
Testable Algorithms for Self-Avoiding Walks

Dana Randall

y

Alistair Sinclair

z

Abstract

We present a polynomial time Monte Carlo algorithm for

almost uniformly generating and approximately count-

ing self-avoiding walks in rectangular lattices Z

d

. These

are classical problems that arise, for example, in the

study of long polymer chains. While there are a number

of Monte Carlo algorithms used to solve these problems

in practice, these are heuristic and their correctness re-

lies on unproven conjectures. In contrast, our algorithm

depends on a single, widely-believed conjecture that is

weaker than preceding assumptions, and, more impor-

tantly, is one which the algorithm itself can test. Thus

our algorithm is reliable, in the sense that it either out-

puts answers that are guaranteed, with high probability,

to be correct, or �nds a counter-example to the conjec-

ture.

1 Summary

1.1 Background

A self-avoiding walk in a graph is a walk which starts

at a �xed origin and passes through each vertex at most

once. This paper is concerned with self-avoiding walks

in lattices, in particular the d-dimensional rectangular

lattice Z

d

with origin 0.

Self-avoiding walks in Z

d

have been studied by math-

ematicians and natural scientists for many years and are

the subject of an extensive literature; for a state-of-the-

y

Department of Computer Science, University of California at

Berkeley. Supported in part by an AT&T PhD Fellowship and by

NSF grant CCR88-13632. E-mail: randall@cs.berkeley.edu.

z

University of Edinburgh and International Computer Science

Institute, Berkeley. Supported in part by grant GR/F 90363 of

the UK Science and Engineering Research Council, and by Esprit

Working Group \RAND." E-mail: sinclair@icsi.berkeley.edu.

art survey, see the recent book of Madras and Slade [16].

(See also the book by Lawler [14] for related topics.) One

of the most important applications is as a model for the

spatial arrangement of linear polymer molecules in chem-

ical physics. Here the walk represents a molecule com-

posed of many (perhaps 10

5

or more) monomers linked

in a chain, and the self-avoidance constraint re
ects the

fact that no two monomers may occupy the same posi-

tion in space.

The length jwj of a self-avoiding walk w is the number

of edges in w . For any �xed dimension d , let S

n

denote

the set of self-avoiding walks of length n in Z

d

, and let

c

n

= jS

n

j be the number of walks of length n . The two

most fundamental computational problems concerning

self-avoiding walks are:

(i) count the number of walks of length n : i.e.,

compute c

n

for any given n ;

(ii) determine the characteristics of a \typical"

walk of length n : for example, compute the

mean-square displacement, which is the ex-

pected squared distance of the free end of the

walk from the origin under the uniform proba-

bility distribution over walks of length n .

Despite much research in this area, and many heuris-

tic arguments and empirical studies, almost nothing is

known in rigorous terms about the above problems for

the most interesting cases of low-dimensional lattices

with 2 � d � 4. In higher dimensions rather more is

known, essentially because the self-avoidance constraint

becomes less signi�cant and the behavior resembles that

of simple (non-self-avoiding) walks, which are well un-

derstood. Thus although the algorithmic results we

present in this paper will be stated for arbitrary dimen-

sions d , they are of greatest interest in the case of low-

dimensional lattices with 2 � d � 4.

One key fact that holds in all dimensions was dis-

covered in 1954 by Hammersley and Morton [8]; they

1

observed that lim

n!1

c

1=n

n

= � exists, and that �

n

�

c

n

= �

n

f(n), where lim

n!1

f(n)

1=n

= 1. This is a

straightforward consequence of the obvious fact that

the sequence `

n

= log c

n

is subadditive, i.e., `

n+m

�

`

n

+ `

m

for all n;m . Hammersley and Welsh [9] later

showed that f(n) = O(a

n

1=2

) for some constant a . It is

a celebrated and long-standing conjecture that f(n) is

in fact polynomially bounded, and more precisely that

c

n

= �

n

e

f (n)

�

1 + o(1)

�

where

e

f(n) =

8

<

:

An

�1

; d = 2; 3;

A(logn)

1=4

; d = 4;

A; d � 5.

(C1)

Here � , A and
 are all dimension-dependent constants.

Note that the dominant behavior of c

n

is the exponen-

tial function �

n

; comparing this with the case of simple

walks, whose number is precisely (2d)

n

, we see that the

e�ect of the self-avoidance constraint is to reduce the

e�ective number of choices the walk has at each step

from 2d to � . The dimension-dependent number � is

known as the connective constant. This crude behavior

is modi�ed by the correction term f(n) of the form con-

jectured in C1. Here
 is a so-called critical exponent.

(Note, however, that
 , unlike � , is not even known to

exist.)

Although unproven, conjecture C1 is supported by

extensive (though non-rigorous) empirical studies and

ingenious heuristic arguments, which have also been

employed to obtain numerical estimates for the con-

stants � and
 . Elementary considerations show that

� 2 (d; 2d� 1). For d = 2, it has actually been proven

that � 2 (2:62; 2:70) [1, 4]. (See also [10] for similar

bounds in higher dimensions.) However, these rigor-

ous bounds are much weaker than the non-rigorous es-

timates obtained by empirical methods, which are typ-

ically quoted to four decimal places. There are even

precise conjectured values for the critical exponent
 in

two and three dimensions (despite the fact that
 is not

known to exist): for d = 2,
 is believed to be

43

32

, and

for d = 3 it is believed to be approximately 1:16. (See

[16] for a detailed summary of numerical estimates.)

