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ABSTRACT
We analyze the mixing time of a natural local Markov chain
(the Glauber dynamics) on configurations of the solid-on-
solid model of statistical physics. This model has been pro-
posed, among other things, as an idealization of the behav-
ior of contours in the Ising model at low temperatures. Our
main result is an upper bound on the mixing time of Õ(n3.5),

which is tight within a factor of Õ(
√

n). The proof, which in
addition gives insight into the actual evolution of the con-
tours, requires the introduction of several novel analytical
techniques that we conjecture will have other applications.

Categories and Subject Descriptors: G.3 [Probability
and Statistics]: Markov processes; J.2 [Physical Sciences and
Engineering]: Physics

General Terms: Algorithms, Theory

Keywords: Markov chain Monte Carlo (MCMC), mixing
time, statistical physics, Ising model, Glauber dynamics

1. INTRODUCTION
In the n×n solid-on-solid (SOS) model [18, 19], a config-

uration is an assignment of an integer height η(i) ∈ [0, n]†

to each of n positions i ∈ [1, n], with fixed boundary condi-
tions η(0) = η(n+1) = 0. The probability of a configuration
η = {η(i)} is given by the Gibbs distribution

µ(η) = Z−1
β exp

n
−β

Xn+1

i=1
|η(i− 1)− η(i)|

o
. (1)

Here β is a parameter called the “inverse temperature”, and
Zβ is a normalizing factor (the “partition function”). Thus a
configuration of the SOS model may be pictured as a “con-
tour”with fixed endpoints (0, 0) and (n+1, 0) (see Fig. 1(a)).
The Gibbs distribution favors contours that are “smooth”
(i.e., have no large jumps in height), this bias being more
pronounced for larger values of β.
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In this paper we analyze the Glauber dynamics for the
SOS model. This is a natural local Markov chain on config-
urations which in each step updates the height at a randomly
chosen position i from η(i) to η(i)± 1; the transition prob-
abilities are chosen so that the dynamics is reversible wrt
the Gibbs distribution µ and thus converges to it from any
initial configuration. Our goal is to determine the mixing
time, i.e., the number of steps until the dynamics is close to
its equilibrium distribution µ.

Although dynamics for the SOS and related models have
been studied extensively in many contexts connected with
the behavior of random surfaces (see, e.g., [6, 7, 8, 17]), to
the best of our knowledge the mixing time has not been rig-
orously analyzed. Our specific motivations for studying this
question are twofold. The first comes from a connection with
the more familiar Ising model, whose Glauber dynamics has
been the focus of much attention in both statistical physics
and computer science (see, e.g., [1, 2, 12, 14, 23]). In the
Ising model in an n×n box Λn ⊆ Z2, the configurations are
assignments σ of spin values {+,–} to the vertices of Λn.
The Gibbs distribution is µ(σ) = Z−1

β exp(−βD(σ)), where

D(σ) is the number of neighboring pairs of vertices in Λn

whose spins differ and β is inverse temperature. One of the
most important open problems concerning the dynamics of
the Ising model is to determine the mixing time at low tem-
peratures (large β), when the boundary conditions around
the edges of Λn are fixed to be +. (In this case the Gibbs dis-
tribution puts most of the weight on configurations that are
almost entirely +.) This can essentially be reduced to the
following question: if the box is initially filled with – spins,
how long does it take until this large region of – is destroyed
under the influence of the boundary conditions? This in
turn is equivalent to the question of how the outer contour
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Figure 1: (a) A contour in the SOS model. (b) A
contour in the Ising model.



of the – region contracts towards the center of the box. For
large β, it is conjectured [9] that this happens in polynomial
time (independent of β); however, only very weak upper

bounds of the form exp(n1/2+ε) are known [11] (except in
the qualitatively different case of zero temperature, which is
analyzed in [3]). The SOS model has been proposed [19] as
an idealized model of this Ising contour, in which we think
of the sites above and below the SOS contour as being +
and – respectively. (Note that the sum

P
i |η(i− 1)− η(i)|

in the Gibbs distribution (1) is, up to an additive constant,
exactly D(σ) under this interpretation.) The mixing time
is essentially the number of steps until the maximal contour
(i.e., with η(i) = n for 1 ≤ i ≤ n) drops down close to the
bottom of the box under the influence of the boundary con-
ditions of height 0. The principal simplification here is that,
unlike the Ising model, the SOS contour has no “overhangs”
(see Fig. 1(b)). However, for large β one may hope that
overhangs are rare, so the approximation should give useful
insight into the behavior of the true Ising contour (see [5] for
much more on this point). More concretely, we conjecture
that the proof techniques we develop in this paper may be
useful in analyzing the Ising model. (For recent progress in
this direction, see [15].)

Our second motivation comes from the challenge that the
SOS model poses to standard techniques. The two most
natural approaches seem to be the following:

1. Coupling. It is not hard to check that, under the natural
monotone coupling of the SOS model (see Section 2), the
expected Hamming distance between two coupled copies of
the dynamics does not increase. This leads to a mixing time
bound of Õ(n5)‡ which, as we shall see, is very weak. It also
gives little insight into the actual evolution of the contour.

2. Comparison. Another standard approach is to first ana-
lyze a “non-local” dynamics in which transitions are allowed
to update the height η(i) to any value in [0, n]. Typically,
non-local dynamics are easier to analyze (see, e.g., [10, 24]).
One can then use the machinery of Diaconis and Saloff-
Coste [4] to relate the mixing time of the local dynamics to
that of the non-local one, as was done, for example, by Ran-
dall and Tetali [21] for the related “lozenge tilings” model.
However, since such comparisons proceed via the spectral
gap, they are usually quite wasteful; in particular, for the
SOS model this approach leads to a mixing time of Õ(n8).

In this paper we aim for a more refined analysis that, in
addition to an almost tight bound, gives greater insight into
the actual evolution of the contour in the SOS model. Our
main result is the following:

Theorem 1.1. For the n × n SOS model at any inverse
temperature β > 1

2
ln 3, the mixing time is Õ(n3.5).

We note that the lower bound on β is imposed only to
simplify our analysis, and is in practice not really a restric-
tion as the regime of interest is low temperatures (large β).
The bound on mixing time is tight up to a factor of

√
n (and

logarithmic factors), as a lower bound of Ω(n3) follows from
a straightforward argument (see Theorem 3.5 below).

Our analysis rests on the following four key ingredients:

(i) First, we give a tight analysis of the non-local dynamics
mentioned above, showing that its mixing time is O(n3 log n)
(see Theorem 3.1). This analysis, which we believe to be of

‡Throughout, the notation Õ(·) hides factors of polylog(n).

independent interest, follows an idea of Wilson, developed
in the context of the lozenge tilings model [24], in using an
eigenvector of the discrete Laplacian to obtain a contraction
in distance. However, to get this approach to work in our
setting we need to bound a certain “entropy repulsion” effect
due to the height barriers at 0 and n (see Lemma 3.2).

