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E�cient Mean Estimation with Sub-Gaussian Rates

In this lecture, we study the problem of estimating the mean of a random vector X given a sample
of N independent, identically distributed points in ℝd . We will introduce an estimation procedure called
“median-of-means tournament” that can achieve sub-Gaussian rates only assuming thatX has �nite second
moment. Then, we show how to �nd an approximate “median-of-means tournament” estimator e�ciently
with the help of SoS paradigm, that also guarantees sub-Gaussian rates.

1 Mean estimation

The problem we will study in this lecture takes a rather simple form—given N i.i.d. random vectors
X1, ⋯ , XN such that � = EXi and Σ = Cov (Xi) = E [(Xi − �) (Xi − �)⊤], we want to �nd a “good estimator”
�̂N (X1, ⋯ , XN ) of the sample mean �.

Indeed, the de�nition of “good estimator” depends on the loss function we try to minimize. For in-
stance, if we consider the �2 loss E [‖�̂N − �‖2],1 it is well-known that the optimal linear estimator is exactly
the empirical mean X̄ = 1

N ∑N
i=1 Xi .2 In this lecture, we’re instead interested in optimizing the concentration

of �̂ around the mean �. That is, for any given � > 0, we wish to minimize the value r� that satis�es

ℙ (‖�̂N − �‖ > r� ) 6 �. (1)

For example, when Xi are collected from a multivariate normal distribution  (�, Σ), it follows that the
N -sample empirical mean X̄ satis�es (by [HW71]):

ℙ
(
‖‖X̄ − �‖‖ >

√
Tr (Σ)
N

+

√
2 ‖Σ‖ log(1/�)

N )
6 �. (2)

It is also shown in [Cat12] that

r� = Ω(

√
Tr (Σ)
N

+

√
‖Σ‖ log(1/�)

N )
(3)

is a lower bound on the value of r� achievable by any estimator under some mild assumptions on the
distribution of the Xi . For the mean estimation problem, does there exist an estimator which attains r� as
in (3)? Lugosi and Mendelson [LM19] give an a�rmative answer: the estimator achieving such r� is the
median-of-means tournament estimator that we will introduce in the next section.

2 Median-of-means tournament estimator

Before introducing the estimator, we might ask the question—can we still use the empirical mean estimator
X̄? If we have sub-Gaussianity for random samples Xi , one can still choose r� as in (3). Unfortunately,

1Throughout this lecture ‖ ⋅ ‖ denotes �2 norm for vectors and spectral norm for matrices.
2We point out that the empirical mean is in general not the optimal estimator without linearity assumption for mean squared

error, cf. James-Stein estimator.
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indicated by [Cat12], this is not true in general, especially when the distribution of X has heavy tail. The
failure of empirical mean can be viewed as its sensitivity to outliers when the underlying distribution has
heavy tail.

It is well-known that median is robust to outlier corruptions, and the estimator is based on the idea
by extending the concept of median to ℝd . For any set of k vectors v1, … , vk ∈ Rd and any unit vector
u ∈ Rd , de�ne their u-directional median Medu(v1, … , vk) = vi s.t. ⟨vi , u⟩ = Median (⟨v1, u⟩, … , ⟨vk , u⟩)
(ties over i broken arbitrarily).

Lugosi and Mendelson introduce a new notion of high-dimensional median which tries to minimize the
maximum discrepancy between its projection on u and the u-directional median among all u.

De�nition 2.1 (Tournament median, [LM19], as interpreted in [Hop20]). For any k vectors v1, ⋯ , vk ∈ ℝd ,
their tournament median is de�ned by

Median (v1, … , vk) = argmin
x∈ℝd

sup
‖u‖=1

|⟨x − Medu(v1, … , vk), u⟩| . (4)

The tournament median can be equivalently de�ned in a di�erent way, which will be important in our
proof that it is a good estimator.