Much e�ort has been invested in obtaining statistical

estimates of the above quantities using Monte Carlo sim-

ulations. However, the error bars on these estimates are

only justi�ed heuristically. In this paper, we attempt to

put such experiments on a �rmer footing. We present

Monte Carlo algorithms for approximating the number

of self-avoiding walks of a given length for a given dimen-

sion d , and for generating self-avoiding walks of a given

length almost uniformly at random. The running time

of our algorithms is polynomial in the walk length n and

grows only slowly with parameters controlling the accu-

racy and con�dence levels of the estimates. These are

the �rst polynomial time algorithms where the statisti-

cal errors are rigorously controlled. Our algorithms are

based on modi�cations and extensions of a Monte Carlo

approach studied originally by Berretti and Sokal [2]. In

the next subsection we sketch this approach and point

out its limitations. Then, in section 1.3, we summa-

rize our algorithms and explain how they overcome these

problems.

1.2 Monte Carlo methods

Monte Carlo simulations have proved to be a powerful

tool for developing approximation algorithms for a range

of combinatorial problems. Brie
y, the idea is as follows.

Let S be a large but �nite set of combinatorial struc-

tures. It is well known that much information about S

can be gained by sampling elements of S from an ap-

propriate probability distribution � . This sampling can

be performed by simulating a Markov chain whose state

space includes S and whose conditional stationary dis-

tribution over S is � : to get a sample from a distribution

very close to � , one simply simulates the chain for suf-

�ciently many steps that it is close to stationarity, and

outputs the �nal state if it belongs to S . In order for

this method to be e�ective, the stationary distribution

must be reasonably well concentrated on S (so that one

gets a valid sample reasonably often), and the Markov

chain must converge rapidly to its stationary distribu-

tion (so that the number of simulation steps required is

not too large).

In the case of self-avoiding walks, we are interested in

sampling from the uniform distribution over the set S

n

of walks of length n . A natural Markov chain to use here

has as its state space the set of all self-avoiding walks (of

all lengths): if the chain is currently at a walk w , it

extends the walk in an allowable direction with some

probability, while with some other probability it deletes

the last edge and \backtracks" to a shorter walk. Note

that the na��ve approach of simply growing the walk one

edge at a time breaks down because of the self-avoidance

constraint: the number of possible extensions of a given

length can vary hugely for di�erent walks due to the pos-

sibility of walks \getting stuck." This is why we require

the more sophisticated dynamic scheme provided by the

Markov chain.

The above type of Markov chain was considered by

Berretti and Sokal [2], who used a single parameter

� � 1 to control the relative probabilities of extending

or contracting the walk by one edge. Given a walk of

length i , one of the 2d lattice edges incident to the free

endpoint of the walk is chosen with equal probability. If

the edge extends the walk so as to be self-avoiding, then

it is added with probability � ; if the edge is the last

edge of the walk, then it is removed; otherwise, nothing

2

is done.

y

Assuming conjecture C1, Berretti and Sokal

argue that, for any given value of n , taking � su�-

ciently close to (but smaller than) �

�1

, where � is the

connective constant, ensures that the stationary distri-

bution assigns reasonably high weight (i.e., 1=q(n) for

some polynomial q) to S

n

. Furthermore, again assum-

ing conjecture C1, Sokal and Thomas [21] argue that

with such values of � the Markov chain is rapidly mix-

ing, i.e., it gets very close to stationarity after a number

of steps that is only polynomial in n (see also [15]). In

order to appreciate the role of � here, consider a trun-

cated version of this Markov chain in which the length of

a walk is never allowed to exceed n , so that the station-

ary distribution is always well de�ned; if � is too much

smaller than �

�1

then we will only generate short walks,

while if � is too much larger then the Markov chain will

not backtrack often enough and consequently will take

a long time to reach stationarity. Thus � must be very

carefully chosen. Berretti and Sokal perform their ex-

periments by \�ne-tuning" � and observing the Markov

chain until the observations suggest that � is su�ciently

close to �

�1

.

Berretti and Sokal's algorithm su�ers from two draw-

backs. First, one must assume conjecture C1 (for appro-

priate values of the constants � ,
 and A) in order to

bound the time required before the Markov chain reaches

stationarity. As long as conjecture C1 remains open for

any choices of these constants, there is no guarantee that

the algorithm produces reliable answers in polynomial

time. Second, in order to implement the algorithm it is

necessary to have a good estimate of � already, since �

needs to be taken a little smaller than �

�1

. This leads

to circularity, since determining � is one of the principal

goals of the algorithm. While many similar Monte Carlo

algorithms have been used to study self-avoiding walks

(see Chapter 9 of [16] for a summary), all of these suf-

fer from a similar lack of rigorous justi�cation, and thus

o�er no guarantee that their results are reliable.

1.3 Our results

In this paper we develop a Monte Carlo algorithm for

self-avoiding walks by modifying the Markov chain used

by Berretti and Sokal so as to overcome the di�culties

discussed in the last subsection. We make two elemen-

tary but important innovations. First, we allow the pa-

rameter � to vary at each level of the Markov chain (i.e.,

we let � depend on the length of the walks), and we cal-

culate an appropriate value of � at each level based on

observations of the Markov chain at earlier levels. Thus

we require no prior knowledge of � . Second, we show

that, while the e�ciency of our Markov chain simulation

y

Actually, these transition probabilities are a slightly simpli�ed

version of those used in [2], but this di�erence is inessential to the

behavior of the chain.

is still based on an assumption (conjecture C2, de�ned

below), this is weaker than conjecture C1 and, more im-

portantly, is tested in advance by the algorithm in the

region in which it is being assumed. Thus when we run

our algorithm, either we will gather strong evidence (in

the form of a counter-example) that the conjecture is

false, or we will know that we can trust our simula-

tions. This notion of self-testing, which either gives us

con�dence in our results or warns us that they may be

erroneous, has been previously explored in the context

of program checking (see, e.g., [3]).