(ii) We then relate the local to the non-local dynamics us-
ing a recent“censoring inequality”of Peres and Winkler [16],
which says that censoring (i.e., not applying) some subset of
updates in a monotone dynamics can only increase the dis-
tance from stationarity. This allows one to simulate a single
move of the non-local dynamics, at position i, by censoring
all local moves except those that update η(i); by the censor-
ing inequality, this can only increase the mixing time. As
a result, the mixing time of the local dynamics is bounded
above by that of the non-local dynamics times a factor re-
lated to the mixing time of the one-dimensional local process
within the ith “column”.

(iii) A näıve application of the censoring inequality would
entail a substantial overhead of O(n2) from the mixing time
within a column, which is essentially the square of the maxi-
mum height difference between the two neighboring columns.
To overcome this, we need to control the height differences,
or “gradients,” along the contour. We do this by introduc-
ing a sequence of “bounding dynamics” with gradually de-
creasing boundary conditions; since the boundary conditions
are—intuitively at least—the source of large gradients, this
gives us control of the gradients. As a result, we are able to
cut the simulation overhead between the local and non-local
dynamics to Õ(

√
n). We note that this sequence of bound-

ing dynamics captures some of the intuition about the actual
evolution of the contour.

(iv) Making rigorous the above bound on gradients requires
detailed information about the non-equilibrium shape of the
contour, which is notoriously difficult to obtain. We get
around this difficulty by starting the bounding dynamics in
equilibrium, but conditioned on a certain rare event A. (The
conditioning is necessary to ensure that the bounding prop-
erty holds.) By choosing A such that its probability, though
tiny, is nonetheless larger than the probability of large gra-
dients in equilibrium, we can argue that large gradients do
not occur during the evolution.

2. PRELIMINARIES
Gibbs distribution. We denote by Ωn = [0, n]n the

set of all configurations η = {η(i)}n
i=1 of the n × n solid-

on-solid model, as defined in the Introduction. The prob-
ability of a configuration η is given by the Gibbs distri-
bution defined in equation (1). This distribution induces
a conditional distribution on the height η(i) at position i,
given the heights η(i ± 1) at its neighbors, as follows. Let
a = min{η(i−1), η(i+1)}, b = max{η(i−1), η(i+1)}. Then
µab(j) := Pr[η(i) = j | a, b] is given by

µab(j) =

8><>:
e−β(b−a)−2β(a−j)/Z if 0 ≤ j < a;

e−β(b−a)/Z if a ≤ j ≤ b;

e−β(b−a)−2β(j−b)/Z if b < j ≤ n,

(2)

where Z is a normalizing factor. Note that µab is uniform
on the interval [a, b] and decays exponentially (at a rate de-
pending on β) outside it.



Single-site dynamics. Our goal is to analyze the single-
site Glauber dynamics, which is a reversible Markov chain
Mss

n on Ωn with transitions defined as follows, where η = ηt

denotes the current configuration at time t:

1. Pick i ∈ [1, n] u.a.r.

2. Replace η(i) by max{η(i) − 1, 0} or min{η(i) + 1, n}
with probabilities p−, p+ respectively, determined as
follows (where a, b are the minimum and maximum
heights of the neighbors, as above): if η(i) ≤ a then
p− = 1

4
e−2β , else p− = 1

4
; if η(i) ≥ b then p+ =

1
4
e−2β , else p+ = 1

4
. With the remaining probability

1− (p− + p+), leave η(i) unchanged.

It is standard that Mss
n is an ergodic, reversible Markov

chain that converges to the stationary distribution µ on Ωn.
Our goal is to estimate its mixing time, i.e., the number of
steps required for the distribution to get close to µ from an
arbitrary initial configuration.

Column dynamics. We will analyze Mss
n by first analyz-

ing a related Glauber dynamics Mcol
n , called the “column

dynamics,” that makes non-local moves. (The term “col-
umn” refers to the set [0, n] of possible heights at i.) If the
configuration at time t is ηt = η, Mcol

n makes a transition
as follows:

1. Pick i ∈ [1, n] u.a.r.

2. Replace η(i) by a random height j chosen from the
conditional distribution (2).

Mcol
n is again ergodic and reversible with stationary distri-

bution µ. Note that both Mss
n and Mcol

n update the height
at a randomly chosen position i in a manner that is reversible
wrt the conditional distribution (2). The difference is that
Mss

n considers only local moves (changing the height by ±1),
while Mcol

n allows the height at i to be set to any value.

Mixing time. LetM by any reversible Markov chain on Ωn

with stationary distribution µ. Following standard practice,
we measure the convergence rate of M via the quantity

τM(ε) = min{t : ‖νξ
t − µ‖ ≤ ε, ∀ξ ∈ Ωn},

where νξ
t denotes the distribution of the configuration at

time t starting from configuration ξ at time 0, and ‖ · ‖
denotes variation distance. Thus τM(ε) is the number of
steps until the variation distance from µ drops to ε, for an
arbitrary initial configuration. For concreteness we define
the mixing time as τmix

M = τM(1/2e); it is well known that
τM(ε) ≤ dln ε−1e × τmix

M for all ε > 0.

Monotonicity and coupling. We define a natural partial
order on Ωn as follows: for configurations η, ξ ∈ Ωn, we say
that η � ξ iff η(i) ≤ ξ(i) for all i ∈ [1, n]. Note that � has
unique maximal and minimal elements ηmax and ηmin given
by ηmax(i) = n and ηmin(i) = 0 for 1 ≤ i ≤ n.

A key fact we shall exploit throughout is the existence
of a complete coupling of the Glauber dynamics (single-
site or column) that is monotone w.r.t. �. A complete
coupling of a Markov chain M on Ωn is a random func-
tion f : Ωn → Ωn that preserves the transition probabil-
ities of M, i.e., Prf [f(η) = η′] = PrM[η → η′] for all
η, η′ ∈ Ωn. Note that f simultaneously couples the evo-
lution of the Markov chain at all configurations. For the
column dynamics we define f as follows, where η denotes
the current configuration:

1. Pick i ∈ [1, n] and a real number r ∈ [0, 1] indepen-
dently and u.a.r.

2. Let g(k) =
Pk

j=0 µab(j) be the cumulative distribution
function of the height at position i, given neighboring
heights a, b. Set η′(i) = min{k : g(k) ≤ r}.

An analogous definition holds for the single-site dynamics.
It is simple to check that these couplings are monotone
w.r.t. the partial order �, in the sense that if ηt � ξt, and
ηt+1, ξt+1 are the corresponding configurations at the next
time step under the coupling, then ηt+1 � ξt+1.

A further standard fact we will need is that the mixing
time of the Glauber dynamics is bounded above by the time
until the coupled evolutions started in the two extremal con-
figurations, ηmax and ηmin, coincide with constant probabil-
ity. More precisely:

Proposition 2.1. [20] Let (ηmax
t ), (ηmin

t ) denote the cou-
pled evolutions of two copies of a monotone Glauber dynam-
ics M on Ωn started in configurations ηmax, ηmin respec-
tively. Then τM(ε) ≤ min{t : Pr[ηmax

t 6= ηmin
t ] ≤ ε}.

Censoring. In our analysis of the single-site dynamics, we
shall also need a useful tool from recent work of Peres and
Winkler, which says that censoring (i.e., not applying) any
subset of updates in the dynamics can only increase the dis-
tance from stationarity. This so-called“censoring inequality”
applies to any monotone single-site dynamics.