Lemma 2.2. The tournament median is equivalently given by

Median (v1, … , vk) = arg min
x∈Rd

sup
y∈Rd

r = ‖x − y‖ s.t. ‖vi − x‖ > ‖vi − y‖ for at least
k
2
vi’s. (5)

Proof. We re-paramterize program (5) as y = x − ru for ‖u‖ = 1. Then equivalent to the condition above is
that for at least k/2 of vi’s,

‖vi − x‖2 > ‖vi − x + ru‖2 ⟺ 0 > 2r⟨vi − x, u⟩ + ‖ru‖2 ⟺ ⟨x − vi , u⟩ >
r
2
.

This implies that |⟨x − Medu(v1, … , vk), u⟩| > r
2 , so that (x, y) yield a pair (x, u) of value > r

2 for (4).
On the other hand, letting (x, u) a solution to (4) with value � , with vi = Medu(v1, … , vk), we have that

� 6 |⟨x, u⟩−⟨vi , u⟩|. Because vi = Medu(v1, … , vk), this means that either � −⟨x, u⟩ 6 −⟨vi , u⟩ 6 −⟨vj , u⟩
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for k
2 indices j ∈ [k], or � + ⟨x, u⟩ 6 ⟨vi , u⟩ 6 ⟨vj , u⟩ for k

2 indices j ∈ [k]. Choosing y = x + 2�u in the
latter case , we have that for these j,

‖vj − x‖2 − ‖vj − y‖2 = ‖vj − x‖2 − ‖vj − x − 2�u‖2 = 4�⟨vj − x, u⟩ − 4�2 = 4�(⟨vj , u⟩ − ⟨x, u⟩ − �) > 0.

Hence, for at least k
2 indices j ∈ [k]we have that ‖vj −x‖ > ‖vj −y‖. An near-identical argument establishes

the same for y = x −2�u in the former case. Hence we have that an (x, u) pair with value � = r
2 for program

(4) witnesses a pair (x, y) with value 2� = r for program (5). This concludes the proof.

With this notion of high-dimensional median and its two characterizations in mind, we’re ready to
propose median-of-means tournament estimator for the population mean �.

De�nition 2.3 (Median-of-means tournament estimator, [LM19]). Given i.i.d. observations X1, ⋯ , XN ,
partition the set [N ] ∶= {1, ⋯ , N} into k blocks B1, ⋯ , Bk , each of them has the size N/k3. Let Zi ∶=
1
k ∑j∈Bi Xj be the mean of i-th batch Bi . The median-of-means tournament estimator is then de�ned by

�̂(X1, ⋯ , XN ) ∶= Median (Z1, ⋯ , Zk) . (6)

The main result of Lugosi and Mendelson shows that for a properly chosen k, the median-of-means
tournament estimator successfully achieves sub-Gaussian rate performance of mean estimation.

Theorem 2.4 ([LM19]). Let � ∈ (0, 1) and consider the mean estimator de�ned (6) with parameter k =
O(log (1/�)). Suppose X1, ⋯ , XN are random vectors in ℝd with mean � and covariance matrix Σ, then for all
N

ℙ
(
‖�̂N − �‖ > O (

√
Tr (Σ)
N

+

√
‖Σ‖ log(1/�)

N ))
6 �, (7)

which matches the lower bound (3).

The proof makes slick use of the optimality of �̂ for (5). It proceeds in two steps—�rst, they show that
the population mean � has objective value at most r� for (5), and hence the median-of-means estimator �̂
must achieve objective 6 r� as well. En route to doing so, they show that every point a with ‖� − a‖ > r� is
a feasible pair for (5) with (x = a, y = �) and value r = ‖� −a‖, and so they conclude that since the optimizer
�̂ has value 6 r� for program (5), �̂ must be at least r� -close to �.

Sketch of proof. The proof is based on the following claim.

