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Abstract

Multicast stream authentication and signing is an im-
portant and challenging problem. Applications include the
continuous authentication of radio and TV Internet broad-
casts, and authenticated data distribution by satellite. The
main challenges are fourfold. First, authenticity must be
guaranteed even when only the sender of the data is trusted.
Second, the scheme needs to scale to potentially millions of
receivers. Third, streamed media distribution can have high
packet loss. Finally, the system needs to be efficient to sup-
port fast packet rates.

We propose two efficient schemes, TESLA and EMSS,
for secure lossy multicast streams. TESLA, short for Timed
Efficient Stream Loss-tolerant Authentication, offers sender
authentication, strong loss robustness, high scalability, and
minimal overhead, at the cost of loose initial time synchro-
nization and slightly delayed authentication. EMSS, short
for Efficient Multi-chained Stream Signature, provides non-
repudiation of origin, high loss resistance, and low over-
head, at the cost of slightly delayed verification.
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1 Introduction

As the online population continues to expand, the Inter-
net is increasingly used to distribute streamed media, such
as streamed radio and video. We expect this trend to con-
tinue.

To enable a widespread and trusted streamed media dis-
semination, one must first provide sufficient security guar-
antees. A most prominent security risk from a user point
of view is data authenticity. The user needs assurance that
the data stream originated from the purported sender. Oth-
erwise, a malicious ISP could replace parts of the stream
with its own material. For example, an adversary might al-
ter stock quotes that are distributed through IP multicast.
In that scenario, the receiver needs strong sender and data
authentication.

The problem of continuous stream authentication is
solved for the case of one sender and one receiver via stan-
dard mechanisms, e.g. [12, 18]. The sender and receiver
agree on a secret key which is used in conjunction with a
message authenticating code (MAC) to ensure authenticity
of each packet. In case of multiple receivers, however, the
problem becomes much harder to solve, because a symmet-
ric approach would allow anyone holding a key (that is, any
receiver) to forge packets. Alternatively, the sender can use
digital signatures to sign every packet with its private key.
This solution provides adequate authentication, but digital
signatures are prohibitively inefficient.

Real-time data streams are lossy, which makes the secu-
rity problem even harder. With many receivers, we typically
have a high variance among the bandwidth of the receivers,
with high packet loss for the receivers with relatively low
bandwidth. Nevertheless, we want to assure data authentic-
ity even in the presence of this high packet loss.

A number of schemes for solving this problem (i.e. au-
thenticating the data and sender in a setting where only the
sender is trusted) have been suggested in the past few years
[7, 13, 28, 31], but none of these schemes is completely sat-
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isfactory. We discuss these schemes in section 4.
This paper presents two very different solutions to the

problem of authenticating data streams efficiently in a
lossy environment. The first solution, called TESLA (for
Timed Efficient Stream Loss-tolerant Authentication), uses
only symmetric cryptographic primitives such as pseudo-
random functions (PRFs) and message authentication codes
(MACs), and is based on timed release of keys by the
sender. More specifically, the scheme is based on the fol-
lowing idea: The sender commits to a random key k without
revealing it and transmits it to the receivers. The sender then
attaches a message authenticating code to the next packetPi
and uses the key k as the MAC key. In a later packet Pi+1,
the sender decommits to k, which allows the receivers to
verify the commitment and the MAC of packet Pi. If both
verifications are correct, and if it is guaranteed that packet
Pi+1 was not sent before packet Pi was received, then a re-
ceiver knows that the packet Pi is authentic. To start this
scheme, the sender uses a regular signature scheme to sign
the initial commitment. All subsequent packets are authen-
ticated through chaining.

Our first scheme, TESLA, has the following properties:

� Low computation overhead. The authentication in-
volves typically only one MAC function and one hash
function computation per packet, for both sender and
receiver.

� Low per-packet communication overhead. Overhead
can be as low as 10 bytes per packet.

� Arbitrary packet loss tolerated. Every packet which is
received in time can be authenticated.

� Unidirectional data flow. Data only flows from the
sender to the receiver. No acknowledgments or other
messages are necessary after connection setup. This
implies that the sender’s stream authentication over-
head is independent on the number of receivers, so our
scheme is very scalable.

� No sender-side buffering. Every packet is sent as soon
as it is ready.

� High guarantee of authenticity. The system provides
strong authenticity. By strong authenticity we mean
that the receiver has a high assurance of authenticity,
as long as our timing and cryptographic assumptions
are enforced.1

� Freshness of data. Every receiver knows an upper
bound on the propagation time of the packet.

1However, the scheme does not provide non-repudiation. That is, the
recipient cannot convince a third party that the stream arrived from the
claimed source.

The second scheme, called EMSS (for Efficient Multi-
chained Stream Signature), is based on signing a small num-
ber of special packets in a data stream; each packet is linked
to a signed packet via multiple hash chains. This is achieved
by appending the hash of each packet (including possible
appended hashes of previous packets) to a number of sub-
sequent packets. Appropriate choice of parameters to the
scheme guarantees that almost all arriving packets can be
authenticated, even over highly lossy channels. The main
features of this scheme are:

� It amortizes the cost of a signature operation over mul-
tiple packets, typically about one signature operation
per 100 to 1000 packets.

� It tolerates high packet loss.

� It has low communication overhead, between 20 to 50
bytes per packet, depending on the requirements.

� It provides non-repudiability of the sender to the trans-
mitted data.

2 TESLA: Timed Efficient Stream Loss-
tolerant Authentication

In this section, we describe five schemes for stream au-
thentication. Each scheme builds up on the previous one
and improves it to solve its shortcomings. Finally, scheme
V, which we call TESLA (short for Timed Efficient Stream
Loss-tolerant Authentication), satisfies all the properties we
listed in the introduction. The cryptographic primitives used
in this section are reviewed in Appendix A, which also con-
tains a sketch of a security analysis for our scheme.

We use the following notation: hx; yi denotes the con-
catenation of x and y, S stands for sender, and R stands for
receiver. A stream S is divided into chunks Mi (which we
also call messages), S = hM1;M2; : : : ;Mli. Each mes-
sage Mi is sent in a packet Pi, along with additional au-
thentication information.

2.1 Threat Model and security guarantee

We design our schemes to be secure against a powerful
adversary with the following capabilities:

� Full control over the network. The adversary can
eavesdrop, capture, drop, resend, delay, and alter pack-
ets.

� The adversary has access to a fast network with negli-
gible delay.

� The adversary’s computational resources may be very
large, but not unbounded. In particular, this means that
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the adversary can perform efficient computations, such
as computing a reasonable number of pseudo-random
function applications and MACs with negligible delay.
Nonetheless the adversary cannot invert a pseudoran-
dom function (or distinguish it from a random func-
tion) with non-negligible probability.

The security property we guarantee is that the receiver
does not accept as authentic any messageMi unlessMi was
actually sent by the sender. A scheme that provides this
guarantee is called a secure stream authentication scheme.

Note that the above security requirements do not include
protection against message duplication. Such protection can
(and should) be added separately by standard mechanisms,
such as nonces or serial numbers. Schemes I-III below do
have protection against message duplication. Note also that
we do not address denial-of-service attacks.

2.2 Initial synchronization (preliminary discus-
sion)

All five schemes below begin with an initial synchroniza-
tion protocol where each receiver compares its local time
with that of the sender, and registers the difference. We re-
mark that a rough upper bound on the clock difference is
sufficient. In fact, all that the receiver needs is a value Æ
such that the sender’s clock is no more than Æ time-units
ahead of the receiver’s clock, where Æ can be on the order
of multiple seconds.2 In section 2.8 we describe a simple
protocol and discuss scalability issues related to the initial
synchronization.

A basic assumption that underlies the security of our
scheme is that the local internal clocks of the sender and
recipient do not drift too much during a session.