Lemma 2.2. [16] Suppose a monotone single-site dynam-
ics is started in a random initial configuration with distribu-
tion ν0 s.t. ν0/µ is increasing§ w.r.t. �. Let ν denote the dis-
tribution after updates at positions i1, i2, . . . , im, and ν′ the
distribution after updates at a subsequence of these positions
ij1 , ij2 , . . . , ijm′ (chosen a priori). Then ‖ν−µ‖ ≤ ‖ν′−µ‖.

Remark: [16, Thm 16.5] states this result for the special
case in which ν0 is concentrated on the maximal state ηmax.
However, it is easy to see that the proof requires only the
weaker assumption that ν0/µ is increasing.

The censoring inequality can be used to relate the single-
site and column dynamics via the following observation. If
we censor all moves of the single-site dynamics except for
those that update a certain position i, then after some fixed
number of steps T (which depends on the mixing time of
the single-site dynamics just within the ith column, with
its neighbors fixed) we will, up to small error, have simu-
lated one move of the column dynamics. By Lemma 2.2 the
censoring can only slow down convergence of the single-site
dynamics, so the mixing time of Mss

n is bounded above by
roughly T times that of Mcol

n . We shall use a more sophis-
ticated version of this argument in Section 4.

3. THE COLUMN DYNAMICS
Our goal in this section is to provide a tight analysis of

the column dynamics Mcol
n . Specifically, we will prove:

Theorem 3.1. For any β > 1
2

ln 3, the mixing time of the

column dynamics Mcol
n is O(n3 log n).

§A real-valued function f on Ωn is increasing w.r.t. � if
η � ξ implies f(η) ≤ f(ξ).



We believe this result, which we show is tight up to the log n
factor (see Theorem 3.5 below) is interesting in its own right.
It will also be a key ingredient in our analysis of the single-
site dynamics later.

Remark: The lower bound on β is required only for conve-
nience in the proof of Lemma 3.2 below, and is in any case
not really a restriction as the interesting case is when β is
large (low temperature). We believe that the proof of the
lemma can be adapted to any β > 0 at the cost of further
technical complication.

Recall that, if the current configuration of Mcol
n is ηt and

we choose position i ∈ [1, n] at the next step, then the new
height ηt+1(i) is drawn from the conditional distribution (2),
where a, b are the minimum and maximum heights of the
neighbors ηt(i± 1). A key observation is that, under such a
move, the expected value of the new height ηt+1(i) is close
to the average a+b

2
of its two neighbors; moreover, the error

term satisfies a natural ordering property w.r.t. a, b.

Lemma 3.2. Let β > 1
2

ln 3. In the above situation, and
assuming a + b ≤ n, the expected value of the new height
ηt+1(i) satisfies

E[ηt+1(i) | a, b] =
a + b

2
+ ε(a, b), (3)

where ε(a, b) ≥ 0. Moreover, ε(a, b) ≤ ε(c, d) for any pair
c, d with c ≤ min{a, d} ≤ max{a, d} ≤ b.

We defer the proof of the lemma, which is a technical cal-
culation, to the full version of the paper [13]. However, the
intuition is as follows. Note that the distribution of ηt+1(i)
is uniform on the interval [a, b], and decays symmetrically on
either side except for the effects of the barriers at heights 0
and n. Thus we would expect its mean to be close to a+b

2
.

The term ε(a, b) captures the “entropy repulsion” effect of
the barriers. This effect is more pronounced for pairs that
are closer to 0, as is the case for the pair (c, d) in the lemma.

We can derive from Lemma 3.2 the following more sym-
metrical form that allows us to compare the heights of two
ordered configurations under the monotone coupling. (The
straightforward proof is omitted; see the full version [13].)

Corollary 3.3. Let β > 1
2

ln 3. Suppose ηt and ξt are
two configurations satisfying ηt � ξt, and let a = min{ξt(i−
1), ξt(i + 1)}, b = max{ξt(i − 1), ξt(i + 1)}, c = min{ηt(i −
1), ηt(i + 1)}, d = max{ηt(i− 1), ηt(i + 1)}. Then

0 ≤ E[ξt+1(i) | a, b]− E[ηt+1(i) | c, d] ≤ a + b

2
− c + d

2
. (4)

Armed with Corollary 3.3, we can now proceed to our
analysis of Mcol

n .

Proof of Theorem 3.1. Following Proposition 2.1, it
suffices to show that two coupled copies of Mcol

n , started
in configurations ηmax and ηmin, will coincide with constant
probability after O(n3 log n) steps. Call these two copies
(ηmax

t ), (ηmin
t ) respectively.

We will measure the distance between ηmax
t and ηmin

t using
the quantity

D(t) =

nX
i=1

w(i)(ηmax
t (i)− ηmin

t (i)), (5)

where w(i) ≥ 0 is a suitably chosen weight function. Note
that ηmax

t (i) ≥ ηmin
t (i) for all i, t by monotonicity, so all

terms in the sum are non-negative; and D(t) = 0 iff ηmax
t =

ηmin
t . Following an idea of Wilson [24], we choose w as the

second eigenvector of the discrete Laplacian operator ∆ on
[1, n] with zero boundary conditions, defined by ∆g(i) =
− 1

2
(g(i+1)+ g(i− 1))+ g(i), g(0) = g(n+1) = 0. It is well

known (and easy to verify) that w(i) = cos(−π
2

+ πi
n+1

) with

corresponding eigenvalue λ = 1− cos( π
n+1

) = Θ( 1
n2 ).

The reason for this choice is that, by Corollary 3.3, one
step of the dynamics behaves very like the Laplacian, so
choosing w as an eigenvector of ∆ should give us a contrac-
tion of (1− λ

n
) in D at every step. The argument proceeds

as follows:

E[D(t + 1)−D(t) | ηmax
t , ηmin

t ]

=
1

n

nX
i=1

w(i)
˘
E[ηmax

t+1 (i) | ηmax
t (i− 1), ηmax

t (i + 1)]

−E[ηmin
t+1(i) | ηmin

t (i− 1), ηmin
t (i + 1)

− (ηmax
t (i)− ηmin

t (i))
¯

≤ − 1

n

X
i

w(i)(∆ηmax
t (i)−∆ηmin

t (i))

= − 1

n

X
i

∆w(i)(ηmax
t (i)− ηmin

t (i)) = −λ

n
D(t),

where in the inequality we have used Corollary 3.3.
Thus after t steps of the dynamics we have E[D(t)] ≤

(1− λ
n
)tD(0) ≤ (1− c

n3 )tn2 for a constant c > 0. Taking t =

t∗ = c′n3 log(n
ε
) for a sufficiently large constant c′ ensures

that E[D(t∗)] � ε
n2 . Finally, we may bound the coupling

probability at time t∗ as follows:

Pr[ηmax
t∗ 6= ηmin

t∗ ] ≤
X

i

Pr[ηmax
t∗ (i)− ηmin

t∗ (i) ≥ 1]

≤ w−1
min

X
i

w(i)E[ηmax
t∗ (i)− ηmin

t∗ (i)]

= w−1
minE[D(t∗)] ≤ ε,

where in the second line we used Markov’s inequality, and
in the last line the fact that wmin := mini w(i) = cos(−π

2
+

π
n+1

) = Θ( 1
n2 ). Thus by Proposition 2.1 we have τMcol

n
(ε) ≤

t∗ = O(n3 log(n/ε)), so τmix
Mcol

n
= O(n3 log n).