Claim 2.5. For any two vectors x, y ∈ ℝd and �xed p ∈ (0, 1), we say that x p-defeats y if

1
m

∑
i∈Bj

(‖Xi − y‖2 − ‖Xi − x‖2) > 0 (8)

on more than kp blocks Bj . Then for any � ∈ (0, 1), we can take k = O(log(1/�)) and r� as in (3), such that
with probability at least 1 − � , the population mean � 1

2 -defeats all y ∈ ℝd such that ‖y − �‖ > r� .

3If N is not divisible by k, we can round N to k⌊N /k⌋, and this a�ects the analysis negligibly.
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The high level idea is to invoke Chebyshev’s inequality for any �xed direction v ∈ ℝd , ‖v‖ = r� and
then apply Hoe�ding’s inequality to k blocks B1, ⋯ , Bk . Taking the union bound on a properly chosen
�-net concludes the proof of this claim.

Now equipped with this claim, we’re ready to prove Theorem 2.4. Note that

0 6
1
m

∑
i∈Bj

(‖Xi − y‖2 − ‖Xi − x‖2) = −2⟨Zj , y⟩ + ‖y‖2 + 2⟨Zj , x⟩ − ‖x‖2 = ‖Zj − y‖2 − ‖Zj − x‖2, (9)

where in the �rst equality we used that Zj is the empirical mean ofXi within block Bj . Then with probability
1 − � , � 1

2 -defeats b for all ‖b − �‖ > r� . This implies two things: �rstly, the program (5) is feasible with
value r� . This is because we know that for the variable setting x ∶= � from (5), choosing y = x = � is a
feasible setting of variables with r = 0, and the fact that � will 1

2 -defeat any y with ‖y − �‖ > r� gives an
upper bound of r 6 r� when we choose x ∶= �.

Secondly, we must have ‖Median (Z1, … , Xk) − �‖ 6 r� , as otherwise choosing y ∶= � we would con-
tradict the optimality of x = �̂ the tournament median for program (5). Hence it must follow that

‖Median (Z1, ⋯ , Zk) − �‖ < r� .

The proof is concluded.

3 E�ciently computable algorithm by SoS

Although [LM19] gives a concise and beautiful construction that gives a mean estimator with sub-Gaussian
rates mathematically, it still remains unaddressed—is this estimator e�ciently computable? That is, can
we �nd an algorithm running within polynomial time?

The answer is a�rmative, �rst established by Hopkins who shows the following result.

Theorem 3.1 ([Hop20]). There are universal constants C0, C1, C2 such that for every positive integers N , d
and � > 2−n/C2 there is an algorithm which runs in time O(nd) + (d log(1/�))C0 such that for any i.i.d. random
samples X1, ⋯ , XN from distribution with mean � and covariance matrix Σ, the algorithm outputs a vector �̂N
such that

ℙ
(
‖�̂N − �‖ > C1(

√
Tr (Σ)
N

+

√
‖Σ‖ log(1/�)

N ))
6 �. (10)

The algorithm that realizes Theorem 3.1 is a sophisticated implementation of the usual SoS recipe: the
high level idea is to �nd a large sets of polynomial constraints that provides an approximate solution to
something resembling Lugosi and Mendelson’s median-of-means tournament estimator (6), then SoS-izing
the proof that the estimator is close to the mean. The SoS proof has degree-8, so the naive running time is
roughly O(d24).

Speeding up SoS. Here, we will instead present a simpler algorithm and analysis due to Cherapanam-
jeri, Flammiron, and Bartlett [CFB19]. This algorithm is a dramatically “sped-up” version of Hopkins’
algorithm: they realize that the information provided by the full degree-8 SoS SDP is overkill, and that
a lightweight SDP (a degree-2 SoS program in k + d variables and 2k + 1 constraints) su�ces to provide
gradient information which allows them to implement a descent-based algorithm.