2.3 Scheme I: The Basic Scheme

Here is a summary of scheme I: The sender issues a
signed commitment to a key which is only known to it-
self. The sender then uses that key to compute a MAC
on a packet Pi, and later discloses the key in packet Pi+1,
which enables the receiver to verify the commitment and
the MAC of packet Pi. If both verifications are successful,
packet Pi is authenticated and trusted. The commitment
is realized via a pseudorandom function with collision re-
sistance. More details on the requirements on the pseudo-
random functions are in appendix A. This protocol is simi-
lar to the Guy Fawkes protocol [1].

We now describe the basic scheme in more detail.
The scheme is depicted in Figure 1. We assume
that the receiver has an authenticated packet Pi�1 =

2Many clock synchronization algorithms exist, for example the work of
Mills on NTP [22], and its security analysis [5].

authenticated authenticated after
reception of Pi+1

not yet authenticated

Pi�1 Pi Pi+1

Mi�1 Mi Mi+1

F (Ki) F (Ki+1) F (Ki+2)Di�1 Di Di+1

Ki�2 Ki�1 Ki

MAC(K0

i�1 ; Di�1) MAC(K0

i
; Di) MAC(K0

i+1; Di+1)

Figure 1. Basic stream authentication
scheme. Mi stands for message i, Pi
is packet i, Ki denotes the secret key
i, F; F 0 are pseudo-random functions,
and MAC(K 0

i; Di) computes the MAC
of packet i using the secret key K 0

i =
F 0(Ki).

hDi�1;MAC(K 0
i�1; Di�1)i to start with (where Di�1 =

hMi�1; F (Ki);Ki�2i). The fields have the following
meanings. Mi�1 is the message contained by the packet,
K 0
i = F 0(Ki) is the secret key used to compute the MAC

of the next packet, and F (Ki) commits to the key Ki with-
out revealing it. The functions F and F 0 are two different
pseudo-random functions. Commitment value F (Ki) is im-
portant for the authentication of the subsequent packet Pi.
To bootstrap this scheme, the first packet needs to be au-
thenticated with a regular digital signature scheme, for ex-
ample RSA [27].

To send the message Mi, the sender picks a fresh ran-
dom key Ki+1 and constructs the following packet Pi =
hDi;MAC(K 0

i; Di)i, where Di = hMi; F (Ki+1);Ki�1i
and the MAC(K 0

i; Di) computes a message authenticating
code of Di under key K 0

i.
When the receiver receives packetPi, it cannot verify the

MAC instantly, since it does not know Ki and cannot re-
construct K 0

i. Packet Pi+1 = hDi+1;MAC(K 0
i+1; Di+1)i

(where Di+1 = hMi+1; F (Ki+2);Kii) discloses Ki and
allows the receiver first to verify that Ki is correct (F (Ki)
equals the commitment which was sent in packet Pi�1); and
second to computeK 0

i = F 0(Ki) and check the authenticity
of packet Pi by verifying the MAC of packet Pi.

After the receiver has authenticated Pi, the commitment
F (Ki+1) is also authenticated and the receiver repeats this
scheme to authenticate Pi+1 after Pi+2 is received.

This scheme can be subverted if an attacker gets packet
Pi+1 before the receiver gets Pi, since the attacker would
then know the secret key Ki which is used to compute the
MAC of Pi, which allows it to change the message and the
commitment in Pi and forge all subsequent traffic. To pre-
vent this attack, the receiver checks the following security
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condition on each packet it receives, and drops the packet if
the condition does not hold.

Security condition: A data packet Pi arrived safely,
if the receiver can unambiguously decide, based on its
synchronized time and Æt, that the sender did not yet
send out the corresponding key disclosure packet Pj .

This stream authentication scheme is secure as long as the
security condition holds. We would like to emphasize that
the security of this scheme does not rely on any assumptions
on network latency.

In order for the receiver to verify the security condition,
the receiver needs to know the precise sending schedule of
packets. The easiest way to solve this problem is by using a
constant packet rate. The sending time of packet Pi is hence
Ti = T0 + i=r where Ti is the time on the sender’s clock
and r is the packet rate (number of packets per second). In
that case, the security condition which the receiver checks
has the following form: ArrTi + Æt < Ti+1, where ArrTi
stands for the arrival time (on the synchronized receiver’s
clock) of packet Pi. The main problem with this scheme is
that, in order to satisfy the security condition, the sending
rate must be slower than the network delay from the sender
to the receiver. This is a severe limitation on the throughput
of the transmission. In addition, the basic scheme cannot
tolerate packet loss. In particular, once a packet is dropped
no further packets can be authenticated. We now gradually
extend the basic scheme to eliminate these deficiencies.

2.4 Scheme II: Tolerating Packet Loss

To authenticate lossy multimedia streams, tolerating
packet loss is paramount. Our solution is to generate a se-
quence of keys fKig through a sequence generated through
pseudo-random function applications. We denote v con-
secutive applications of the pseudo-random function F as
F v(x) = F v�1(F (x)). By convention, F 0(x) = x. The
sender picks a random Kn and pre-computes a sequence of
n key values, where K0 = Fn(Kn), and Ki = Fn�i(Kn).
We call this sequence of values the key chain. Each Ki

looks pseudorandom to an attacker; in particular, given Ki,
the attacker cannot invert F and compute any Kj for j > i.
On the other hand, the receiver can compute all Kj from a
Ki it received, where j < i, since Kj = F i�j(Ki). Hence,
if a receiver received packet Pi, any subsequently received
packet will allow it to compute Ki and K 0

i = F 0(Ki) and
verify the authenticity of Pi. This scheme tolerates an arbi-
trary number of packet losses.

Similarly, dropping unsafe packets (i.e. those packets
where the security condition does not hold) does not cause
any problems in the authentication of later packets.

In the basic scheme I, an adversary might try to capture
two consecutive packets before the recipient received the

first of them, and then forge the packet stream. Although the
security condition prevents this, the key chain also prevents
this attack, because the initial commitment commits to the
entire key chain and it is computationally infeasible for the
attacker to invert or find collisions in the pseudo-random
function.3

An additional benefit is that the key commitment does
not need to be embedded in each packet any more. Due to
the intractability of inverting the pseudo-random function,
any value of the chain is a commitment for the entire chain.
Hence the commitment in the initial authenticated packet is
sufficient. Figure 2 shows an example of scheme II.

not yet authenticatedauthenticated authenticated after
reception of Pi+1

Pi�1 Pi Pi+1

Mi�1 Mi Mi+1
Di�1 Di Di+1

Ki�2

Ki�1

Ki�1

Ki

Ki

Ki+1

MAC(K0

i�1 ; Di�1) MAC(K0

i
; Di) MAC(K0

i+1; Di+1)

K0

i�1 K0

i
K0

i+1

F 0F 0F 0

F F

Figure 2. Scheme II. The packet format
is the same as in scheme I, except that the
commitment F (Ki�1) is omitted and the
keys form a one-way key chain.

2.5 Scheme III: Achieving Fast Transfer Rates

As we mentioned earlier, the receiver needs to be assured
that it receives the packet Pi before the corresponding key
disclosure packet Pi+1 is sent by the sender. This condi-
tion severely limits the transmission rate of the previous two
schemes since Pi+1 can only be sent after every receiver has
received Pi.

We solve this problem by disclosing the key Ki of the
data packet Pi in a later packet Pi+d, instead of in the fol-
lowing packet, where d is a delay parameter that is set by
the sender and announced as the session set-up.