For our analysis of the single-site dynamics, it will be con-
venient to introduce a “parallel” version Mpar

n of the column
dynamics in which all odd-numbered (or all even-numbered)
positions are updated simultaneously at each step. More-
over, since repeated updates of odd or even positions have
no effect, we may as well assume that odd and even updates
alternate. This leads to the following definition of Mpar

n , in
which O, E denote updates of all odd and even positions re-
spectively, and the update at any given position is performed
as in the column dynamics:

1. Flip a single fair coin.

2. If heads, perform t pairs of odd-even updates (i.e.,
(OE)t), else if tails perform t pairs of even-odd up-
dates (i.e., (EO)t).

Note that Mpar
n is a convex combination of two reversible

Markov chains, one performing the update sequence (OE)t

and the other (EO)t. We will call these chains MOE
n and

MEO
n respectively.



Following our analysis of Mcol
n , it is straightforward to

see that Mpar
n inherits a similar bound on the mixing time,

with a factor n speedup coming from the parallelization of
the updates. The proof is similar to that of Theorem 3.1
and is omitted (see [13]).

Theorem 3.4. For any β > 1
2

ln 3, the mixing time of

Mpar
n is O(n2 log n).

Remark: The proofs of Theorems 3.1 and 3.4 show the
stronger results that τMcol

n
(ε) = O(n3 log(n/ε)) and τMpar

n
(ε)

= O(n2 log(n/ε)). We shall use this result for τMpar
n

(ε) in
the next section.

We close this section with a lower bound which shows that
the above bound on the mixing time of the column dynamics
is tight up to the log n factor. This lower bound also applies
to the single-site dynamics, which will imply that our upper
bound on its mixing time derived in the next section is tight
within a factor of Õ(

√
n), as claimed in the Introduction.

Theorem 3.5. The mixing times of both Mcol
n and Mss

n

are at least Ω(n3).

Proof (sketch). Recall that the spectral gap of a re-
versible dynamics M is given by

gap =
1

2
inf
f

P
η,η′ µ(η) PrM[η → η′](f(η)− f(η′))2

Varµ(f)
(6)

where the infimum is over all non-constant functions f :
Ωn → R. Since the mixing time is bounded below by gap−1,
it suffices to show that gap ≤ n−3. Now take the test func-
tion f(η) =

P
i w(i)(η(i + 1) − η(i − 1)), where w is as in

the proof of Theorem 3.1. Then straightforward calculations
show that, for both Mcol

n and Mss
n , the numerator of (6) is

at most c1/n2 and the denominator is at least c2n, for con-
stants c1, c2 > 0. The details are in the full version [13].

4. THE SINGLE-SITE DYNAMICS
In this section we prove our main result, Theorem 1.1 of

the Introduction, which we restate here for convenience.

Theorem 4.1. The mixing time of the single-site dynam-
ics Mss

n at any inverse temperature β > 1
2

ln 3 is Õ(n3.5).

Remark: We have confined our analysis to the SOS model
in an n × n region, where the maximum height is equal to
the number of sites, n. This is the most natural setting,
especially in view of the connection with the Ising model. If
instead we allow heights in the range [0, h] (so that the set
of configurations is [0, h]n) then, as will be apparent from
our analysis below, we obtain a bound on the mixing time
of Õ(n2.5 max{n, h}).

Before embarking on the proof, which is quite involved,
we give a brief informal sketch of our strategy. Recall from
Proposition 2.1 that it suffices to bound the coupling time
for two extremal copies of the dynamics, (ηmax

t ) and (ηmin
t ).

We do this in three phases as follows.

Phase 1: We show that, after time Õ(n3.5), ηmax
t is (w.h.p.)

below height
√

n log2 n. We do this in about
√

n stages, each
of length Õ(n3); in each stage, the height of ηmax

t is reduced
by
√

n. To bring the height down from hj−1 = n−(j−1)
√

n
to hj = n− j

√
n, we introduce a “bounding” dynamics Mj

on the expanded region [−n, 2n] of width 3n with bound-
ary conditions kj = hj −

√
n log2 n. To do this, we must

start Mj above ηmax
t , i.e., above height hj−1 in the region

[1, n]; by monotonicity, the time for ηmax
t to reach height hj

is then bounded by the time for Mj to reach hj . But since
the boundary conditions of Mj , and hence its equilibrium
distribution, are far below hj , this in turn is bounded by the
mixing time of Mj . This mixing time can be bounded by
relating it to the parallel column dynamics using the cen-
soring inequality (Lemma 2.2). A key point here is that
the overhead in this comparison is determined by the max-
imum gradient in Mj , so we need to keep this small; but
by starting Mj in equilibrium conditioned on being above
height hj−1 on [1, n], we can relate the probability of de-
veloping a large (> polylog(n)) gradient to the equilibrium
probability of this event, which is very small.

Phase 2: After Phase 1, ηmax
t is below a bounding dynam-

ics with boundary conditions at 0, but on the wider region
[−n, 2n]. Such a dynamics will have height Õ(

√
n) at posi-

tions 1 and n, so is still far from equilibrium on the desired
region [1, n]. The role of Phase 2 is to shrink the region
to [1, n] by moving in the boundary conditions. We do this
in three steps, motivated by the need to keep the gradients
small so that comparison with the column dynamics has low
overhead. First we show, again using a bounding dynamics,
that after a further time Õ(n3.5), ηmax

t is below the equilib-

rium contour on a region [−n3/4, n + n3/4]. We then repeat

this to shrink the region to [−n1/2, n+n1/2], and then again
to get it to [1, n].

Phase 3: Once ηmax
t is below the desired equilibrium con-

tour on [1, n], we show that after a further Õ(n3.5) steps it is
likely to couple with ηmin

t . This is done by comparing ηmin
t

with the parallel column dynamics, in similar fashion to the
above, but a somewhat delicate ad hoc argument is needed
to show that ηmin

t itself does not develop large gradients.

We now proceed with the detailed proof. Let us first fix
some notation. Let Λn = [1, n] denote the usual SOS region.
For a positive integer `, let Λ`,n = [−` + 1, n + `] denote the
enlargement of Λn by 2` additional positions. We say that a
configuration η on Λ`,n has k-b.c. if its boundary conditions
are η(−`) = η(n + ` + 1) = k.

It will be convenient to allow configurations of our dynam-
ics to have arbitrarily large heights. Thus let Hn = [0, n] de-
note the usual set of heights for the SOS model, and H∞ = N
the unrestricted set of heights. The corresponding sets of

configurations are Ω`,n = H
Λ`,n
n and Ω∞`,n = H

Λ`,n
∞ respec-

tively. The Gibbs distribution on Ω∞`,n with k-b.c. is denoted

µ
(k)
`,n. (This is defined as for the original SOS model in (1);

note that, despite the unbounded heights, the partition func-
tion Zβ is bounded for all β > 0. Note also that the column
dynamics on Ω∞`,n inherits the mixing time bounds from Sec-
tion 3 provided its initial configuration is below height n.)