The conjecture we require is the following, for a given

dimension d :

for some �xed polynomial g;

c

n

c

m

� g(n+m) c

n+m

; 8n;m: (C2)

This conjecture says that, if we choose random self-

avoiding walks of lengths n and m , then with non-

negligible probability we can glue the walks together to

produce a self-avoiding walk of length n + m . Conjec-

ture C2 is no more restrictive than conjecture C1, on

which previous Monte Carlo methods, including that of

Berretti and Sokal, rely. To see this, note that c

n

�

A�

n

n

�1

implies

c

n

c

m

c

n+m

� A(

nm

n+m

)

�1

� A

�

n+m

4

�

�1

.

Thus conjecture C2 is also widely believed to hold.

Moreover, for any given dimension there is a precise con-

jectured value for the polynomial g : as the above cal-

culation shows, it is essentially just the function

~

f from

conjecture C1, with appropriate values for the constants

� ,
 and A .

The behavior of our algorithm may now be stated

more precisely as follows. Fix a dimension d and a poly-

nomial g , and suppose �rst that conjecture C2 holds.

Then, on inputs �; � 2 (0; 1), the algorithmoutputs a se-

quence of numbers ec

1

; ec

2

; ec

3

; : : :, such that, for each n ,

the time to output ec

n

is a polynomial function of n ,

�

�1

and log �

�1

and, with probability at least (1 � �),

ec

n

approximates c

n

within ratio (1 + �). An algorithm

with this behavior is an example of a fully-polynomial

randomized approximation scheme for the number of

self-avoiding walks. If, on the other hand, the conjec-

ture happens to fail for some value n = n

0

, then with

high probability an error will be reported and we will

know that the algorithm is reliable in the region previ-

ously explored (i.e., for n < n

0

), but may be unreliable

for larger values of n . Moreover, in this case the algo-

rithm will actually have discovered a counter-example

to the conjecture for the polynomial g under consider-

ation; since precise conjectured values for g exist, this

in itself would be of substantial interest in the theory of

self-avoiding walks. The details of the self-tester are de-

scribed explicitly in section 3. Note that, in the presence

of the self-tester, the answers output by our algorithm

are always correct (with high probability), and the algo-

rithm is guaranteed always to run in polynomial time.

3

The algorithm is in fact more
exible and can be used

in addition to solve problem (ii) of section 1.1 by gener-

ating random self-avoiding walks of any speci�ed length

in the region where conjecture C2 holds: once the al-

gorithm has output ec

n

, it provides a method for gener-

ating, in time polynomial in n and log �

�1

, a random

self-avoiding walk of length n from a distribution whose

variation distance from the uniform distribution is at

most � . Such an algorithm is called a fully-polynomial

almost uniform generator for self-avoiding walks, and

can be used in the obvious fashion to obtain good statis-

tical estimates in polynomial time of quantities such as

the mean-square displacement.

In section 2 we present approximation algorithms

which work assuming conjecture C2. In section 3 we

show how to make the algorithms robust by adding a

self-tester to verify the conjecture.

2 The algorithms

First let us make more precise the properties we want our

algorithms to have. The following de�nitions of approx-

imation algorithms for counting and uniform generation

have been used in [13, 12, 18] and elsewhere.

De�nition. (i) A randomized approximation scheme

for the number of self-avoiding walks in some �xed di-

mension d is a probabilistic algorithm which, on in-

put n and �; � 2 (0; 1), outputs a number ~c such that

Prfc

n

(1 + �)

�1

� ~c � c

n

(1 + �)g � 1� � . The approx-

imation scheme is fully-polynomial if it is guaranteed to

run in time polynomial in n , �

�1

and log �

�1

.

(ii) An almost uniform generator for self-avoiding walks

is a probabilistic algorithm which, on input n and

� 2 (0; 1), outputs a self-avoiding walk of length n with

probability at least 1=q(n) for a �xed polynomial q , such

that the conditional probability distribution over walks

of length n has variation distance at most � from the

uniform distribution. The generator is fully-polynomial

if it runs in time polynomial in n and log �

�1

.

The following quantity associated with self-avoiding

walks will play an important role in what follows. For a

�xed dimension d and each n , de�ne

�

n

= min

j;k

j+k�n

c

j+k

c

j

c

k

:

Note that conjecture C2 says precisely that �

n

� g(n)

�1

for a polynomial g (which depends on d).

The quantity �

n

may be interpreted as follows. For

�xed j and k ,

c

j+k

c

j

c

k

represents the probability that a

random self-avoiding walk of length j and a random

self-avoiding walk of length k can be \glued" together

to form a self-avoiding walk of length j + k . To be more

precise, for self-avoiding walks w

1

and w

2

, de�ne the

concatenation w

1

� w

2

to be the walk formed by trans-

lating w

2

so that its origin coincides with the free end-

point of w

1

and appending the translated copy of w

2

to w

1

. Note that w

1

� w

2

need not be self-avoiding. If

w

1

and w

2

are selected uniformly at random from S

j

and S

k

respectively, then the above quotient represents

the probability that w

1

�w

2

is self-avoiding.

Theorem 1 For any �xed dimension d , there exists

a randomized approximation scheme for self-avoiding

walks that runs in time polynomial in n; �

�1

; log �

�1

and �

�1

n

, and an almost uniform generator that runs

in time polynomial in n; log �

�1

and �

�1

n

.

It is interesting to observe that this result, combined

with the asymptotic bound on c

n

of Hammersley and

Welsh [9] quoted in section 1.1, immediately gives us

approximation algorithms for self-avoiding walks whose

running time is sub-exponential. Speci�cally, the bound

of [9] implies that �

�1

n

= O(a

n

1=2

) for some constant a ,

and closer inspection of the running time of the algo-

rithms of theorem 1 (see section 2.3) reveals that the

dependence on �

�1

n

is linear. Thus we get a randomized

approximation scheme and an almost uniform generator

whose running times grow with n only as exp(O(n

1=2

)).