They use the following key concept of centrality introduced by Hopkins:
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De�nition 3.2 (Centrality). Let v1, ⋯ , vk ∈ ℝd , r > 0 and p ∈ [0, 1]. We say that x ∈ ℝd is (r , p)-central
if for every unit u ∈ ℝd there are at most pk vectors v1, ⋯ , vk such that ⟨vi − x, u⟩ > r . The minimum p
such that x is (r , p)-central with respect to v1, ⋯ , vk is given by the optimum of the following quadratic
program in variables b1, ⋯ , bk and u1, ⋯ , ud .

maximize
1
k

k
∑
i=1

bi (MTE)

s.t. bi = b2i , ∀i ∈ [k]

‖u‖2 6 1,

bi⟨vi − x, u⟩ > bir , ∀i ∈ [k].

The variable bi is meant to stand in for 1[⟨vi − x, u⟩ > r]. For any �xed p < 1/2, we’ve already seen
in Claim 2.5 that the population mean � is (r� , p)-central with probability at least 1 − � when vi = Zi (the
mean of the i-th block Bi in the median-of-means paradigm). Suppose we can �nd another vector �̂ which
is also (r� , p)-central, then since p < 1/2, for any u, w ∈ d−1 there must be some i ∈ [k] such that

⟨Zi − �, u⟩ < r� , and ⟨Zi − �̂, w⟩ < r� ,

In particular, this allows us to take u = (� − �̂)/‖� − �̂‖, which further implies

2r� > ⟨Zi − �, −u⟩ + ⟨Zi − �̂, u⟩ = ⟨� − �̂,
� − �̂
‖� − �̂‖⟩

= ‖� − �̂‖,

meaning that �̂ is a valid mean estimator with sub-Gaussian rates. We thus have a reduction to the follow-
ing problem: can we �nd a (r� , p)-central �̂ e�ectively?

At this point, one issue is that the polynomial optimization problem (MTE) (which we could try to
solve approximately using SoS), only helps to verify whether a �xed vector x is (r� , p)-central. In [Hop20]
the problem is dealt with by designing a larger and more sophisticated SoS program which optimizes over
x as well. In the next section, we will see how to instead work with the simple subproblem (MTE) within
an iterative gradient-descent style algorithm.

4 Speeding up mean estimation

The main insight of Cherpanamjeri et al. [CFB19] is that starting with a (possibly bad) estimate x for
a central point, the centrality optimization problem gives a solution vector u that is correlated with the
direction x − �. Informally, given an estimate of the central point xt , we can repeatedly solve (MTE) with
x = xt and use the solution rt to estimate the distance ‖� − xt ‖. With this good estimate rt of distance, we
can solve (MTE) �xing r = rt and use the solution ut as a descent direction guaranteed to be correlated
with the direction Δ = (� − xt )/‖xt − �‖, so we update xt+1 = xt + "ut for a well-chose ". Repeating this two
step process gives us an algorithm that iteratively improves its estimate of �.

Lemma 4.1. De�ne r ∗ = 300 (
√
Tr(Σ)
N +

√
‖Σ‖ log(1/�)

N ), and let rt be the maximum value of r such that (MTE)
with x = xt has value at least 0.9. Assume

‖xt − �‖ > 4r ∗

and let Δ = (� − xt )/‖x − �‖. Then
⟨ut , Δ⟩ >

1
2

where ut is the solution direction u from (MTE) with x = xt and r = rt .
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Before proving the lemma, note that given this lemma we could prove that the descent algorithm
suggested above will work: we make progress towards � so long as our distance is at least 4r ∗. Formally,
we would need to bound the number of iterations, etc. However, we will omit these details here.

Proof of Lemma 4.1. By the de�nition of rt , we have ⟨Zi − xt , ut⟩ > rt for 0.9k of the Zi . We then use the
following claim (which we will not prove), which roughly asserts that most of the bucket means are not
too far from �:

Claim 4.2. For the bucket means Z1, … , Zk , we have:

∀u ∈ Rd , ‖u‖ = 1 ⟹ |{i ∶ ⟨Zi − �, u⟩ > r ∗}| 6 0.05k.