The single-site dynamics on Ω∞n := Ω∞0,n with 0-b.c. start-
ing in the constant configuration η(i) = k for i ∈ Λn will be

denoted (η
(k)
t ). We will in fact assume that this dynamics

is implemented by choosing a position i ∈ Λn,n (rather than
in Λn) for updating, and doing nothing if i falls outside Λn.
This just slows down the dynamics by a factor of 3. We will
do the same for all the single-site dynamics we use. Since
the largest region we will use is Λn,n, this device allows us to
extend the monotone complete coupling of Section 2 to all
our dynamics, even when they live on different regions Λ`,n.



4.1 Phase 1: From height n to height
√

n log2 n
Following the sketch above, our goal is to bound the time

for ηmax
t to drop from height n to height

√
n log2 n in stages

of size
√

n. To this end, for 0 ≤ j ≤ N :=
√

n − log2 n,¶

define

hj := n− j
√

n; kj := hj −
√

n log2 n.

Also, set tn = n3 log12 n and εn = 1/n3. The following
lemma summarizes the outcome of Phase 1, and says that
after each subsequence of tn = Õ(n3) steps the single-site
dynamics started at height n decreases its height by

√
n

whp. The total length of this phase is therefore Õ(n3.5).

Lemma 4.2. With the above notation, we havePN
j=1 Pr[∃i ∈ Λn : ηmax

jtn
(i) ≥ hj ] ≤ εn.

Proof. Clearly, by monotonicity, it is enough to prove

the lemma with ηmax
t replaced by η

(n)
t (which differs only in

that its height set is H∞ rather than Hn). Let Bj denote the

event {∃ i ∈ Λn : η
(n)
jtn

(i) ≥ hj} and let qj = Pr[Bj ∩Bj−1].
Then

NP
j=1

Pr[Bj ] ≤
NP

j=1

jP
k=1

qk ≤ N2 maxj qj . (7)

We now bound qj . By definition of Bj−1 and monotonicity,

qj ≤ Pr[∃i ∈ Λn : η
(hj−1)
tn

(i) ≥ hj ]. (8)

In order to bound the r.h.s. of (8) we compare the dynamics
to another “bounding” single-site dynamics on the enlarged
interval Λn,n with kj-b.c. and with initial distribution ν0

given by the equilibrium distribution µ(kj) := µ
(kj)
n,n condi-

tioned on the increasing event

A := {η(i) ≥ hj−1 for every i ∈ Λn} . (9)

Because of the choice of the initial distribution ν0 and of the
boundary condition, if (σξ

t ) denotes the bounding dynamics
starting from the configuration ξ, it is clear that

Pr[∃i ∈ Λn : η
(hj−1)
tn

(i) ≥ hj ]

≤
P

ξ ν0(ξ) Pr[∃i ∈ Λn : σξ
tn

(i) ≥ hj ]. (10)

A key observation at this stage, which largely explains the
choice of the scales hj , kj is the following. Since hj − kj =√

n log2 n, the event on the r.h.s. of (10) is very unlikely

in the equilibrium distribution µ(kj). More precisely, the
following bound is proved in the appendix:‖

Claim 4.3. µ(kj)(∃i ∈ Λn : η(i) ≥ hj) ≤ e−c log4 n.

Thus, in order to show that the r.h.s. of (10) is small, we only
need to show that the distribution of the bounding dynamics
at time tn, νtn , is close to its equilibrium distribution, or
specifically

‖νtn − µ(kj)‖ = o(1/n4). (11)

This will ensure that qj = o(1/n4), which by (7) and the
fact that N ∼

√
n gives the lemma.

¶Throughout, for clarity, we ignore rounding issues; clearly
these do not affect our asymptotic results.
‖Throughout we shall use c to denote a generic positive con-
stant.

To bound the mixing time of the bounding dynamics, we
relate it to the corresponding parallel column dynamics us-
ing the censoring inequality (Lemma 2.2). Note that this is
valid because the initial distribution ν0 satisfies the require-
ment that ν0/µ(kj) is increasing wrt �.

To do this, we split the time tn into M := n2 log2 n epochs
each of length m := n log10 n. Given tn random positions
i = (i1, i2, . . . , itn) in Λn,n, the measure νtn can be written
as the average over i of the measure νi obtained by apply-
ing, in the given order, tn single-site updates at positions
i1, i2, . . . , itn . Next we write w(i) = (w1, . . . ,wM ) by group-
ing together positions in the same epoch. Finally, we define
two censored versions of the dynamics as follows. In the first
version, we delete all even positions from the odd epochs and
all odd positions from the even epochs; denote the resulting
censored vector OE(i) = (OE1, . . . ,OEM ) and the associ-
ated measure νOE(i). In the second version, we reverse the
roles of odd and even and denote the resulting censored vec-
tor EO(i) = (EO1, . . . ,EOM ) and the associated measure
νEO(i).

This construction gives us

‖νtn − µ(kj)‖ = ‖Avi νi − µ(kj)‖ ≤ Avi ‖νi − µ(kj)‖
≤ Avi ‖ 1

2
(νOE(i) + νEO(i))− µ(kj)‖, (12)

where the last step relies on the censoring inequality. Note
that the expected number of times any position i appears
in i is m/n = log10 n. Hence a standard Chernoff bound
guarantees that, apart from an error that is exponentially
small in log10 n, the r.h.s. of (12) is bounded above by

max
i∈Σ

‖ 1
2
(νOE(i) + νEO(i))− µ(kj)‖, (13)

where Σ consists of all i such that the censored vectors OE(i)
and EO(i) each contain at least 1

2
log10 n updates of every

position i ∈ Λn,n in every epoch k ∈ {1, . . . , M}.
Now we claim that the distribution 1

2
(νOE(i) + νEO(i)) is

very close to the distribution at time M = n2 log2 n of the
parallel column dynamics Mpar

n , with the same initial dis-
tribution ν0 and boundary conditions kj . To establish this,
we need to show that 1

2
log10 n single-site updates at po-

sition i, with its neighboring heights fixed, are enough to
simulate (with small error) one column update at i. This
relies crucially on the fact that Mpar

n is unlikely to produce
configurations with large gradients, which we define to be at
least log4.5 n. Accordingly, define the set of “bad” configu-
rations

B = {η : |η(i+1)−η(i)| ≥ log4.5 n for some i ∈ Λn,n}. (14)

Claim 4.4. Let νOE
s and νEO

s denote the distributions of
MOE

n and MEO
n respectively after s steps, starting from ν0.

Then ‖ 1
2
(νOE(i) + νEO(i)) − νpar

M ‖ ≤ M
`
maxs{νOE

s (B) +

νEO
s (B)}+ e−c log9 n

´
.

The intuition for this Claim, whose detailed proof is deferred
to the full version [13], is the following. The first term on the
r.h.s. bounds the probability of seeing a bad configuration,
so we may assume that η /∈ B. A sequence of single-site up-
dates at position i (with its neighboring heights a, b fixed)
can be viewed as a lazy nearest-neighbor random walk on
column i with stationary distribution equal to the distribu-
tion of a column update. This distribution (see (2)) is uni-
form on the interval [a, b] and decays exponentially outside



it. Hence its mixing time is essentially O((b−a)2 log(b−a)),
which is O(log9 n log log n) assuming η /∈ B. Thus 1

2
log10 n

steps suffice to simulate a column update with very small

error e−c log9 n, which is the second term in the bound. The
factor M comes from a union bound over steps.