If we assume conjecture C2, however, we get some-

thing much stronger. Since conjecture C2 asserts that

�

n

� g(n)

�1

for a polynomial g , we immediately de-

duce the following.

Corollary 2 Assuming conjecture C2, there exists a

fully-polynomial randomized approximation scheme and

a fully-polynomial almost uniform generator for self-

avoiding walks in any �xed dimension d .

Our algorithms are based on randomly sampling walks

of length n using Monte Carlo simulation of a series of

successively larger Markov chains M

1

; :::;M

n

. In sec-

tion 2.1 we de�ne the nth Markov chain M

n

, and in

section 2.2 we derive a bound on its rate of convergence

to stationarity. With this machinery in place, in sec-

tion 2.3 we assemble the Markov chains into a single

scheme that provides algorithms satisfying the require-

ments of theorem 1.

2.1 The Markov chain

As indicated in section 1.2, we consider a Markov chain

that explores the space of self-avoiding walks by letting a

walk expand and contract randomly over time, under the

in
uence of a weighting parameter � . Rather than work-

ing with a single Markov chain and a global value of the

parameter � , we incrementally construct Markov chains

M

1

;M

2

; : : :, the nth of which, M

n

, has as its state space

the set X

n

=

S

n

i=0

S

i

of all self-avoiding walks of length

4

at most n . The transition probabilities in M

n

depend

on parameters �

1

; :::; �

n

2 (0; 1), discussed below.

Transitions in the Markov chain M

n

are de�ned as

follows. In state w 2 X

n

, a self-avoiding walk of length

i � n , choose one of the 2d edges incident to the free

endpoint of w uniformly at random. If the chosen edge

coincides with the last step of w , remove this last edge

from w . If the chosen edge extends w to a walk which

is self-avoiding and has length at most n , add the edge

to w with probability �

i+1

. Otherwise, leave w un-

changed.

More precisely, de�ne the partial order � on the

set of all self-avoiding walks by w � w

0

if and only if

jwj < jw

0

j and the �rst jwj steps of w

0

coincide with w .

Also, de�ne w �

1

w

0

if w � w

0

and jw

0

j = jwj+ 1 (i.e.,

if w

0

extends w by one step). Then the transition prob-

abilities P

n

of the Markov chain M

n

are de�ned by

P

n

(w;w

0

) =

8

>

<

>

:

�

jw

0

j

=2d; if w �

1

w

0

;

1=2d; if w

0

�

1

w;

r(w); if w = w

0

;

0; otherwise,

(1)

where r(w) is chosen so as to make the probabilities

sum to 1, and w;w

0

are in the state space X

n

(i.e.,

jwj; jw

0

j � n).

Note that we may view M

n

as a weighted random

walk on the tree de�ned by the partial order � . This

tree has the trivial walk of length 0 at the root, and

the children of walk w are walks w

0

with w �

1

w

0

.

Thus the tree has n+ 1 levels, the ith of which contains

all walks of length i � 1. The transition probability

from any state to its parent is 1=2d , and from a state

at level i to each of its children is �

i+1

=2d . In the case

that �

1

= ::: = �

n

� �

�1

this is just the Markov chain

used by Berretti and Sokal [2], but truncated at level n .

It is evident that the Markov chain M

n

is irreducible

(all states communicate) and aperiodic. This implies

that it is ergodic, i.e., it converges asymptotically to

a well-de�ned equilibrium or stationary distribution �

n

over X

n

. Thus, if P

t

(x;w) denotes the probability that

the chain is in state w after t steps starting in some spec-

i�ed initial state x , then P

t

(x;w) ! �

n

(w) as t ! 1 ,

for every w 2 X

n

. It is straightforward to show the

following:

Lemma 3 The stationary distribution �

n

of the Markov

chain M

n

is given by

�

n

(w) =

1

Z

n

jwj

Y

i=1

�

i

; for w 2 X

n

;

where Z

n

is a normalizing factor.

Proof. It su�ces to show that the chain is reversible

with respect to the distribution �

n

, i.e., that it satis�es

the detailed balance condition

�

n

(w)P

n

(w;w

0

) = �

n

(w

0

)P

n

(w

0

; w) 8w;w

0

2 X

n

:

This is readily veri�ed from the de�nition of P

n

given

in (1).

Note that the stationary distribution is always uniform

over all walks of a given length, for any choice of values of

the parameters �

i

. However, by choosing the �

i

care-

fully we can achieve a distribution over lengths which

assigns su�ciently high weight to S

n

. Ideally, the value

we want for �

i

is the ratio c

i�1

=c

i

. (The fact that this

ratio is always strictly less than 1 was proven surprisingly

recently by O'Brien [17].) Of course, this is unrealistic

since we do not know the quantities c

i�1

and c

i

|indeed,

these are precisely what we are trying to compute|but

we will see in section 2.3 how to determine good approx-

imations to these ideal values before they are needed.

For the moment, we consider the ideal behavior of the

Markov chain assuming that each �

i

is equal to c

i�1

=c

i

.