The sender determines the delay d based on the packet
rate r, the maximum tolerable synchronization uncertainty

3I.e., it is infeasible, given Ki = F (Ki+1) to find K0

i+1
such

that F (K0

i+1
) = Ki. Even if the attacker could find such a collision

F (K0

i+1
) = Ki then it would be able to forge only a single message

Mi+1. Forging additional messages would require inverting F , i.e., find-
ing K0

i+2
such that F (K0

i+2
) = K0

i+1
.
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ÆtMax, and the maximum tolerable network delay dNMax.
Setting d = d(ÆtMax + dNMax)re allows the receiver to suc-
cessfully verify the security condition even in the case of
maximum allowable network delay and maximal synchro-
nization error. The choice of ÆtMax and dNMax presents the
following tradeoff: Large delay values will cause a large
d which results in long delays until the packet authentica-
tion. On the other hand, short maximum delays cause the
the security condition to drop packets at receivers with a
slow network connection. However, multimedia data pack-
ets become obsolete if they are received after their segment
of the stream was already played or presented to the user. In
that case, dropping unsafe packets might not interfere with
the multimedia stream since the packets are likely to be ob-
solete. We stress that the choice of d does not affect the
security of the scheme, only its usability.

For the case of a constant packet rate, the security con-
dition is easy to state. We assume that the sending time of
the first packet is T0 and the sending time of packet Pi is
Ti = T0 + i=r. To verify the security condition for an in-
coming packet, the receiver checks that ArrTi+Æt < Ti+d,
where ArrTi is the arrival time of packet Pi at the receiver.

2.6 Scheme IV: Dealing with Dynamic Packet
Rates

Our previous schemes used a fixed or predictable sender
schedule, with each recipient knowing the exact sending
time of each packet. Since this severely restricts the flexibil-
ity of senders, we design a scheme which allows senders to
send at dynamic transmission rates, without the requirement
that every receiver needs to know about the exact sending
schedule of each packet. The solution to this problem is to
pick the MAC key and the disclosed key in each packet only
on a time interval basis instead of on a packet index basis.
The sender uses the same key Ki to compute the MAC for
all packets which are sent in the same interval i. All packets
sent in interval i disclose the key Ki�d.

At session set-up the sender announces values T0 and
T�, where the former is the starting time of the first interval
and the latter is the duration of each interval. In addition
the delay parameter d is announced. These announcements
are signed by the sender. The interval index at any time
period t is determined as i = b t�T0

T�
c. A key Ki is as-

sociated with each interval i. The keys are chained in the
same way as in Scheme II. The sender uses the same key
K 0
i = F 0(Ki) to compute the MAC for each packet which

is sent in interval i. Every packet also carries the interval
index i and discloses the key of a previous interval Ki�d.
We refer to d as disclosure lag. The format of packet Pj
is Pj = hMj ; i;Ki�d;MAC(K 0

i;Mj)i. Figure 3 shows an
example of this scheme, where d = 4.

In this scheme, the receiver verifies the security con-
dition as follows. Each receiver knows the values of T0,

T�, and Æt. (Æt is the value obtained from the initial
synchronization protocol.) Assume that the receiver gets
packet Pj at its local time tj , and the packet was appar-
ently sent in interval i. The sender can be at most in interval
i0 = b

tj+Æt�T0
T�

c. The security condition in this case is sim-
ply i+d > i0, which ensures that no packet which discloses
the value of the key could have been sent yet. Figure 4 il-
lustrates the verification of the security condition.

It remains to describe how the values T� and d are
picked. (We stress that the choice of these values does not
affect the security of the scheme, only its usability.) Be-
fore the sender can pick values for T� and d, it needs to de-
termine the maximum tolerable synchronization uncertainty
ÆtMax, and the maximum tolerable network delay dNMax. The

sender defines �Max
def
= ÆtMax + dNMax

The sender’s choice for T� and �Max both present a
tradeoff. First, a large value for �Max will allow slow re-
ceivers to verify the security condition correctly, but re-
quires a long delay for packet authentication. Conversely,
a short �Max will cause slow receivers to drop packets be-
cause the security condition is not satisfied. The second
tradeoff is that a long interval durationT� saves on the com-
putation and storage overhead of the key chain, but a short
T� more closely achieves the desired �Max.

After determining ÆtMax, dNMax, and T�, the disclosure
lag is d = d ÆtMax+dNMax

T�
e.

This scheme provides numerous advantages. First, the
sender can predict how long a pre-computed key chain lasts,
since the number of necessary keys is only time dependent
and not on the number of packets sent. Second, the re-
ceiver can conveniently verify the security condition and
the sender does not need to send its packets at specific in-
tervals (we will discuss the details of this in Section 2.9).
Another advantage is that new receivers can easily join the
group at any moment. A new group member only needs to
synchronize its time with the sender and receive the interval
parameters and a commitment to the key chain.

2.7 Scheme V: Accommodate a Broad Spectrum
of Receivers

For the previous schemes, we showed that there was a
tradeoff in the choice of the key disclosure period. If the
time difference is short, the packet can be authenticated
quickly, but if the packet travel time is long the security
condition will not hold for remote receivers, which forces
them to drop the packet. Conversely, a long time period
will suit remote receivers, but the authentication time delay
may be unacceptable for receivers with fast network access.
Since the scheme needs to scale to a large number of re-
ceivers and we expect the receivers to have a wide variety
of network access, we need to solve this tradeoff. Our ap-
proach is to use multiple authentication chains (where each
chain is as in scheme IV) with different disclosure periods
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T∆

t
Ki Ki+1

Pj Pj+1 Pj+2 Pj+3 Pj+4 Pj+5 Pj+6

Ki+2 Ki+3 Ki+4 Ki+5 Ki+6 Ki+7

Figure 3. Scheme IV. The MAC key and disclosed key are only dependent on the time in-
terval. The authentication key of Pj is Ki which is disclosed by packets sent during interval
i+ 4. In this case, packet Pj+4 discloses key Ki+1 which allows the receiver to compute Ki

and to authenticate packet Pj . We would like to point out that packets Pj+2 and Pj+3 are both
authenticated with the same MAC key K 0

i+3, because they were sent in the same time interval.

t

receivedsent

Ki Ki+1

Pj Pj

Ki+2 Ki+3 Ki+4 Ki+5 Ki+6 Ki+7

�Æt +Æt

Figure 4. The security condition visualized. The packet Pj is sent in the interval where key
Ki+1 is active. The receiver receives the packet when the sender is in interval i + 3, but
due to the Æt the sender might already be in interval i + 4, which discloses key Ki. This is
not a problem for the current packet, so key Ki+1 was not disclosed yet, hence the security
condition is satisfied and the packet is safe.

simultaneously. Each receiver can then use the chain with
the minimal disclosure delay, sufficient to prevent spurious
drops which are caused if the security condition does not
hold.

The receiver verifies one security condition for each au-
thentication chain Ci, and drops the packet if none of the
conditions are satisfied. Assume that the sender uses n au-
thentication chains, where the first chain has the smallest
delay until the disclosure packet is sent, and the nth chain
has the longest delay. Furthermore, assume that for the
incoming packet Pj , the security conditions for chains Cv
(v < m) are not satisfied, and the condition for chain Cm is
satisfied. In this case, as long as the key disclosure packets
for the chains Cv (v < m) arrive, the receiver’s confidence
in the authenticity of packet Pj is increasing. As soon as
the key disclosure packet for a chain Cv (v � m) arrives,
the receiver is assured of the authenticity of the packet Pj .

2.8 Initial Synchronization – Further Discussion

Our stream authentication scheme relies on a loose time
synchronization between the sender and all the recipients.
We call this synchronization loose, because the synchro-
nization error can be large. The only requirement we have
is that the client knows an upper bound Æt on the maximum
synchronization error.

Any time synchronization protocol can be used for our
scheme, as long as it is robust against an active adversary.