In order to use Claim 4.4, we need to bound νOE
s (B)

(and, symmetrically, νEO
s (B)), the probability of the dy-

namics creating a large gradient. This is in general a highly
non-trivial task because it requires detailed non-equilibrium
information about the contours. However, it is here that
our choice of the initial distribution ν0 = µ(kj)( · | A), where

A is defined in (9), is crucial. Since µ(kj) remains invariant
under any number of steps of MOE

n (and of MEO
n ), we can

write, for any s,

νOE
s (B) ≤ µ(kj)(B)/µ(kj)(A),

and an identical bound for νEO
s (B). But this is easy to

evaluate as it is the ratio of the probabilities of two events in
equilibrium! The following straightforward bound is proved
in the appendix:

Claim 4.5. There exists a constant c > 0 such that
µ(kj)(B)/µ(kj)(A) ≤ e−c log4.5 n.

We can now put everything together. For each i ∈ Σ, the
quantity in (13) is bounded by

‖ 1
2
(νOE(i) + νEO(i))− νpar

M ‖+ ‖νpar
M − µ(kj)‖, (15)

where νpar
s denotes the distribution obtained from ν0 after

s steps of the parallel column dynamics. By Claims 4.4

and 4.5, the first term in (15) is bounded by M(2e−c log4.5 n+

e−c log9 n), which is certainly o(1/n4), while the second term
is o(1/n4) by Theorem 3.4 and the fact that M � n2 log n
(the mixing time of Mpar

n ). Hence the variation distance of
the dynamics is o(1/n4), as required in (11). This concludes
the proof of the lemma and the analysis of Phase 1.

4.2 Phase 2: From height
√

n log2 n to equi-
librium height

Phase 1 guarantees that the contour ηmax
t has maximum

height
√

n log2 n with high probability after Õ(n3.5) steps.
In Phase 2 we show that a contour starting at this height is,
after a further Õ(n3.5) steps, “below” the equilibrium distri-
bution µn on Λn, in a sense made precise by the following
lemma. Recall that η(k) denotes the single-site dynamics in
Ω∞n with 0-b.c. starting at height η(i) = k for all i.

Lemma 4.6. Let sn = n3.5 log12 n and εn = 1/n3. Then
for any increasing event E,

Pr[η
(
√

n log2 n)
3sn

∈ E] ≤ µn(E) + 3εn.

Proof. The proof proceeds via three “smoothing” steps,
which bring the contour close to the equilibrium distribu-
tion on smaller intervals Λ`,n with 0-b.c. The first step uses

` = n3/4 and the second ` = n1/2; the third step then re-
duces the interval to the desired Λn. All steps use the same
technology as Phase 1 by relating the single-site dynamics
to the parallel column dynamics; as before, the key is to
control the gradients along the contours—and it is this that
dictates our choices of `.

We proceed now with the first smoothing step. Let hn =√
n log2 n, ` = n3/4, and µ`,n be the equilibrium distribution

in the enlarged interval Λ`,n with 0-b.c. Let A = {η ∈
Ω∞`,n; η(i) ≥ hn ∀i ∈ Λn} and let νsn be the distribution

at time sn = n3.5 log12 n of the single-site dynamics in Λ`,n

with 0-b.c. starting from the distribution ν0 := µ`,n(· | A).

Lemma 4.7 (First smoothing). With the above nota-
tion, and with εn = 1/n3, we have ‖νsn − µ`,n‖ ≤ εn.

Remark: Let P
(hn)
sn denote the distribution at time sn of

the single-site dynamics in Λn with height set Hn and 0-b.c.

starting from height hn. Clearly P
(hn)
sn ≤ νsn and therefore

Lemma 4.7 implies that, for any increasing event E ⊆ Ωn,

P
(hn)
sn (E) ≤ µ`,n(E) + εn.

Proof. The proof follows the same pattern as that of
each stage in Lemma 4.2, with one major difference. Since
the measure µ`,n has 0-b.c. at distance ` = n3/4 from the in-
terval Λn, the corresponding conditioning event A = {η(i) ≥
hn for every i ∈ Λn} is now much more unlikely than it
was before (cf. equation (9)). Whereas previously we had

µ(A) ≥ e−c log4 n (see the proof of Claim 4.5), we must now
make do with the following weaker lower bound (which is
almost sharp):

Claim 4.8. µ`,n(A) ≥ e−ch2
n/` = e−cn1/4 log4 n for a

suitable constant c.

The proof is in the appendix. Recall that the proof of
Lemma 4.2 hinged on the fact that the ratio µ(B)/µ(A) �
εn, where B is the set of contours with large (i.e., polyloga-
rithmic) gradient, as defined in (14). Since now µ(A) is much
smaller, we must weaken our definition of large gradient and
redefine B as follows:

B = {η : |η(i+1)−η(i)|≥n1/4log4.5n for some i∈Λ`,n}. (16)

With this definition of B, a calculation analogous to that in

the proof of Claim 4.5 gives µ`,n(B) ≤ e−c′n1/4 log4.5 n, and
hence µ`,n(B)/µ`,n(A) is of the same order.

We then divide the time sn into M = n2 log2 n epochs,
each of length n3/2 log10 n, and use the censoring inequal-
ity as before to simulate M steps of the parallel column
dynamics (which is sufficient for it to mix within variation
distance εn). Whp, in each epoch each position receives

at least 1
2
n1/2 log10 n single-site updates, and by a random

walk argument analogous to that in Claim 4.4 the num-
ber of updates needed to faithfully simulate one column
update is essentially the square of the gradient, which is
(n1/4 log4.5 n)2 = n1/2 log9 n and thus much smaller than
the number of updates actually performed. This concludes
the proof of the first smoothing step.

Thus after n3.5 log12 n steps, with high probability, our
single-site dynamics is below the equilibrium distribution in
Λ`,n. However, the typical configurations for the latter at

i = 1, n have height Õ(
√

`) = Õ(n3/8), which yields a large
gradient if we put zero boundary conditions at 0 and n.
(To keep the overhead down to Õ(n1/2) we can only afford a

gradient of Õ(n1/4).) To fix this we need a second smoothing
step, which we now describe.

Let ` = n3/4 as before, let `′ = n1/2 and let µ`′,n be
the equilibrium distribution in the interval Λ`′,n with 0-b.c.
Let ν′sn

be the distribution at time sn = n3.5 log12 n of the
single-site dynamics in Λ`′,n with 0-b.c. starting from the
distribution ν′0 defined as follows. For any configuration η ∈



Ω∞`′,n, write η = (ηout, ηin) where ηout = {η(i)}i∈Λ`′,n\Λn

and ηin = {η(i)}i∈Λn . Then

ν′0(η) := µ`′,n(ηout)µ`,n(ηin)

= µ`′,n(ηout)µ`′,n(ηin | η(1), η(n))µ`,n(η(1), η(n))

= µ`′,n(η)f`,`′,n(η) ,

where f`,`′,n(η) :=
µ`,n(η(1),η(n))

µ`′,n(η(1),η(n))
. Here we used the fact

that µ`,n(ηin | η(1), η(n)) = µ`′,n(ηin | η(1), η(n)). Notice
that the marginal of ν′0 on ηin coincides with that of µ`,n.