Under this assumption, lemma 3 says that the station-

ary probability of any walk w 2 X

n

is

�

n

(w) =

1

Z

n

jwj

Y

i=1

c

i�1

c

i

=

1

Z

n

c

jwj

: (2)

Thus the stationary distribution is uniform over lengths,

and the probability of being at a walk of length i is

1=Z

n

= 1=(n + 1) for each i . This means that the

Markov chain M

n

has the �rst of the two properties

identi�ed in section 1.3 that are required for the Monte

Carlo approach to be e�ective: the stationary distribu-

tion is reasonably well concentrated on S

n

, and uniform

over S

n

. We may therefore, at least in principle, gener-

ate random self-avoiding walks of length n by simulat-

ing M

n

until it has reached equilibruim, starting with,

say, the empty walk, and outputting the �nal state if

it has length n . The second property required of the

Markov chain is that the number of simulation steps

should be small. This is the key component of the run-

ning time of our algorithms and is quanti�ed in the next

subsection.

2.2 The mixing time

The question of how many simulation steps are required

to produce a sample from a distribution that is very close

to �

n

is precisely that of how long it takes for the Markov

chain to get close to equilibrium. This is often referred to

as themixing time. Note that, if the overall running time

of our algorithm is to be polynomial in n , the Markov

chain M

n

should be rapidly mixing, in the sense that

its mixing time is very small compared to the number of

states (which grows exponentially with n).

In recent years several useful analytical tools have

been devised for analyzing the mixing time of complex

5

Markov chains of this kind. In this paper we make use of

the idea of \canonical paths", �rst developed in [11, 18].

Consider an ergodic, reversible Markov chain with state

space X , transition probabilities P and stationary dis-

tribution � . We can view the chain as a weighted undi-

rected graph G with vertex set X and an edge between

each pair of vertices (states) x; y for which P (x; y) > 0.

We give each oriented edge e = (x; y) a \capacity"

Q(e) = Q(x; y) = �(x)P (x; y); note that, by detailed

balance, Q(x; y) = Q(y; x).

Now for each ordered pair of distinct vertices x; y 2

X , we specify a canonical path

xy

in the graph G

from x to y . Then, for any such collection of paths

� = f

xy

: x; y 2 X;x 6= yg , de�ne

�(�) = max

e

1

Q(e)

X

xy

3e

�(x)�(y) (3)

where the maximization is over oriented edges e . Thus

� measures the maximum loading of any edge e by

paths in � as a fraction of its capacity Q(e), where

the path from x to y carries \
ow" �(x)�(y). Note

that the existence of a collection of paths � for which

�(�) is small implies an absence of bottlenecks in the

graph, and hence suggests that the Markov chain should

be rapidly mixing. This intuition can be formalized

and a bound obtained on the mixing time in terms of

the quantity � = min

�

�(�), using a measure known

as conductance [20]. However, we can get a slightly

sharper bound in this case by following an idea of Dia-

conis and Stroock [5] and using the alternative measure

� = min

�

�(�)`(�), where `(�) is the maximum length

of a path in �. The appropriate version of this bound

can be found by combining Proposition 1 and Corollary 6

of [19] and is stated precisely in the theorem below.

As a measure of rate of convergence, let P

t

(x; �) be the

probability distribution of the Markov chain at time t ,

starting in state x , and for � 2 (0; 1) de�ne

�

x

(�) = minft : kP

t

0

(x; �)� �k � � 8t

0

� tg:

Here k � k denotes variation distance: for distributions

�

1

, �

2

over X , k�

1

� �

2

k =

1

2

P

x2X

j�

1

(x) � �

2

(x)j =

max

A�X

j�

1

(A) � �

2

(A)j .

Theorem 4 [19] For an ergodic, reversible Markov chain

with stationary distribution � , we have

�

x

(�) � K �

�

log�(x)

�1

+ log �

�1

�

;

where K is a universal constant.

We now use theorem 4 to show that the mixing time

of the Markov chain M

n

can be bounded in terms of the

quantity �

n

de�ned at the beginning of section 2. As-

suming conjecture C2, this will imply that the Markov

chain is rapidly mixing. For simplicity we will work with

the idealized version of M

n

discussed at the end of sec-

tion 2.1, in which each �

i

is exactly equal to c

i�1

=c

i

. It

should be clear that our analysis is not unduly sensitive

to small perturbations in the values of the �

i

.

Theorem 5 For the Markov chain M

n

, starting at the

empty walk 0, we have

�

0

(�) � Kdn

2

�

�1

n

�

logn + log �

�1

�

for some constant K .

Proof. From (2) we have that �

n

(0) = 1=(n + 1).

Also, since the graph corresponding to the Markov

chain M

n

is a tree, there is only one choice of (sim-

ple) paths between each pair of vertices; we will denote

this collection of paths � = f

xy

g . Since the depth

of the tree is n , we have `(�) = 2n . Therefore, the

result will follow from theorem 4 if we can show that

�(�) � K

0

dn�

�1

n

for some constant K

0

.

Now let e be any edge of the tree, and suppose the

endpoints of e are a walk w of length k and a walk w

0

of length k + 1. Let S be the subtree rooted at w

0

, and

S = X

n

� S . Since e is a cut edge, it is clear that (3)

becomes

�(�) = max

e

Q(e)

�1

�

n

(S)�

n

(S): (4)

In what follows we will make essential use of the fact that

the tree de�ning M

n

is a sub-Cayley tree, so that the

number of vertices at level l of any subtree is bounded

above by the total number of vertices at level l of the

whole tree. This is evident since any initial segment of

a self-avoiding walk is also self-avoiding.

Now we have

Q(e) = �

n

(w

0

)P

n

(w

0

; w) =

1

2dZ

n

c

k+1

;

and

�

n

(S) =

X

ew�w

0

�

n

(ew)

=

n

X

j=k+1

1

Z

n

c

j

jfew � w

0

: j ewj = jgj

=

1

Z

n

c

k+1

n

X

j=k+1

c

k+1

c

j

jf ew � w

0

: j ewj = jgj

�

1

Z

n

c

k+1

n

X

j=k+1

c

k+1

c

j�k�1

c

j

�

n

Z

n

c

k+1

�

n

;

where the �rst inequality follows from the sub-Cayley

property of the tree. Putting this together, we see that

Q(e)

�1

�

n

(S)�

n

(S) � Q(e)

�1

�

n

(S) � 2dn�

�1

n

. Since e

was arbitrary, (4) now gives us the required upper bound

on �(�).