As a proof-of-concept, we present a simple time syn-
chronization protocol which suffices the requirements. The
basic protocol is as follows:

R! S : Nonce

S ! R : fSender time tS ;Nonce; Interval Rate;

Interval Id; Interval start time;

Interval key;Disclosure LaggK�1
S
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The receiver4 uses a nonce in its first packet to prevent
an attack which replays a previously signed synchronization
reply. Besides the current time tS at the sender, the sender
also sends all information necessary to define the intervals
and a commitment to the active key chain. The disclosure
lag defines the difference in intervals on when the key val-
ues are disclosed. Finally, the packet is signed with a regular
signature scheme.

For the purposes of our stream authentication scheme,
the receiver is only interested in the maximum possible time
value at the sender. This simplifies the computation. Fig-
ure 5 shows a timing diagram of the synchronization. The
receiver sets �t = tS� tR and computes the latest possible
sender’s time t0S as follows: t0S = t0R +�t, where t0R is the
current receiver’s time, and t0S is the estimated sender time.
In the ideal case, the receiver’s initial packet arrives at the
sender without delay, denoted as time t1 in the figure. The
maximum time discrepancy Æt = RTT (round-trip time).

RTT

Receiver Sender

t1

t2

t3

tS

tR

Figure 5. The receiver synchronizes its
time with the sender.

Scalability is a major concern for a widely deployed sys-
tem. If every receiver needs to synchronize its time with
the sender, the sender could be a bottleneck. A better solu-
tion would use distributed and secure time servers. Initially,
the sender synchronizes its time with the time server and
computes the maximum synchronization error Æt(S). The
sender would periodically broadcast the interval informa-
tion, along with its Æt(S) and the current timestamp, dig-
itally signed to ensure authenticity. The receivers can in-
dependently synchronize their time to the synchronization
server, and individually compute their maximum synchro-
nization error Æt. Finally, the receivers add up all the Æt
values to verify the security condition. Taking this scheme
one step further, we could have a hierarchy of synchroniza-
tion servers (only the maximum errors need to propagate).

4The terms sender and receiver appear reversed in the description of
this time synchronization protocol, because we keep their role with respect
to the stream authentication scheme. So it is the receiver that synchronizes
its time with the sender’s.

We could also imagine synchronizing all the synchroniza-
tion servers with a satellite signal, for example GPS.

Combining with multicast group control centers. The
general IP multicast model assumes that any host can join
the multicast group, receive all group data, and send data
to the group [11]. To join the multicast group, the receiver
only needs to announce its interest to a local router which
takes care of forwarding packets to that receiver. Each join-
ing group member contacts a central server or a group con-
troller to negotiate access rights and session keys. This
model is supported by the Secure Multicast Users Group
(SMUG) [29] and we adopt it for our secure authentication
scheme, which requires that each receiver performs an ini-
tial registration (for time synchronization and interval tim-
ing information) at the sender or at a central server.

Here is a sketch of a scalable synchronization mech-
anism that uses this infrastructure: Both senders and
receivers synchronize with time synchronization servers
which are dispersed in the network. After the synchroniza-
tion, every entity E knows the time and the maximum er-
ror Æt(E). The sender S periodically broadcasts a signed
message which contains Æt(S), along with the interval and
key chain commitment information for each authentication
chain. A new receiver R therefore only need wait for the
broadcast packet allowing it to compute the synchronization
error between itself and the sender as Æt = Æt(S) + Æt(R).
Based on the Æt the receiver determines the minimum-delay
authentication chain it can use. Hence, the receiver does
not need to send any messages to the sender, provided that
the sender and receiver have a method to synchronize and
the receiver knows the upper bound of the synchronization
error Æt.

Dealing with clock drift. Our authentication protocols
assume that there is no clock drift between the sender and
the receiver. In practice, however, the software clock can
drift (e.g. under heavy load when the timer interrupt does
not get serviced). Also, an attacker might be able to change
the victim’s time (e.g. by sending it spoofed NTP mes-
sages). A solution to these problems is that the receiver al-
ways consults its internal hardware clock, which has a small
drift and which is hard for an attacker to disturb. Further-
more, the longer authentication chains in Scheme V toler-
ate an authentication delay on the order of tens of seconds,
giving us a large security margin. It is reasonable to assume
that the hardware clock does not drift tens of seconds within
one session. Finally, the receiver can re-synchronize peri-
odically, if the hardware clock appears to drift substantially.
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2.9 Implementation Issues

We implemented a TESLA prototype in Java. We use
the MD5 hash function [26] in conjunction with the HMAC
construction [4] for our pseudo-random function and the
MAC. To limit the communication overhead, we only use
the 80 most significant bits of the output, which saves space
over the standard 96 bits and gives sufficient security. The
initial synchronization packet is signed using an 1024 bit
RSA signature [27].

In our design, all of the functionality for TESLA re-
mains in the application layer. This design principle follows
the approach of ALF, which Tennenhouse and Clark intro-
duce [9]. In ALF, the application knows best how to handle
the data, as opposed to placing services in the network or
transport layer of the OSI stack. ALF is ideally suited for
TESLA. Since the authentication of packets is delayed, the
application knows best how to handle unauthenticated in-
formation, which might be declared invalid later. We see
two main possibilities for the application to interact with a
TESLA module on the receiver side. First, we could buffer
all incoming packets and deliver them only after their au-
thenticity is assured. Second, we could deliver incoming
packets directly, but inform the application through an up-
call as soon as a packet is authenticated or if the packet is
faulty. We implemented the second alternative.

On the other hand, however, there are also arguments
for implementing TESLA in the transport layer, along with
other security services [18]. Both variants of interaction
with the application are possible. In the first case, the net-
work layer buffers the stream data, and forwards it as soon
as the data authenticity is guaranteed.5 In the second case,
the network layer would directly forward the data to the ap-
plication, but this would require another mechanism for the
network layer to inform the application about the validity of
the data. To prevent applications from using data that was
not authentic, we can imagine a scheme where the sender
encrypts the data in each packet with a separate key and re-
leases the key in a later packet. In this case, the application
would receive the encrypted data, but could only use it after
it receives the decryption key.

We use UDP datagrams for all communication to simu-
late multicast datagrams. We would like to point out that
using a reliable transport protocol such as TCP does not
make sense in this setting, because TCP interferes with the
timing of packet arrival and does not announce incoming
packets to the application if the previous packets did not ar-
rive. This is a problem since our TESLA module resides in
the application space. Furthermore, since TESLA is partic-

5The argumentation against this method claims that it would put too
much burden on the network layer to buffer data packet. For the case
of IP fragmentation, however, the network layer already buffers data and
forwards it to the application only when the entire packet is complete.

ularly well suited for lossy data streams, UDP makes per-
fect sense, whereas TCP is used in settings which require
reliable communication.

To simplify the exposition of the protocols, we consider
the case of Scheme IV, which uses one authentication chain
only, as an examplar.

Sender Tasks

The sender first needs to define the following parameters for
TESLA:

� The number of authentication chains

� The interval rate for each authentication chain

� The disclosure delay for each authentication chain

The number of authentication chains is dependent on the
heterogeneity of network delay across receivers, the delay
variance, and the desired authentication delay. For exam-
ple, if we use TESLA in a LAN setting with a small network
delay and low delay variance, the sender can use one single
authentication chain with a disclosure lag of about one RTT,
which can be as low as a few milliseconds. The other ex-
treme is a radio broadcast over the Internet with millions of
receivers. Some receivers will have high-speed network ac-
cess with a low delay, others use dialup modem lines, and
yet others might be connected through a wireless link with
considerable delay, which can be on the order of seconds.
To accommodate the latter category, which might also have
a large synchronization error on the order of seconds, the
longest authentication chain needs to have an disclosure de-
lay as long as 15 to 30 seconds. Such a long delay is not
acceptable to the high-speed users. A second authentication
chain with a small disclosure delay around 1 - 2 seconds is
appropriate. To close the wide gap between the high-end
and the low-end users, a third chain with a delay of 5 to 10
seconds will appeal to the modem users.