Lemma 4.9 (Second smoothing). With the above no-
tation, and with εn = 1/n3, we have ‖ν′sn

− µ`′,n‖ ≤ εn.

Remark: Let P
(ν′0)
sn denote the distribution at time sn of

the single-site dynamics in Λn with height set Hn and 0-b.c.

starting from the distribution ν′0. Clearly P
(ν′0)
sn ≤ ν′sn

and
therefore Lemma 4.9 implies that, for any increasing event

E ⊆ Ωn, P
(ν′0)
sn (E) ≤ µ`′,n(E) + εn.

Proof. The proof is identical to that of Lemma 4.7 pro-
vided that the distribution νpar

s induced by the parallel col-
umn dynamics starting from ν′0 still satisfies νpar

s (B) � εn

at all times s, where B is as in (16). To this end, define

G = {η : η(1) + η(n) ≤ n3/8 log2 n}. Then we can write

νpar
s (B) ≤ ν′0(G) +

X
η∈G

ν′0(η) Pr[ηpar
s ∈ B]

≤ µ`,n

`
G

´
+ max

η∈G
f`,`′,n(η)µ`′,n(B)

≤ 2e−c log4 n + ecn1/4 log4 ne−c′n1/4 log4.5 n

≤ 3e−c log4 n (17)

for some constants c, c′ > 0 and sufficiently large n.

After the second smoothing step, the typical height at
the points 1 and n is only Õ(n1/4), giving a gradient small
enough to allow us to relate the contour to the true equi-
librium contour µn on Λn. This will be the last step in the
proof of Lemma 4.6.

Using the previous notation, let ν′′0 denote the marginal

on ηin of the equilibrium distribution µ`′,n and let P
(ν′′0 )
sn be

the distribution of the single-site dynamics in Λn with 0-b.c.
starting from ν′′0 .

Lemma 4.10. With the above notation, and with εn =

1/n3, we have ‖P (ν′′0 )
sn − µn‖ ≤ εn.

Proof. The proof is identical to that of Lemma 4.9, pro-
vided that the distribution νpar

s induced by the parallel col-
umn dynamics starting from ν′′0 still satisfies νpar

s (B) � εn

at all times s, where B is again as in (16). The necessary
computation is as in (17), with ν′0 replaced by ν′′0 and the

set G replaced by G′ = {η : η(1) + η(n) ≤ n3/16 log2 n}.

The proof of Lemma 4.6 now follows immediately from
the above three lemmas. For any increasing event E on Ωn,
we have

Pr[η
(
√

n log2 n)
3sn

∈ E] ≤ εn + Pr[η
(ν′0)
2sn

∈ E]

≤ 2εn + Pr[η
(ν′′0 )
sn ∈ E]

≤ 3εn + µn(E),

as required. In the first inequality we used Lemma 4.7, in
the second Lemma 4.9, and in the last Lemma 4.10.

4.3 Phase 3: Coupling with ηmin
t

After Phases 1 and 2, which take total time 4sn = Õ(n3.5),
we may assume that the contour ηmax

t is “below” the equilib-
rium distribution µn. To complete the proof of Theorem 4.1
it remains to couple this contour with the minimum con-
tour ηmin

t . For this, we need the complementary fact that,
after a similar time, ηmin

t is “above” µn. This is provided by
the following lemma.

Lemma 4.11. Let sn = n3.5 log12 n and εn = 1/n3. Then
for any increasing event E, Pr[ηmin

2sn
∈ E] ≥ µn(E)− εn.

Proof. We begin with a high-level sketch of the argu-
ment, which proceeds in two stages. First we prove that,
after time sn and apart from an error term εn/2, the distri-
bution of ηmin

sn
is above µn conditioned on the unlikely event

A := {η(jbn3/4c) = 0, j = 1, 2, . . . }. Then we show, using
the same comparison with the column dynamics as we used
for ηmax

t , that after a further sn steps the distribution of
ηmin

t , starting from µn(· | A), moves above µn, apart from
another error term εn/2. The role of the first stage here is
to ensure that the probability of the conditioning event A
is larger than the probability of developing large gradients,
just as in the proof of Lemma 4.2. (The conditioning event
of being entirely at zero, which is the initial configuration of
ηmin

t , is far too rare to satisfy this condition.)
We now spell out the details. Consider the special po-

sitions in Λn of the form ij = jbn3/4c, j = 1, 2, . . . , and
consider an auxiliary single-site dynamics in Λn, starting
from ηmin and with the usual updating rules except that we
do not update the heights at these positions, i.e., ηt(ij) is
fixed to be 0. The distribution of this dynamics at time t is
denoted P̃min

t . Clearly this dynamics is the product of the
standard single-site dynamics in each interval Ij := [ij , ij+1]
with 0-b.c., and its equilibrium distribution µ̃n is just a prod-
uct measure over these intervals and is equal to µn(· | A).

Claim 4.12. The above single-site dynamics satisfies

‖P̃min
sn

− µ̃n‖ ≤ εn/2.

Proof. If η̃min
t denotes the new dynamics at time t, then

monotonicity implies that

Pr[∃i ∈ Λn and t ∈ [0, sn] : η̃min
t (i) ≥

√
n log2 n ]

≤
X

i
sn µn(η(i) ≥

√
n log2 n) ≤ e−c log4 n � εn

for some constant c > 0. Thus, with probability greater

than 1 − e−c log4 n, in the time interval [0, sn] the dynam-
ics η̃min

t never gets detached from the similar dynamics with
height set [0,

√
n log2 n] and it is enough to prove that the

distribution of the latter satisfies the inequality in the Claim.
Notice that with the above restriction on the height set the
maximum gradient of the contour is bounded by

√
n log2 n,

and therefore the penalty in the comparison argument be-
tween the single-site and (parallel) column dynamics is only
O(n log4 n). By Theorem 3.4, the time until the parallel

column dynamics in each interval Ij (of width O(n3/4)) is

within variation distance εn/4 of equilibrium is O(n3/2 log n),
and therefore we achieve variation distance εn/2 for the
single-site dynamics with height set [0,

√
n log2 n] and 0-b.c.

at the positions {ij} in time at most

O(n3/2 log n)× n log4 n× n = O(n3.5 log5 n) � sn .



By Claim 4.12, for any increasing event E we can write

Pr[ηmin
2sn

∈ E] ≥
X

ξ
P̃min

sn
(ξ) Pr[ηξ

sn
∈ E] ≥ P (µ̃n)

sn
(E)−εn/2.

We now bound P
(µ̃n)
sn (E) from below. This follows using the

same comparison with the parallel column dynamics that we
used for ηmax

t . The only thing we need to check is that large
gradients do not appear in the column dynamics, and as we
have seen this will follow if we can upper-bound the ratio
µn(B)/µn(A), where the large gradient set B is defined as

B = {η : |η(i + 1)− η(i)| ≥ n1/4 log4.5 n for some i ∈ Λn,n}.