6

Remark. A similar bound on the mixing time of the

Berretti-Sokal Markov chain was obtained using ad-hoc

methods by Sokal and Thomas [21]. Again the essential

feature that makes the argument work is the sub-Cayley

property of the tree underlying the chain. A rather

weaker bound was obtained by Lawler and Sokal [15], us-

ing the discrete Cheeger inequality or conductance. This

latter proof is very similar in spirit to the one above; es-

sentially, the e�ect is to replace � by �

2

in the bound of

theorem 4.

2.3 The overall algorithm

In this subsection, we show how to assemble the sequence

of Markov chains just described into a single algorithm

that outputs a sequence of numbers fec

n

g , each of which

is a good estimate of the corresponding c

n

. The accu-

racy of the estimates is controlled by two parameters, �

and � , exactly as in the de�nition of a randomized ap-

proximation scheme appearing at the beginning of sec-

tion 2. We shall see that the algorithm provides both an

approximation scheme and an almost uniform generator

with the properties claimed in theorem 1.

The main new ingredient in the algorithm is a boot-

strapping procedure for computing the parameters �

n

governing the transition probabilities of the Markov

chains. Recall that our analysis so far has assumed

that �

n

= c

n�1

=c

n

for each n . However, these values

are not available to us; in fact, calculating the quanti-

ties c

n

is one of our main objectives. Instead, our over-

all algorithm computes estimates of these ideal values

c

n�1

=c

n

for each n in turn, using the previous Markov

chain M

n�1

. This is consistent since the �rst time

that �

n

is required is in the Markov chain M

n

.

The algorithm, spelled out in detail in �gure 1, works

in a sequence of stages corresponding to the iterations

of the for-loop. We call stage n of the algorithm good if

it runs to completion and computes a value �

n

that ap-

proximates the value c

n�1

=c

n

within ratio (1 + �=4n

2

),

where �; � are the accuracy and con�dence inputs.

Let us consider the operation of stage n in detail. To

compute a good approximation �

n

of the ratio c

n�1

=c

n

,

we randomly sample walks of length n � 1 using the

Markov chain M

n�1

and estimate the average number

of one-step extensions of a walk: we can compute the

number of one-step extensions of a given walk by explic-

itly checking each of the 2d� 1 possibilities. Note that,

for a random walk, this is a bounded random variable

taking values in [0; 2d� 1] with mean at least 1 (since

c

n

> c

n�1

). The sample size is controlled by the param-

eter T

n

. A simple generalization of the 0=1-estimator

theorem (see [13]) to handle non-negative, bounded ran-

dom variables shows that T

n

need not be too large to

obtain a good estimate with su�ciently high probability.

Finally, since we are in fact sampling from the larger set

�

1

= 1=2d ; ec

1

= 2d

for n = 2; 3; 4; : : : do

using M

n�1

, generate a sample of size 2nT

n

from

(close to) the distribution �

n�1

over X

n�1

let Y be the set of walks in the sample with

length n� 1

ext(Y) =

P

w2Y

jfw

0

2 S

n

: w �

1

w

0

gj

if jY j < T

n

or ext(Y) = 0 then abort

else set �

n

= jY j=ext(Y)

output ec

n

= ec

n�1

=�

n

Figure 1: The algorithm

X

n�1

, we need to generate a sample of size 2nT

n

to en-

sure that, with high probability, we get at least T

n

walks

of length n � 1; that this sample is large enough fol-

lows from the fact that, by (2), in the stationary dis-

tribution of the chain M

n�1

walks of length n � 1 have

weight 1=n .

y

In the algorithmof �gure 1, we abort in the

unlikely event that the sample does not contain enough

walks of length n� 1.

Summarizing the above discussion, we get:

Lemma 6 In the algorithm of �gure 1, assuming that

stages 1; 2; : : : ; n� 1 are good, stage n is good with prob-

ability at least (1� �=2n

2

) , provided the sample size T

n

is at least cn

4

�

�2

(logn + log �

�1

) for a suitable con-

stant c (which depends on the dimension d).

The algorithm is designed so that, assuming all pre-

vious stages 1; 2; : : : ; n� 1 are good, stage n will be

good with probability at least (1 � �=2n

2

). The rea-

son for this requirement is the following. If all stages

1; 2; : : :; n are good, then the value ec

n

=

Q

n

i=1

�

�1

i

out-

put by the algorithm at the end of stage n approximates

Q

n

i=1

(c

i

=c

i�1

) = c

n

within ratio

Q

n

i=1

(1 + �=4i

2

) �

1 + � ; moreover, this happens with probability at least

Q

n

i=1

(1� �=2i

2

) � 1� � . Thus we get a randomized ap-

proximation scheme for c

n

, which was one of our prin-

cipal goals. Moreover, by the end of stage n we have

y

Actually the Markov chain we are simulating here is not pre-

cisely that analyzed in sections 2.1 and 2.2, since the parameters �

i

will di�er slightly from their ideal values. However, it should be

clear from lemma 3 that the stationary distribution is always uni-

form within each level of the tree, and that, if all previous stages

are good, then the distribution over levels of the tree di�ers from

the uniform distribution by at most a constant factor.

7

computed values �

i

for 1 � i � n ; thus we have con-

structed a Markov chain M

n

which we can simulate to

generate random self-avoiding walks of any length up

to n . This was our second principal goal.