Initially, the sender picks a random key Kn and com-
putes and stores the entire chain of keys Ki = F (Ki+1).

Receiver Tasks

The receiver initially synchronizes with the sender and de-
termines the accuracy Æt. The sender also sends all interval
information and the disclosure lag to the receiver, which
is necessary to verify the security condition. The authenti-
cated synchronization packet also contains a disclosed key
value, which is a commitment to the key value chain.

For each incoming packet, the receiver first verifies the
security condition. It then checks whether the disclosed
key value is correct, which can be verified by applying the
HMAC-MD5 (our pseudo-random function) until it can ver-
ify equality with a previously authenticated commitment.
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Block size 16 64 256 1024

MD5 256410 169491 72463 22075
HMAC-MD5 75187 65359 39525 17605

Table 1. Performance of primitives of the
Cryptix native Java library. The perfor-
mance is displayed in the number of op-
erations per second.

To minimize the computation overhead, the receiver recon-
structs and stores the chain of key values. Since the MAC
cannot be verified at this time, the receiver adds the triplet
hP ack et Hash; Interval;MAC valuei to the list of packets to
be verified, sorted by interval value. Instead of storing the
entire packet, the receiver computes and stores only the hash
value of the packet. If the incoming disclosed MAC key was
new, the receiver updates the key chain and checks whether
it can verify the MAC of any packets on the packet list. In
the case a MAC does not verify correctly, the library throws
an exception to warn the application. Finally, the packet is
delivered to the application.

A possible denial-of-service attack is an attacker sending
a packet marked as being from an interval far in the future.
A receiver would then spend much time to update its key
chain. A simple remedy against this attack would be for the
receiver to reject packets if they could not have been sent
yet (along the lines of the security condition).

A drawback of this stream authentication scheme is that
each receiver needs to store the key chain and packet in-
formation to verify the packet authenticity. While the key
chain is small (since only a few intervals per seconds are
used in practice), the amount of storage required can be
large for long authentication delays and fast sender rates.
In our implementation, only the 80 bit hash and the interval
are stored per packet, which amounts to 12 bytes.

Performance

For each outgoing packet, the sender only needs to compute
one HMAC function per packet per authentication chain,
since the key chain can be pre-computed. Table 1 shows
the performance of the MD5, and HMAC-MD5 functions
provided by Cryptix [10] running on a 550 MHz Pentium III
Linux PC. The Java code was executed by the JIT compiler
which comes with the JDK 1.1.8 provided by IBM [17].

We analyze the performance of our stream authentica-
tion scheme by measuring the number of packets per second
that a sender can create. Table 2 shows the packet rates for
different packet sizes and different numbers of authentica-
tion chains. We suspect that an optimized C implementation
might be at least twice as fast.

Packet size (bytes) 64 256 1024

One authentication chain 27677 23009 8148
Two authentication chains 19394 14566 7402
Three authentication chains 14827 13232 6561
Four authentication chains 12653 11349 5914

Table 2. Performance of our packet au-
thentication scheme for a varying number
of authentication chains. All performance
numbers are in packets per second.

The communication overhead of our prototype is 24
bytes per authentication chain. Since we use 80 bit HMAC-
MD5, both the disclosed key and the MAC are 10 bytes
long. The remaining four bytes are used to send the interval
index.

Also, the overhead of pre-computing the key chain is
minimal. In our experiments we use an interval length
of 1=10th of a second. To pre-compute a key chain long
enough to authenticate packets for one hour, the sender pre-
computation time is only 36000=74626� 0:5 seconds.

The computational overhead on the receiver side is the
same as on the sender side, except that the receiver needs to
recompute the key chain while the sender can pre-compute
it. However, the overhead of computing the key chain is
negligible, since it involves computing one HMAC func-
tions in each time interval, and in practice only tens of in-
tervals are used per second.

3 EMSS: Efficient Multi-chained Stream Sig-
nature

TESLA does not provide non-repudiation. Most multi-
media applications do not need non-repudiation since they
discard the data after it is decoded and played. Stream sig-
nature schemes are still important, however, for the fol-
lowing two cases. First, some applications really do need
continuous non-repudiation of each data packet, but we
could not find a compelling example. Second, and more
importantly, in settings where time synchronization is dif-
ficult, TESLA might not work. We present EMSS (Ef-
ficient Multi-chained Stream Signature), to achieve non-
repudiation which also achieves sender authentication.

The requirements for our stream signature scheme are as
follows:

� Non-repudiation for each individual packet

� Continuous non-repudiation of packets

� Robust against high packet loss
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� Low computation and communication overhead

� Real-time stream content

� No buffering of packets at the sender required

3.1 Our Basic Signature Scheme

To achieve non-repudiation, we rely on a conventional
signature scheme, for example RSA [27] or Rohatgi’s k-
times signature scheme [28]. Unfortunately, the compu-
tation and communication overhead of current signature
schemes is too high to sign every packet individually. To
reduce the overhead, one signature needs to be amortized
over multiple packets.

Our basic solution bases on the following scheme to
achieve non-repudiation of a sequence of packets. PacketPi
includes a hash H(Pi�1) of the previous packet Pi�1. By
sending a signature packet at the end of the stream, which
contains the hash of the final packet along with a signature,
we achieve non-repudiation for all packets. To achieve ro-
bustness against packet loss, each packet contains multiple
hashes of previous packets, and furthermore, the final sig-
nature packet signs the hash of multiple packets. Figure 6
shows an example, where each packet contains the hash of
the two previous packets, and where the signature packet
contains the hash of the last two packet and the signature.

Sig packet: Sj

Signature

Pi Pi+1 Pi+2

Mi Mi+1 Mi+2

H(Pi�2) H(Pi�1)

H(Pi�1)

H(Pi)

H(Pi)

H(Pi+1)

H(Pi+1)

H(Pi+2)

Figure 6. We achieve non-repudiation through peri-
odic signature packets, which contain the hash of sev-
eral data packets, and the inclusion of the hash of the
current packet within future packets. The inclusion
of multiple hashes achieves robustness against packet
loss.

In order for the sender to continuously verify the signa-
ture of the stream, the sender sends periodic signature pack-
ets. Since the receiver can only verify the signature of a
packet after it receives the next signature packet, it is clear

that the receiver experiences a delay until packet verifica-
tion.

To simplify the following discussion, we describe this
scheme as a graph problem and use the corresponding ter-
minology. Namely, we use the term node instead of packet,
and edge instead of hash link. We define the length of an
edge as L(Eij) = ji � jj, where i and j are the id’s of
the corresponding nodes. If packet Pj contains the hash of
packet Pi, we draw a directed edge starting at Pi to Pj . We
call Pj a supporting packet of Pi. Similarly, an edge points
from a packet Pk to a signature packet Sl, if Sl contains the
hash of Pk. We assume that some of the packets are dropped
between the sender and the receiver. All nodes which cor-
respond to dropped packets are removed from the graph. A
packet Pi is verifiable, if there exists a path from Pi to any
signature packet Sj .

This stream signature scheme has the following parame-
ters:

� Number of edges per node

� Length and distribution of edges

� Frequency of signature nodes

� Number and distribution of incoming edges in signa-
ture nodes

These parameters influence the computation and communi-
cation overhead, the delay until verification, and the robust-
ness against packet loss. We want to achieve low overhead
while retaining high robustness against packet loss and a
low verification delay.

To simplify the problem of optimizing all parame-
ters simultaneously, we first focus on the interplay be-
tween the number and distribution of edges to achieve
high robustness against packet loss. We first consider
static edges, which means that all the outgoing and in-
coming edges of each node have predefined lengths. For
example, in a “1-3-7” scheme, the node Pi has outgo-
ing edges to Pi+1; Pi+3; Pi+7, and incoming edges from
Pi�1; Pi�3; Pi�7.