By a calculation analogous to that in the proof of Claim 4.5,
we have

µn(B) ≤ e−cn1/4 log4.5 n.

For the denominator, we can show the following (see the
appendix for a proof):

Claim 4.13. µn(A) ≥ e−cn1/4 log n for a constant c > 0.

Thus we have shown that µn(B)/µn(A) ≤ e−c′n1/4 log4.5 n,
which by comparison with the column dynamics is sufficient

to guarantee that P
(µ̃n)
sn (E) ≥ µn(E)−εn/2. This completes

the proof of the lemma.

4.4 Putting it all together
Finally, we combine the above three phases to prove The-

orem 4.1. Let Tn = 4n3.5 log12 n = 4sn, and let bT denote
the first time t such that ηmax

t = ηmin
t . Then we have

Pr[ bT ≥ Tn] ≤
X

i∈Λn

nX
k=1

Pr[ηmax
Tn

(i) ≥ k > ηmin
Tn

]

≤
X

i∈Λn

nX
k=1

`
Pr[ηmax

Tn
(i) ≥ k]− Pr[ηmin

Tn
(i) ≥ k]

´
≤ 5n2εn+

X
i∈Λn

nX
k=1

`
µn(η(i) ≥ k)−µn(η(i) ≥ k)

´
= 5n2εn = o(1).

In the third line we have used Lemmas 4.2 and 4.6 to relate
ηmax

Tn
to µn, and Lemma 4.11 to relate ηmin

Tn
to µn. Hence

by Proposition 2.1 the mixing time of Mss
n is at most Tn =

Õ(n3.5). This completes the proof of Theorem 4.1.

5. CONCLUDING REMARKS
1. We conjecture that the true mixing time of the single-
site dynamics is Õ(n3), matching our lower bound within
logarithmic factors. This would mean that our upper bound
is off by

√
n. We should also note that we made no attempt

to optimize the powers of log n in our bounds.

2. There are similarities between the SOS model and the
lozenge tilings model studied in, e.g., [10, 21, 24]. For that
model, Wilson [24] obtained a tight bound on the mixing
time of a non-local dynamics (similar to our column dynam-
ics), but only very weak upper bounds for the local dynamics
are known. We conjecture that our results can be adapted
to that model also.

3. We believe that some of our techniques may be useful for
analyzing other Markov chains. In particular we envisage
(i) further applications of the censoring inequality to relate

local and non-local dynamics; (ii) the use of sequences of
bounding dynamics, with carefully tuned boundary condi-
tions, to capture geometric information about the evolution
of a Markov chain; (iii) the use of an initial distribution that
is in equilibrium conditioned on a rare event in order to ob-
tain non-equilibrium information about the Markov chain.
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Appendix: Proofs of technical claims in
Section 4
Here we collect together various bounds that we used on the
probabilities of certain events in the equilibrium distribution
of the SOS model. These bounds all follow easily from a
single lemma, which we state first.

The key idea is that an equilibrium SOS contour can be
viewed as a random walk with independent geometric in-
crements, conditioned to start and end at 0 and to remain
always above 0. More precisely, let {X(i)}i≥0 be a random
walk on Z with independent geometric increments, i.e.,

Pr[|X(i + 1)−X(i)| = `] ∝ e−β`.

Then the equilibrium distribution µ
(k)
n of the SOS model

on Λn with boundary conditions at height k ≥ 0 and height
set H, where either H = Hn or H = H∞, can be written as

µ(k)
n (η) = Pr[X(i) = η(i) | Ck,H,n],

where the conditioning event is Ck,H,n := {X(0) = X(n + 1)
= k; X(i) ∈ H ∀i ∈ [1, n]}. The following lemma bounds
the probability of Ck,H,n.

Lemma A.1. Assume 0 ≤ k ≤
√

n log2 n. Then

Pr[Ck,H,n | X(0) = k] ≥ e−c log n

for some constant c > 0.

Proof. For any ` > 0, standard large deviation bounds
based on the exponential Chebyshev inequality imply that

Pr[ max
1≤i≤n

X(i) ≥ ` | X(0) = k] ≤ ne−c`2/n

for some constant c > 0. Thus, using the assumption 0 ≤
k ≤

√
n log2 n, we have

Pr[Ck,H,n|X(0) = k] ≥ (18)

Pr[X(n+1) = k ;min
i

X(i)≥ k | X(0)=k]−ne−c log2 n.

A standard random walk calculation [22] shows that the

probability on the r.h.s. here is Ω(e−c′ log n) for some c′ > 0,
which completes the proof.

We now proceed to derive from the above lemma the var-
ious bounds we used in the proofs of Section 4.

Proof of Claim 4.3. Recall that hj = n − j
√

n and
kj = hj −

√
n log2 n, so that hj − kj =

√
n log2 n. We write

µ(kj)(η(i) ≥ hj) ≤ Pr[X(i) ≥ hj | X(0) = kj ]

Pr[Ckj ,H,3n | X(0) = kj ]

≤ e−c(hj−kj)2/nec log n ≤ e−c′ log4 n.

A union bound over i completes the proof.

Proof of Claim 4.5. Recall that hj = n − j
√

n and
kj = hj −

√
n log2 n, and that B = {η : |η(i + 1) −

η(i)| ≥ log4.5 n for some i ∈ Λn,n}. Note that hj−1 − kj ∼√
n log2 n. Then, again using the above random walk repre-

sentation, we can upper bound µ(kj)(B) by

3nX
i=0

Pr[|X(i + 1)−X(i)| ≥ log4.5 n | X(0) = X(3n) = kj ]

Pr[Ckj ,H,3n | X(0) = kj ]

≤ 3ne−c log4.5 nec log n

for some constant c > 0.
On the other hand, a lower bound for µ(kj)(A) of the form

µ(kj)(A) ≥ e−c(hj−1−kj)2/n = e−c′ log4 n

can be computed following the same path as in the proof of
Claim 4.8 below.

Proof of Claim 4.8. Let ` = n3/4, hn =
√

n log2 n, and
A = {η ∈ Ω∞n+2` : η(i) ≥ hn ∀i ∈ Λn}. Using the above
representation for the measure µ`,n together with an obvious
shift by `, the Markov property, the FKG inequality and (18)
we can bound µ`,n(A) below by

Pr
ˆ
X(i) ≥ 0∀i ∈ [0, `] ; X(` + 1) ≥ hn | X(0) = 0

˜2

×Pr
ˆ
X(i) ≥ 0∀i ∈ Λn | X(0) = X(n) = 0

˜
≥ e−3c log n Pr[X(` + 1) ≥ hn | X(0) = 0]2

≥ e−3c log ne−c′h2
n/`

≥ e−cn1/4 log4 n ,

where in the penultimate step we used standard results on
large deviations.

Proof of Claim 4.13. Using Lemma A.1, we can lower
bound µn(A) by

Pr
ˆ
X(ij) = 0 ∀j ; C0,Hn,n | X(0) = 0

˜
=

Pr
ˆ
C0,Hn,n3/4 | X(0) = 0

˜n1/4

≥ e−cn1/4 log n.