The running time of stage n of the algorithm is dom-

inated by 2nT

n

= 2cn

5

�

�2

(logn + log �

�1

) times the

time required to produce a single sample from M

n�1

.

From our analysis in the previous subsection (theo-

rem 5), this latter time is O

�

n

2

�

�1

n

(logn+ log �

�1

)

�

for any �xed dimension d .

z

Run to the nth stage,

the algorithm is therefore an approximation scheme

satisfying the requirements of theorem 1. (Note that

the exponent of n in the running time could be im-

proved by a more re�ned statistical analysis.) By the

same reasoning, simulating the Markov chain M

n

for

O

�

n

2

�

�1

n

(logn+ log �

�1

)

�

steps gives us the almost uni-

form generator claimed in theorem 1.

3 Making the algorithm self-testing

In this section we show how to place the algorithm of the

previous section on a �rmer theoretical basis by replacing

our assumption of conjecture C2 by an algorithmic test

of the conjecture. This is a particular instance of what

we believe is a generally useful idea of using self-testing

to make an algorithm whose correctness depends on a

conjecture more robust.

Recall that we have reduced the problem of construct-

ing polynomial time approximation algorithms for self-

avoiding walks to that of verifying a single widely be-

lieved conjecture about the behavior of the walks. An

important feature of this reduction is the structure of

the conjecture. Conjecture C2 bounds the probabil-

ity that one can glue together two random self-avoiding

walks to produce a new self-avoiding walk; since the al-

gorithm also lets us generate random self-avoiding walks,

we can actually estimate this probability. For any speci-

�ed polynomial g , this allows us to verify the conjecture

(and therefore also the algorithm itself) for a new value

of n by using the algorithm in the region in which it has

already been tested. This is precisely the idea behind

the self-tester which we introduce in this section.

We showed in the last section how to construct a

sequence of Markov chains for uniformly generating

and counting self-avoiding walks of successively longer

lengths. The running time of these algorithms is poly-

nomial in the walk length n and the unknown parameter

�

�1

n

; this quantity enters into the time bound because

it governs the mixing time of the Markov chains (see

z

Once again, we should point out that the analysis of theorem 5

refers to the idealized Markov chain in which all values �

i

are

exact. However, it is a simple matter to check that, assuming

all stages are good, the e�ect on the mixing time of these small

perturbations of the �

i

is at most a constant factor.

~�

n

= ~�

n�1

for i = 1; 2; : : : ; n� 1 do

repeat t times

generate u

i

2 S

i

u.a.r.

generate v

i

2 S

n�i

u.a.r.

X

i

=

n

1 if u

i

� v

i

2 S

n

;

0 otherwise

q

n;i

=

P

i

X

i

=t

~�

n

= minf~�

n

; q

n;i

=2g

if e�

�1

n

> 4g(n)

then output \Warning: conjecture fails"

else continue

Figure 2: The self-tester

theorem 5). We then appealed to conjecture C2 to ar-

gue that �

�1

n

is itself polynomially bounded in n . The

idea behind the self-tester is to obtain a good estimate

for �

�1

n

in advance, so that we know how long to sim-

ulate our Markov chains to ensure our samples are suf-

�ciently close to the stationary distribution. This will

give us a probabilistic guarantee that the algorithm is

correct, independent of conjecture C2. Moreover, by ex-

amining the growth rate of successive values �

�1

n

, we can

simultaneously test conjecture C2. The algorithm will

proceed successfully for as long as we never exceed some

projected upper bound g(n) on �

�1

n

; however, should

�

�1

n

grow too quickly we will detect this fact and we

will have found a counter-example to the conjecture.

More precisely, after each stage n of the algorithm of

the previous section, we use the procedure shown in �g-

ure 2 to compute a quantity e�

n

such that, with high

probability, �

n

=4 � e�

n

� �

n

. The conservative es-

timate e�

�1

n

is then used in place of �

�1

n

in the next

stage when computing the mixing time of the Markov

chain M

n

from theorem 5. We also test conjecture C2

by comparing our estimates e�

�1

n

at each stage with (a

constant multiple of) the projected polynomial upper

bound g(n). The algorithm with the self-tester has the

following properties:

(i) if �

�1

n

� g(n) (i.e., C2 holds), then the algo-

rithm outputs a reliable numerical answer;

(ii) if �

�1

n

> 4g(n) (i.e., C2 fails \badly"), then

the algorithm outputs an error message;

8

(iii) if g(n) < �

�1

n

� 4g(n) then the algorithm ei-

ther outputs an error message or outputs a re-

liable numerical answer.

In every case the algorithm runs in polynomial time, and

any numerical answer which is output is reliable with

high probability.

Our method for computing the estimate e�

n

again

uses random sampling from the stationary distribution

of the Markov chain M

n�1

. The idea is to generate self-

avoiding walks of lengths i and n � i uniformly at ran-

dom, and thus estimate the probability that such a pair

can be glued together to form a walk of length n that is

self-avoiding. The details are given in �gure 2. Elemen-

tary statistics show that the sample size t required to

ensure that the estimate e�

n

is within the bounds speci-

�ed above with high probability is a polynomial function

of n , so the self-testing portion of the algorithmalso runs

in polynomial time.

Theorem 7 The algorithm of section 2 with the self-

tester incorporated runs in time polynomial in n; �

�1

and

log �

�1

; and satis�es properties (i)-(iii) above.

It is worth noting that, while the primary motiva-

tion for the self-tester is to check the unveri�ed con-

jecture C2, this idea could greatly increase the e�ciency

of the algorithm even if conjecture C2 were proven for

some polynomial g . The self-tester is computing a close

estimate for �

n

, so that simulating the Markov chain for

about O(n

2

�

�1

n

) steps is su�cient to allow us to sam-

ple from close to the stationary distribution. This might

be far more e�cient than basing the number of simula-

tion steps on some proven, but potentially loose, upper

bound g(n).