To simplify the problem even further, we initially assume
independent packet loss, i.e. each packet has an equal loss
probability.6

Instead of computing the probability precisely for each
node, we wrote a program to perform simulations. We

6Our first attempt was to devise an analytical formula to model the
probability for each node that it is connected to a signature node. Un-
fortunately, finding an exact formula is harder than it first appears, so de-
riving the analytical formula automatically for a given edge distribution
remains an open problem. We illustrate this complexity with an exam-
ple for the recurrence relation which describes the simple 1-2-4 scheme:
P [N� i] = (1�q) �(P [N � i+1]+qP [N � i+2]+(2�q)q2P [N�

i+4]� (1� q)2q2P [N� i+5]), where P [i] is the probability that node
i is connected to node N which is signed, and q is the probability that the
node is dropped.
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checked the accuracy of the simulation program on the
cases for which we computed an analytical solution:
1� 2� 4 and 1 � 2 � 3 � 4. Our simulation (with 2500
samples simulating up to 1000 packets before the signature
packet) had an absolute error of less than �2% of the veri-
fication probability for these two cases.

We ran extensive simulations to find a good distribution
of edges withstanding high amounts of dropped nodes. In
our largest simulation, we searched through all combina-
tions of six edges per node, where the maximum length of
any edge was 51, and the probability of dropping a node
was 60%.7 In our simulation, we assumed that the final
seven nodes all existed and that they all contained an edge
to the signature node.

The simulation results were illuminating. The most im-
portant finding from the simulation study is that the ma-
jority of combinations are robust. Figure 8 illustrates this
point. The x-axis ranges over the average probability of ver-
ification p. The figure shows how many combinations had
that average verification probability p, measured over 400
nodes preceding the signature packet. The figure demon-
strates that most of the combinations have high robustness.
In fact, 99% of all combinations give an average verifica-
tion probability over 90%. This finding motivates the use of
random edges instead of static edges.

Another interesting result is that the continuous case 1�
2 � 3 � 4 � 5 � 6 is the weakest combination, and that
exponentially increasing edge lengths 1�2�4�8�16�32
had poor robustness. One of the strongest combinations is
5� 11� 17� 24� 36� 39. We show the performance of
these three combinations in figure 7. The continuous case
has the lowest verification probability, the exponential chain
is already much better, and the last case does not seem to
weaken as the distance from the signature packet increases.

The assumption of independent packet loss does not hold
in the Internet. Many studies show that packet loss is cor-
related, which means that the probability of loss is much
higher if the previous packet is lost. Paxson shows in one
of his recent studies that packet loss is correlated and that
the length of losses exhibit infinite variance [24]. Borella et
al. draw similar conclusions, furthermore they find that the
average length of loss bursts is about 7 packets [6].

Yajnik et al. show that a k-state Markov model can model
Internet packet loss patterns [32]. For our simulation pur-
poses, the two-state model is sufficient, since it can model
simple patterns of bursty loss well [16, 32]. The main ad-
vantage of randomizing the edges, however, is visible when
we consider correlated packet loss. Figure 9 shows a sim-
ulation with 60% packet loss and where the average length
of a burst loss is 10 packets. We can clearly see in the fig-

7We chose to use six edges per node, because we wanted to achieve a
high average robustness for the case of 60% packet loss and with only five
edges did not give us a high verification probability.
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Figure 7. The verification probability for three static
cases: Top line: 5-11-17-24-36-39. Middle line: 1-2-
4-8-16-32. Bottom line: 1-2-3-4-5-6.
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Figure 8. Number of combinations of six hashes that
resulted in a given average verification probability.
Note that we assume a 60% packet loss probability.

ure that the verification probability of the static edge scheme
drops exponentially, whereas the random edges still provide
a high verification probability.
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Figure 9. The verification probability for random vs
a static case. Top line is random link distribution.
Bottom line is 5-11-17-24-36-39.

3.2 The Extended Scheme

The basic scheme has a lot of redundancy. All the sup-
porter packets carry the same hash value of a given packet.
In the experiments we use six hashes per packet, hence six
packets carry the same hash value. Removing this redun-
dancy might give us a lower communication overhead and
improved robustness against loss.

The core idea is to split the hash into k chunks, where a
quorum of any k0 chunks is sufficient to allow the receiver
to validate the information. One approach is to use Rabin’s
Information Dispersal Algorithm [25], which has precisely
this property. Another approach is to produce a hash func-
tion with a large number of independent bits, but only look
at a limited number of those bits. This can most easily be
realized by a family of universal hash functions [8].

The main advantage of this scheme is that any k0 out of
the k packets need to arrive, which has a higher robustness
in some circumstances than receiving 1 packet out of d in
the basic scheme. For example, if we use the basic scheme
with 80-bit hashes and six hashes per packet, the communi-
cation overhead is at least 60 bytes, and the probability that
at least one out of six packets arrives is 1�q6, where q is the
loss probability. In contrast, if we use the extended scheme
with a hash of 480 bits, chunks of 16 bits, k = 30, and
k0 = 5, the probability that the receiver gets more than four
packets is 1�

Pi<5
i=0

�
30
i

�
� q30�i � (1� q)i. Clearly, the lat-

ter probability is much higher. Although both probabilities

only provide an upper bound on the verification probabil-
ity, it still gives an intuition on why the extended scheme
provides higher robustness to packet loss.

The simulation confirmed these findings. The extended
scheme outperforms the basic scheme in robustness against
packet loss. Figure 10 shows a comparison of the two
schemes with identical communication overhead.
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Figure 10. The verification probability for the ba-
sic vs. the extended scheme. Top line is the extended
scheme. Bottom line is the basic scheme.

3.3 Signature Packets

An important requirement of our scheme signature
scheme is that the receiver can continuously verify the sig-
nature of packets. Clearly, the receiver can only verify the
signature once it can trace the authentication links to a sig-
nature packet. Hence, the verification delay depends on the
frequency and the transmission reliability of signature pack-
ets. The signature packet rate depends on the available com-
putation and communication resources. If we use 1024-bit
RSA signatures, a dedicated server can compute on the or-
der of 100 signatures per second. The corresponding com-
munication overhead is 128 bytes for the signature plus 10
bytes for each hash included.

We also performed simulations with signature packets.
The parameters included the signature rate, the loss proba-
bility of signature packets,8 and the number of hashes per
signature packet. Figure 11 shows the sawtooth-shaped

8The loss probability might be different for signature packets if they
are sent redundantly or in a higher service class in the context of QoS.
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verification probability for a stream with 10% packet loss
(bursty loss), the average burst length of dropped packets is
10, the hash is split up into 9 chunks of 27 bits each (span-
ning a maximum length of 100 packets), hence 3 chunks
are necessary to verify a packet, which gives us 81 bits of
the signature. The communication overhead per packet is
therefore about 35 bytes per packet. The signature packets
are sent every 250 packets and they contain 80-bit hashes of
40 packets, and one 1024-bit RSA digital signature which
amounts to 128 bytes. Each signature packet is sent twice,
so the loss probability of a signature packet is reduced to
1%. The average per-packet overhead in this case is 40
bytes.
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Figure 11. The verification probability for the ex-
tended scheme including periodic signature packets.

3.4 Case Study on Two Settings

We consider two different cases of stream distribution
and we analyze the overhead of applying EMSS to ensure
the non-repudiation of the streamed data.

Case I: Streamed Distribution of Traffic Data

Assume that a municipality has traffic sensors distributed
over streets. It broadcasts this data over the Internet so citi-
zens (and robot driven vehicles) can improve their trip plan-
ning. The system requirements are as follows:

� The data rate of the stream is about 8 Kbps, about 20
packets of 64 bytes each are sent every second.

