. 375{381.

[7] M. Hirsch and S. Smale. Di�erential equations,

dynamical systems, and linear algebra. Aca-

demic Press, New York, 1974.

[8] J. Holland. Adaptation in natural and arti�cial

systems. MIT Press, 1992.

[9] M. Jerrum. Large cliques elude the Metropolis

process. Random Structures and Algorithms 3

(1992), pp. 347{359.

[10] M. Jerrum and A. Sinclair. Approximating the

permanent. SIAM Journal on Computing 18

(1989), pp. 1149{1178.

[11] O. Penrose. Foundations of statistical mechan-

ics. Pergamon Press, Oxford, 1970.

[12] Y. Rabinovich, A. Sinclair and A. Wigderson.

Quadratic dynamical systems. Full version, in

preparation.

[13] Y. Rabinovich and A. Wigderson. Analysis of a

simple genetic algorithm. Proceedings of the 4th

International Conference on Genetic Algorithms

1991, pp. 215{221.

[14] A. R�enyi. Foundations of probability. Holden-

Day, San Francisco, 1970.

[15] G. Sasaki and B. Hajek. The time complexity

of maximum matching by simulated annealing.

Journal of the ACM 35 (1988), pp. 387{403.

[16] H. Siegelmann. Personal communication.

[17] A. Sinclair. Improved bounds for mixing rates

of Markov chains and multicommodity 
ow.

Report ECS-LFCS-91-178, Dept. of Computer

Science, University of Edinburgh, 1991. To ap-

pear in Combinatorics, Probability & Computing.

Appendix: Genetic algorithms

Genetic algorithms provide a heuristic paradigm for

solving combinatorial optimisation problems based on

a biological analogy. Suppose we are searching for an

optimal (or near-optimal) solution amongst a set of

feasible solutions; as a concrete example, consider the

problem of �nding a matching of maximum cardinal-

ity amongst all matchings in a graph. The algorithm

10



starts with an initial population over simple solutions

that is easily constructed; in our example, this might

be the uniform distribution on all matchings that con-

sist of a single edge. The population evolves in discrete

steps under the application of two operators, called

mating and �tness. Mating is designed to increase

variety in the population, while �tness is designed to

increase its average quality. In our example, the qual-

ity of a matching is simply its size. Usually a third

operator, known as mutation, is added, but for the

sake of simplicity we shall ignore this here.

In mating, random pairs of solutions give birth to

random children; the operator �

match

discussed in

Sections 3 and 4 is a natural choice in our example.

Note that the average size of a matching is an invariant

of �

match

, so mating itself does not improve the popu-

lation. In �tness, solutions of low quality are discarded

or their number reduced; for example, all matchings

below a certain size might be removed from the pop-

ulation. The overall genetic algorithm repeatedly ap-

plies the mating and �tness operators alternately, in

the hope that the population will quickly converge to

one whose average quality is high.

Despite the apparent success of this approach in

several experimental applications, few rigorous theo-

retical results exist to explain and motivate the exper-

imental results or guide the design of the algorithms.

One of the few such rigorous results was obtained

in [13], albeit in the context of a highly arti�cial opti-

misation problem. One lesson to be learned from that

work was that the interaction between the mating and

�tness operators is much easier to analyse if mating is

applied enough times for the system to converge to

a (near-)stationary population before the �tness op-

erator is applied; this is a reasonable strategy with

mating operators which, like �

match

, preserve or do

not substantially reduce the average quality of solu-

tions. The reason for this is clear: in general, the

e�ect on the population of a single step of the mating

operator is rather hard to quantify, but after a su�-

ciently long sequence of mating operations the popu-

lation is close to a stationary population, which may

be well understood. Interestingly, we have recently

learned that this idea has led to improved performance

of genetic algorithms in some experiments [16]. Given

that the e�ect of the �tness operator is usually rel-

atively straightforward to describe, we contend that

the principal challenge in analysing the performance

of genetic algorithms of the above kind lies in estimat-

ing the rate of convergence to a stationary population

under the mating operator. Since the mating opera-

tor is quadratic and almost always symmetric, this is

precisely the central question that is addressed in the

present paper.
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