So by the pigeonhole principle there must be an index j where ⟨Zj−xt , ut⟩ > rt and also ⟨Zj−�, ut⟩ < r ∗.
From this we have

rt 6 ⟨Zj − xt , ut⟩ = ⟨Zj − �, ut⟩ + ⟨� − xt , ut⟩ 6 r ∗ + ‖� − xt ‖ ⋅ ⟨Δ, ut⟩ ⟹ ⟨Δ, ut⟩ >
rt − r ∗

‖xt − �‖
.

Finally, we will show that rt + r ∗ > ‖xt − �‖, which is enough to complete the proof because ‖xt − �‖ > 4r ∗

by assumption, so rt − r ∗ > 1
2 ‖xt − �‖. Note that if ‖xt − �‖ 6 r ∗ we are done, so we assume the opposite. In

that case, applying Claim 4.2 with u = Δ, we have that for .95k of the Zi ,

⟨Zi − xt , Δ⟩ = ⟨Zi − �, Δ⟩ + ⟨� − xt , Δ⟩ > ‖xt − �‖ − r ∗ > 0.

Thus by de�nition of rt we must have rt > ‖xt − �‖ − r ∗. This concludes the proof.

4.1 E�cient gradient computation via SoS relaxation

Now that we have seen how we can accurately estimate our distance from � and �nd descent directions
guaranteed to move us closer to �, we will relax (MTE) and show that qualitatively the same results hold.
At each step we will choose rt to be the maximum value of r such that the SoS relaxation of (MTE) has
value at least 0.9, and then we will choose ut to be an eigenvector sampled from Ẽ[uu⊤] proportional to its
eigenvalue. To show that this works, we need an SoS version of Lemma 4.1.

Lemma 4.3. Let r ∗ be as above, let rt be the maximum value of r such that the degree-2 SoS relaxation of
(MTE) with x = xt has value at least 0.9, and assume that rt > 100r ∗. Also let Δ = (� − xt )/‖� − xt ‖. Then it
must be the case that

‖xt − �‖ 6 1.02rt ,

And also, with high probability, in Õ(d3 + k) time we can use randomized rounding on Ẽ[uu⊤] to obtain a
vector ut which satis�es ⟨ut , Δ⟩ > 1

2 .

Proof. Ultimately, we will choose ut to be proportional to an eigenvector of Ẽ[uu⊤]. Notice that Ẽ[uu⊤] is
a trace-1 positive semide�nite matrix (from the constraint ‖u‖2 = 1), so the eigenvalues naturally give a
distribution over the eigenvectors of Ẽ[uu⊤]. For now, let U be a random unit eigenvector sampled from
this distribution.

Recall that in the proof of Lemma 4.1, we made crucial use of two facts: �rstly, that ⟨ut , Zi − x⟩ = Ω(rt )
for many i ∈ [k], and secondly that ‖xt − �‖ = O(rt ). We will need to establish both for ut and rt derived
from the SoS relaxation.

In pursuit of this, we prove the following easy claim, which gives a lower bound on the expected
squared correlation EU ⟨U , � − xt⟩2 from any subset of indices:
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Claim 4.4. For any S ⊂ [k], for U ∼ Ẽ[uu⊤] according to the eigenvalue distribution,

r2t
2k ⋅ |S|

⋅
(
∑
i∈S

Ẽ[bi])

2

− Ei∼SEU ⟨U , Zi − �⟩2 6 EU ⟨U , xt − �⟩2.