� The packet drop rate is at most 5%, where the average
length of burst drops is 5 packets.

� The verification delay should be less than 10 seconds.

Many different instantiations of EMSS result in efficient
schemes which satisfy these requirements. The following
scheme offers low overhead with high verification proba-
bility. Each packet has two hashes, and the length of each
hash chain element is chosen uniformly distributed over the
interval [1; : : : ; 50]. Each hash is 80 bits long, hence, only
one hash is necessary for verification. A signature packet
is sent every 100 packets, or every five seconds, which is
not necessary to achieve robustness in this case, but to en-
sure that the verification delay is less than ten seconds, with
high probability. Each signature packet carries the hash of
five data packets. The simulation predicts an average verifi-
cation probability per packet of 98:7%.

The computation overhead is minimal. The sender only
needs to compute one signature every five seconds, and only
20 hash functions per second. The communication overhead
is low also. Each data packet carries 20 bytes containing the
hash of two previous packets.9 The signature packet con-
tains five hashes and a signature, and its length is hence 50
bytes plus the signature length. Assuming a 1024 bit RSA
signature, the signature packet is 178 bytes long. The aver-
age per-packet overhead is therefore about 22 bytes, which
is much lower than previous schemes, which we review in
section 4.

Case II: Real-time Video Broadcast

Assume we want to broadcast signed video on the Inter-
net. The system requirements are as follows:

� The data rate of the stream is about 2 Mbps, about 512
packets of 512 bytes each are sent every second.

� Some clients experience packet drop rates up to 60%,
where the average length of burst drops is 10 packets.

� The verification delay should be less than 1 second.

The high packet drop rate makes it difficult for signa-
ture packets to reach the receiver. To increase the likeli-
hood of signature packets to arrive, we send them twice —
but within a delay, since packet loss is correlated. If we
approximate the loss probability by assuming the signature

9The packet id’s of the packet do not need to be stored in the packet
for two reasons. Since the probability of a hash collision is negligible, the
receiver can store the hash of the last 50 data packets it received. If any
packet contains the same hash value, we consider that packet as verified,
if the current packet can be verified. Alternatively, we could build a deter-
ministically computable random graph over the packets, and the receiver
would reconstruct it. This alternative would require a packet id in each
packet.
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packet losses are uncorrelated if they are sent within a de-
lay, the probability that one of them arrives is approximately
1� 0:62 = 0:64. Since the packet loss is so high and veri-
fication delay relatively short, we send a a signature packet
every 200 packets. This translates to about 2:5 signatures
per second, which we consider as a low computational over-
head. We assume that the signature packets have about the
same size as the data packets, so in 512 bytes we can fit one
1024-bit RSA signature and the 80 bit hash of 40 previous
packets.

We chose these parameters based on good engineering
practice. To find better parameters for the number of chunks
that the hash is split into and the number of chunks required
to verify the packet, we used a simulation. The simulation
shows that the best combination for this case uses 50 bytes
per packet to insert 25 chunks of two bytes of the hash of
previous packets. Including the signature packets, the aver-
age communication overhead is about 55 bytes per packet.
The simulation predicts the average verification probability
over the final 2000 packets of 97%, with the minimum ver-
ification probability 90%.

4 Previous Work

We review previous art which deals with the problem of
continuous authentication and signature of streams.

Gennaro and Rohatgi introduced techniques for signing
digital streams [13]. They present two different schemes,
one for the off-line case (the entire stream content is known
in advance) and the other for the on-line case (the stream
content is generated in real-time). For the off-line case, they
suggest signing the first packet and embeding in each packet
Pi the hash of the next packet Pi+1 (including the hash
stored in Pi+1). While this method is elegant and provides
for a stream signature, it does not tolerate packet loss. The
biggest disadvantage, however, is that the entire stream of
packets needs to be known in advance. The on-line scheme
solves this problem through a regular signature of the initial
packet and embedding the public key of a one-time signa-
ture in each packet, which is used to sign the subsequent
packet. The limitation is again that this scheme is not ro-
bust against packet loss. In addition, the one-time signature
communication overhead is substantial.

Wong and Lam address the problem of data authenticity
and integrity for delay-sensitive and lossy multicast flows
[31]. They propose to use Merkle’s signature trees to sign
streams. Their idea to make asymmetric digital signatures
more efficient is to amortize one signature generation and
verification over multiple messages. Merkle describes how
to construct a hash tree over all messages where the signer
only digitally signs the root [20, 21]. However, to make
this scheme robust against packet loss, every packet needs
to contain the signature along with all the nodes necessary

to compute the root, which requires large space overhead.
In practice, this scheme adds around 200 bytes to each
packet (assuming a 1024 bit RSA signature and a signa-
ture tree over 16 packets). Another shortcoming is that all
messages need to be known to compute the signature tree.
This causes delays on the sender side. Furthermore, after
the signature computation, all packets are sent at the same
time, causing bursty traffic patterns. This burstiness may
increase the packet drop rate in the network. Although the
computational overhead is amortized over multiple packets,
there is still a substantial amount of computation necessary
for signature verification, which can consume a substan-
tial amount of resources on low-end receivers (for example
battery power). A subtle point is that the per-packet com-
putation increases with the packet loss rate. Since mobile
receivers also have less computational power and higher
packet loss, the benefit of the amortization is lost. The
schemes which we propose in this paper solve these short-
comings.

Rohatgi presents a new scheme which reduces the sender
delay for a packet, and which reduces the communication
overhead of one-time signatures over previously proposed
schemes [28]. He introduces a k-time signature scheme,
which is more space efficient than the one-time signatures.
Despite all advantages, the scheme still uses 90 bytes for
a 6-time public key (which does not include the certificate
of the public key) and 300 bytes for each signature. Also,
the server requires 350 off-line hash function applications
and the client needs 184 hashes on average to verify the
signature.

Canetti et al. construct a sender authentication scheme
for multicast [7]. Their solution is to use k different keys
to authenticate every message with k different MAC’s. Ev-
ery receiver knows m keys and can hence verify m MAC’s.
The keys are distributed in such a way that no coalition of
w receivers can forge a packet for a specific receiver. The
communication overhead for this scheme is considerable,
since every message carries k MAC’s. The server must also
compute k MACs before a packet is sent, which makes it
more expensive than the scheme we present in this paper.
Furthermore, the security of their scheme depends on the
assumption that at most a bounded number (which is on the
order of k) of receivers collude.

Syverson, Stubblebine, and Goldschlag propose a sys-
tem which provides asymmetric and unlinkable authentica-
tion [30]. In their system, a client proves its right to ac-
cess the vendor’s service through a blinded signature token,
which is renewed on each transaction. Through the vendor’s
blind signature, they achieve unlinkability of transactions.
This scheme would not work for stream authentication, be-
cause the communication and computation overhead is sub-
stantial. Furthermore, the scheme provides unlinkability,
which is not needed for authenticating multicast streams.
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Anderson et al. [1] present a scheme which provides
stream authentication between two parties. Their Guy
Fawkes protocol has the following packet format:
Pi = fMi; Xi; h(Xi+1); h(Mi+1; Xi+1; h(Xi+2))g,
where Mi denotes message i, Xi stands for a random
number, and h is a hash function. Assuming that the
receiver received an authentication packet Pi, it can
immediately authenticate the following packet Pi+1, since
Pi contains the commitment h(Mi+1; Xi+1; h(Xi+2)) to
Pi+1. Similarly, Pi+1 comes with a commitment for Pi+2.
A drawback of this protocol is that to send message Mi, the
following message Mi+1 needs to be known. Furthermore,
this scheme cannot tolerate any packet loss. They propose
two methods to guarantee that the keys are not revealed too
soon. The first method is that the sender and receiver are
in lockstep, i.e. the receiver acknowledges every packet
before the sender can send the next packet. This severely
limits the transfer time and does not scale to a large
number of receivers. The second method to secure their
scheme is to time-stamp each packet at a time-stamping
service, which introduces additional complexity. The Basic
authentication scheme I we propose in this paper is similar
to the Guy Fawkes protocol. We improve on Guy Fawkes
and construct an efficient stream authentication scheme
without these limitations.