The idea of a tester has been used before, but in a

much more restrictive sense. For example, Berretti and

Sokal [2] propose testing possible \errors in scaling" due

to the conjecture that f(n) � An

�1

by trying other

speci�c polynomial forms for f(n). This gives evidence

that f(n) might be of the correct form, but falls short

of proving it probabilistically. In contrast, the tester we

present is designed to verify exactly the conjecture we re-

quire, and therefore o�ers precisely quanti�ed statistical

evidence that our algorithm is operating as we expect.

4 Open questions

Our most obvious and compelling open problem is ver-

ifying conjecture C2. This would constitute a substan-

tial breakthrough in the classical theory of self-avoiding

walks. However, it is less well studied than conjec-

ture C1, and its more elementary combinatorial nature

should make this task more feasible. The results in this

paper show that proving conjecture C2 for any polyno-

mial g would yield the �rst provably polynomial time

Monte Carlo approximation algorithms for self-avoiding

walks.

Another direction is to �nd other natural problems

that can be approached using the Monte Carlo tech-

niques based on sub-Cayley trees described in this paper.

For example, matchings (monomer-dimer coverings) in

lattices can be uniformly generated using a Markov chain

of this kind, and again the e�ciency of the algorithm

rests on a single combinatorial assumption. Unfortu-

nately, however, unlike conjecture C2, in this case the

analogous conjecture seems unlikely to be true. Never-

theless, perhaps it is possible to further adapt the algo-

rithm so as to obtain a more reasonable conjecture.

Finally, we predict that there are other applications

in which the type of self-testing described in this paper

can be used to convert heuristics into robust algorithms.

It would be interesting to explore the generality of this

method for testing a conjecture in the region where it is

su�cient to verify the correctness of an algorithm.

Acknowledgements

We thank Neal Madras and Alan Sokal for their valuable

comments on an earlier version of this paper.

References

[1] Alm, S.E. Upper bounds for the connective con-

stant of self-avoiding walks. Combinatorics, Prob-

ability & Computing. To appear.

[2] Berretti, A. and Sokal, A.D. New Monte Carlo

method for the self-avoiding walk. Journal of Sta-

tistical Physics 40 (1985), pp. 483{531.

[3] Blum, M., Luby, M. and Rubinfeld, R. Self-

testing/correcting with applications to numerical

problems. Proceedings of the 22nd ACM Sympo-

sium on Theory of Computing (1990), pp. 73{83.

[4] Conway, A.R. and Guttmann, A.J. Lower bounds

on the connective constant for square lattice self-

avoiding walks. Preprint, 1992.

[5] Diaconis, P., and Stroock, D. Geometric bounds

for eigenvalues of Markov chains. Annals of Ap-

plied Probability 1 (1991), pp. 36{61.

[6] Hammersley, J.M. The number of polygons on a

lattice. Proceedings of the Cambridge Philosophi-

cal Society 57 (1961), pp. 516{523.

[7] Hammersley, J.M. On the rate of convergence to

the connective constant of the hypercubical lattice.

Quarterly Journal of Mathematics, Oxford (2) 12

(1961), pp. 250{256.

[8] Hammersley, J.M. and Morton, K.W. Poor man's

Monte Carlo. Journal of the Royal Statistical

Society B 16 (1954), pp. 23{38.

9

[9] Hammersley, J.M. and Welsh, D.J.A. Further re-

sults on the rate of convergence to the connective

constant of the hypercubical lattice. Quarterly

Journal of Mathematics, Oxford (2) 13 (1962),

pp. 108{110.

[10] Hara, T., Slade, G. and Sokal, A.D. New lower

bounds on the self-avoiding-walk connective con-

stant. Journal of Statistical Physics 72 (1993),

pp. 479-517.

[11] Jerrum, M. R. and Sinclair, A. J. Approximating

the permanent. SIAM Journal on Computing 18

(1989), pp. 1149{1178.

[12] Jerrum, M.R., Valiant, L.G. and Vazirani, V.V.

Random generation of combinatorial structures

from a uniform distribution. Theoretical Com-

puter Science 43 (1986), pp. 169{188.

[13] Karp, R., Luby, M. and Madras, N. Monte-Carlo

approximation algorithms for enumeration prob-

lems. Journal of Algorithms 10 (1989), pp. 429{

448.

[14] Lawler, G.F. Intersections of Random Walks.

Birkh�auser, Boston, 1991.

[15] Lawler, G.F. and Sokal, A.D. Bounds on the L

2

spectrum for Markov chains and Markov processes:

A generalization of Cheeger's inequality. Trans-

actions of the American Mathematical Society 309

(1988), pp. 557{589.

[16] Madras, N. and Slade, G. The Self-Avoiding Walk.

Birkh�auser, Boston, 1993.

[17] O'Brien, G.L. Monotonicity of the number of self-

avoiding walks. Journal of Statistical Physics 59

(1990), pp. 969{979.

[18] Sinclair, A.J.Algorithms for random generation and

counting: a Markov chain approach. Birkh�auser,

Boston, 1992.

[19] Sinclair, A.J. Improved bounds for mixing rates of

Markov chains and multicommodity
ow. Com-

binatorics, Probability & Computing 1 (1992), pp.

351{370.

[20] Sinclair, A.J. and Jerrum, M.R. Approximate

counting, uniform generation and rapidly mixing

Markov chains. Information and Computation 82

(1989), pp. 93{133.

[21] Sokal, A.D. and Thomas, L.E. Exponential con-

vergence to equilibrium for a class of random walk

models. Journal of Statistical Physics 54 (1989),

pp. 797{828.

10