Proof. The proof follows from a sequence of degree-2 SoS inequalities. We have that

(
∑
i∈S

birt)

2

6
(
∑
i∈S

bi⟨u, Zi − xt⟩)

2

(11)

6
(
∑
i∈S

b2i)(
∑
i∈S

⟨u, Zi − xt⟩2)
(12)

6 k ⋅∑
i∈S

⟨u, Zi − xt⟩2 = k ⋅∑
i∈S

(⟨u, Zi − �⟩ + ⟨u, � − xt⟩)2 (13)

6 2k ⋅∑
i∈S

(⟨u, Zi − �⟩2 + ⟨u, � − xt⟩2) (14)

where in (11) we have used the constraint birt 6 bi⟨u, Zi −xt⟩, in (12) we used Cauchy-Schwarz, in (13) we
have used the constraints b2i = bi , and in the �nal inequality we have used that a2 + b2 > 1

2ab (a degree-2
SoS inequality) and Cauchy-Schwarz.

Applying the pseudoexpectation operator on both sides,

r2t Ẽ [
∑
i∈S

bi]

2

6 2k ⋅
⟨

Ẽ[uu⊤], |S|(� − xt )(� − xt )2 +∑
i∈S
(Zi − �)(Zi − �)⊤⟩

= 2k|S| ⋅ (Ei∼SEU ⟨U , Zi − �⟩2 + EU ⟨U , � − xt⟩2) .

where the �nal equality uses that Ẽ[uu⊤] = ∑d
�=1 p�U�U ⊤

� , for p� , U� the eigenvectors of Ẽ[uu⊤]. This is our
desired conclusion.

In order to use the above to show that with reasonable probability the quantity ⟨U , xt − �⟩ is Ω(rt ),
we will apply it with S ⊂ [k] the set of indices for which |⟨Zi − �, U ⟩| 6 r ∗. Notice that it is OK that
we are choosing S to depend on U . Notice as well that by Claim 4.2, |S| > 0.95k. Since by assumption
Ẽ[∑i bi] > 0.9k and Ẽ[bi] ∈ [0, 1] for all i, it must be the case that Ẽ[∑i∈S bi] > 0.85k. Substituting into
Claim 4.4, we have that

0.37 ⋅ r2t 6 r2t
(0.85)2

2 ⋅ 0.95
− (r ∗)2 6 EU ⟨U , � − xt⟩2, (15)

where on the left-hand side we have used that r ∗ < 1
100 rt .

Now, we have that the expected squared correlation between U and � −xt is Ω(r2t ). We must now argue
that this correlation is signi�cant (compared to ‖� − xt ‖). For this, we will need to relate ‖� − xt ‖ and rt , for
which we will need the following claim:

Claim 4.5. For each unit vector w ∈ Rd , for at least 0.1k of i ∈ [k], we have ⟨Zi − xt , w⟩ 6 1.01rt .

Proof. Since rt is de�ned to be the maximum value of r such that the SoS relaxation of (MTE) with x ∶= xt
has value at least 0.9, the following distribution is not feasible as a pseudodistribution: with r ∶= 1.01⋅rt , set
u ∶= w , and set bi ∶= 1 for all i. Note that the only infeasible constraints are the constraints bi⟨Zi −x, u⟩ >
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bir , so that it must be the case that for some subset of T 6 k of the i ∈ [k], bi⟨Zi − xt , Δ⟩ 6 bi1.01rt .
Now, we update our pseudodistribution, setting bj = 0 for each j ∈ T . Since the value of this updated
pseudodistribution is k−T

k 6 0.9 (by the maximality of rt and the fact that we set r = 1.01rt ), we must have
T > 0.1k.

Applying Claim 4.5 with w = Δ along with Claim 4.2 and the pigeonhole principle, we conclude that
there must exist some i ∈ [k] with

1.01 ⋅ rt > ⟨Zi − xt , Δ⟩ = ⟨Zi − �, Δ⟩ + ⟨xt − �, Δ⟩ > ‖xt − �‖ − r ∗, ⟹ ‖xt − �‖ 6 1.02 ⋅ rt ,

where we have used that by assumption r ∗ 6 1
100 rt . Substituting this bound in to (15), we conclude that

1
3
‖� − xt ‖2 6 0.37r2t 6 EU ⟨U , � − xt⟩2.