We understand that unpublished work by Bob Briscoe
at BT research, and Dan Boneh and Philippe Golle, has
been proceeding along some similar lines. To the best of
our knowledge, all of these groups have been working inde-
pendently.
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A Proof of Security

In this appendix, we present a more formal statement of
the security assumptions on our cryptographic primitives
and sketch the proof of security for one of our stream au-
thentication schemes. First, here are primitives we use in
our schemes.

Message Authentication Codes (MACs). A function
family ffkgk2f0;1g` (where ` is the key length, taken to be
the security parameter) is a secure MAC family if any adver-
sary A (whose resources are bounded by a polynomial in `)
succeeds in the following game only with negligible prob-
ability. A random `-bit key k is chosen; next A can adap-
tively choose messages m1; : : : ;mn and receive the corre-
sponding MAC values fk(m1) : : : fk(mn). A succeeds if
it manages to forge the MAC, i.e., if it outputs a pair m; t
where m 6= m1; : : : ;mn and t = fk(m). See [2] for more
details.

Pseudorandom functions (PRFs). A function family
ffkgk2f0;1g` (where ` is the key length, taken to be the
security parameter) is a pseudorandom function family if
any adversaryA (whose resources are bounded by a polyno-
mial in `) cannot distinguish between a function fk (where
k is chosen randomly and kept secret) and a totally random
function only with negligible probability. That is, a func-
tion g is chosen to be either fk for a random `-bit key, or a
random function with the same range. Next A gets to ask
the value of g on as many points as it likes. Nonetheless A
should be unable to tell whether g is random or pseudoran-
dom. see [14, 19] for more details.

The schemes below make use of the following property
of pseudorandom functions: as long as the key k is ran-
dom (or pseudorandom) and remains unknown, the value
k1 = fk(x) is also pseudorandom for any fixed and known
x. (In our schemes we use the arbitrary value x = 0.)
This allows us to securely iterate; that is, k2 = fk1(x)
is also pseudorandom, and so on. Furthermore, the value
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k01 = fk(x
0) where x 6= x0 is cryptographically indepen-

dent from k1 (as long as k remains secret) and can be used
as a key for different cryptographic transforms (such as a
MAC).

Target collision resistance. A function family
ffkgk2f0;1g` (where ` is the key length, taken to be
the security parameter) is Target Collision Resistant if any
adversaryA (whose resources are bounded by a polynomial
in `) can win in the following game only with negligible
probability. First A generates a value v1 in the common
domain of ffkg. Next an `-bit key k is randomly chosen
and given to A. Next A wins if it generates v2 such that
fk(v1) = fk(v2). Note that target collision resistance
implies 2nd pre-image collision resistance. See more
details in [3, 23].

In our scheme we use a PRF family ffkg that also has the
following flavor of target collision resistance. First a key
k is chosen at random, and the adversary is given fk(0).
Next the adversary is assumed to be unable (except with
negligible probability) to find k0 6= k such that fk0(0) =
fk(0).

Since any PRF family is also a secure MAC family,
in our schemes we use the same function family for both
purposes. Still, for clarity, in the sequel we differentiate
between the cryptographic functionality of a PRF and a
MAC.10

In addition, we use digital signatures (secure against cho-
sen message attacks, see [15]), where the sender holds the
signing key and all receivers hold the corresponding public
verification key. The way in which the receivers obtain the
verification key is left out of scope.

Security Analysis of Scheme III

For brevity, we only sketch a proof of security of one of
the TESLA schemes, specifically Scheme III.

Theorem A.1. Assume that the PRF, the MAC and the sig-
nature schemes in use are secure, and that the PRF has the
TCR property described in Section A. Then Scheme IV is a
secure stream authentication scheme.

Proof sketch. For simplicity we assume that the MAC and
the PRF are realized by the same function family ffkg. (In
our implementation, f = HMAC.) Assume for contra-
diction that Scheme III is not a secure stream authentica-
tion scheme. This means that there is an adversary A who
controls the communication links and manages, with non-
negligible probability, to deliver a message m to a receiver

10In fact, we do not need the full security guarantee of a PRF. It suf-
fices to have a (length-doubling) pseudorandom generator with a similar
TCR property to the one described above. Nonetheless, for simplicity we
describe our schemes as ones using a full-fledged PRF.

R, such that the sender S has not sent m but R accepts m
as authentic and coming from S.

We show how to use A to break the security of one of the
underlying cryptographic primitives in use. Specifically, we
construct a distinguisherD that uses A to break the security
of the function family ffkg. That is, D gets access to a
black-box g and can tell with non-negligible probability if g
is a function fk where k is a random and secret key, or if al-
ternatively g is a totally random function. For this purpose,
D can query g on inputs x of its choice and be answered
with g(x).

Distinguisher D works by running A, as follows. Essen-
tially, D simulates for A a network with a sender S and a
receiver R. That is:

1. D chooses a number ` 2 f1::Mg at random, where
M is the total number of messages to be sent in the
stream. (D hopes that A will forge the `th message,
m`.)

2. D chooses signing and verification keys for S, and
hands the verification key to A.

3. D hands to A the initial message from S. This mes-
sage is signed using S’s signing key, and contains the
key K0, plus the starting time T0 and the duration d
of a time interval. The key K0 is generated as in the
scheme, with the following twist: Recall that in the the
scheme K0 = Fn(Kn) where F i(x) = fF i�1(x)(0)
and Kn is a randomly chosen value (with the ap-
propriate length). Here, K0 = F `�1(K`�1) where
K`�1 = g(0).

4. For the first ` � 1 messages in the stream D runs the
sender’s algorithm in Scheme III with no modifica-
tions. Whenever a message mi (with i < `) is gen-
erated, it is handed to A.

5. Message m` is generated as in Scheme III, with the
following exception: In the scheme, the MAC in m`

should equal fK`
(M`;K`�1) where M` is the ac-

tual data in message m`. Here, D lets the MAC be
g(M`;K`�1).

6. D inspects the messages that A delivers to the re-
ceiver R from the moment A receives m` and until
time T0 + ` � d. (All times are taken locally within D.)
If A delivers a message m0 that is different than m`

and has a valid MAC with respect to g (i.e., m0 is of
the formm0 = (M 0;K 0; g(M 0;K 0))) D decides that g
was chosen from the pseudorandom family ffkg. Oth-
erwise (i.e., A does not successfully forge a message)
D decides that g is a random function.

We sketch the argument demonstrating that D succeeds
with non-negligible probability. If g is a truly random func-
tion then A has only negligible probability to successfully
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forge the `th message in the stream. Therefore, if g is ran-
dom then D makes the wrong decision only with negligible
probability.

On the other hand, we have assumed that if the authenti-
cation is done using ffkg then A forges some message with
non-negligible probability �. It follows that A forges the
`th message with probability at least �=`. Furthermore, our
timing assumption guarantees that A does so prior to time
T0 + ` � d. It follows that if g is taken from ffkg then D
makes the right decision with probability at least �=` (which
is non-negligible).

We remark that the above argument fails if A hands R
a forged initial message from S, or if for some i < ` ad-
versary A finds a key K 0

i that is different than Ki, before
time T0 + i � d. However, in these cases the security of the
signature scheme or the target collision resistance of ffkg
is compromised, respectively.
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