Further, since the random variable |⟨U , � − xt⟩| takes value at most ‖� − xt ‖ 6 1.02rt , by an averaging
argument, Pr[|⟨U , � − xt⟩| > 1√

3 rt ] >
1
2 . So plugging in our bound on ‖xt − �t ‖, we conclude that with

probability at least 1
2 over the choice of U , |⟨U , Δ⟩| > 1

1.02⋅
√
3 .

One �nal detail remains, which is, once we have sampled U , how can we test whether this event has
occured and either −U or U is truly correlated with Δ? We will do this by testing whether, for at least 0.8k
indices i ∈ [k],

⟨Zi − xt , U ⟩ >
1
√
3
rt − r ∗,

in which case we set ut = U (otherwise we repeat the test with −U ). To see that this test passes if and only
if ⟨U , Δ⟩ > 1√

3 ±0.05, notice that by Claim 4.2, for 0.95k good indices i ∈ [k], we must have |⟨Zi −�, U ⟩| < r ,
and so for these indices,

⟨Zi − xt , U ⟩ = ⟨Zi − �, U ⟩ + ⟨� − xt , U ⟩ = ⟨� − xt , U ⟩ ± r ∗.

So if the test passes then these good indices i witness that ⟨� − xt , U ⟩ > 1√
3 rt − 2r

∗ > 1
2 ‖� − xt ‖. Similarly,

if ⟨U , � − xt⟩ > 1√
3 rt then the test will pass because there are more than 0.8k good indices. This gives us

our conclusion.
Finally, if ±U do not have su�cient correlation with Δ, we resample a fresh U ′, until we �nd a U ′

satisfying one of the above conditions. Since each U is good with probability 1
2 , with high probability, we

will not need to resample more than Õ(1) times. Computing the eigenvalue decomposition of Ẽ[uu⊤] takes
O(d3) time, each sampling step takes O(d) time (to sample an eigenvector), and each testing step takes
O(kd) time (to compute k dot products of d-dimensional vectors). This concludes our proof.

Running time. We brie�y examine the runtime. Note that this relaxation naively has O(k2 + d2) vari-
ables, but we can reduce dimensions by projecting onto a subspace containing the bucket means to have
only O(k2) variables at the cost of O(k2d) preprocessing. Then we have an SDP with O(k2) variables and
O(k) constraints, which standard methods can solve in O(k3.5) time. Letting Õ denote order up to logarith-
mic terms, a call to the distance estimation procedure requires only Õ(1) calls to (MTE) to do binary search
for r . Thus the total cost of estimating the distance to the mean is Õ(k3.5). Similarly, the cost of estimating
the gradient is also Õ(k3.5). Since we only run Õ(1) iterations, the total cost of the proposed algorithm is
Õ(k3.5 + k2d). This is still far from linear, but a vast improvement over the d24-time algorithm.
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5 Conclusion

We have introduced the problem of mean estimation and showed why the empirical mean is insu�cient
for heavy-tailed distributions when the goal is to be within a small neighborhood of the true mean. We
then introduced an e�cient median of means estimator that achieves sub-Gaussian rates under the mild
assumptions of having two moments. Lastly, we showed how this could be framed as an SoS problem and
an e�cient polynomial-time descent algorithm could compute such an estimator.

Bibliographic remarks. Cherapanamjeri et al. give a di�erent analysis of the SDP relaxation of (MTE),
in traditional semide�nite programming analysis rather than taking an SoS perspective as in Lemma 4.3.4

The omitted proof of Claim 2.5 is the proof of Lemma 1 in [LM19], and the omitted proof of Claim 4.2 is
the proof of Corollary 5 in [CFB19].

Contact. Comments are welcome at tselil@stanford.edu.
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