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Abstract

We present a new analysis for the combination of binary classifiers. Our analysis
makes use of the Neyman-Pearson lemma as a theoretical basis to analyze combi-
nations of classifiers. We give a method for finding the optimal decision rule for a
combination of classifiers and prove that it has the optimal ROC curve. We show
how our method generalizes and improves previous work on combining classifiers
and generating ROC curves.

1 Introduction

We present an optimal way to combine binary classifiers in the Neyman-Pearson sense: for a given
upper bound on false alarms (false positives), we find the set of combination rules maximizing the
detection rate (true positives). This forms the optimal ROC curve of a combination of classifiers.

This paper makes the following original contributions: (1) We present a new method for finding
the meta-classifier with the optimal ROC curve. (2) We show how our framework can be used to
interpret, generalizeandimproveprevious work by Provost and Fawcett [1] and Flach and Wu [2].

(3) We present experimental results that show our method is practical and performs well, even when
we must estimate the distributions with insufficient data.

In addition, we prove the following results: (1) We show that the optimal ROC curve is composed

in general o2 + 1 different decision rules and of the interpolation between these rules (over the
space ob2" possible Boolean rules). (2) We prove that our method is optimal in this space. (3) We
prove that the Boolean AND and OR rules are always part of the optimal set for the special case of
independent classifiers (though in general we make no independence assumptions). (4) We prove a
sufficient condition for Provost and Fawcett’s method to be optimal.

2 Background

Consider classification problems where examples from a space of iApat® associated with
binary labels{0, 1} and there is a fixed but unknown probability distributBtz, c) over examples
(x,c) € X x {0,1}. Hy andH; denote the events that= 0 andc = 1, respectively.

A binary classifier is a functiorf : X — {0, 1} that predicts labels on new inputs. When we use
the term “classifier” in this paper we mean binary classifier. We address the problem of combining
results fromn base classifiergs, fa, ..., fn. LetY; = f;(X) be a random variable indicating the
output of classifierf; andY € {0,1}" = (Y1,Y5,...,Y,). We can characterize the performance of
classifierf; by its detection ratgalsotrue positivesor powel Pp; = Pr[Y; = 1|H;] and itsfalse

alarm rate (alsofalse positivesor test siz¢ Pr; = Pr[Y; = 1|Hy]. In this paper we are concerned
with proper classifiers, that is, classifiers whePg; > Pr,;. We sometimes omit the subscript



The Receiver Operating Characteristic (ROC) cumpiets Pr on thez-axis andPp on they-axis
(ROC spacg The point(0, 0) represents always classifying as 0, the p¢intl) represents always
classifying as 1, and the poif, 1) represents perfect classification. If one classifier's elras no
points below another, iveakly dominatethe latter. If no points are below and at least one point
is strictly above, idominatest. The liney = x describes a classifier that is no better than chance,
and every proper classifier dominates this line. When an RO@aonsists of a single point, we
connect it with straight lines t(, 0) and(1, 1) in order to compare it with others (see Lemma 1).

In this paper, we focus on base classifiers that occupy aespaht in ROC space. Many classifiers
have tunable parameters and can produce a continuous R@€; our analysis can apply to these
cases by choosing representative points and treating eechsoa separate classifier.

2.1 The ROC convex hull

Provost and Fawcett [1] give a seminal result on the use of R@@es for combining classifiers.
They suggest taking the convex hull of all points of the RO@res of the classifiers. ThROC
convex hull (ROCCHgombination rule interpolates between base classifiers, . . ., f,, select-
ing (1) a single best classifier or (2) a randomization betwbe decisions of two classifiers for
every false alarm rate [1]. This approach, however, is ntitrgg: as pointed out in later work by
Fawcett, the BooleaAND andORrules over classifiers can perform better than the ROCCH [3].

AND and OR are only 2 of22" possiblg Boolean rules over the outputsnobase classifiersn(
classifiers= 2" possible outcomes> 22" rules over outcomes). We address finding optimal rules.

2.2 The Neyman-Pearson lemma

In this section we introduce Neyman-Pearson theory fronfrdmaework of statistical hypothesis
testing [4, 5], which forms the basis of our analysis.

We test a null hypothesig, against an alternative;. Let the random variabl¥ have probability
distributionsP(Y|Hy) underH, and P(Y|H;) underH;, and define thékelihood ratio¢/(Y) =
P(Y|H,)/P(Y|Hy). The Neyman-Pearson lemma states that the likelihood testto

1 it oY) > 7
D<Y>={ YY) =7 @
0 ifoY)<r

for somer € (0,00) andy € [0,1], is @ most powerful test for its size: no other test has higher
Pp = Pr[D(Y) = 1|H,] for the same bound oy = Pr[D(Y) = 1|Hp]. (When/(Y) = T,

D = 1 with probabilityy and 0 otherwise.) Given a test sizewe maximizePp subject toPr < «

by choosingr and+ as follows. First we find the smallest valué such thar[4(Y) > 7| Hy] <

«. To maximizePp, which is monotonically nondecreasing wikty, we choose the highest value
~* that satisfiePr[D(Y) = 1|Hy] = Pr[¢(Y) > 7*|Ho] + v* Pr[l(Y) = 7*|Hp] < «, finding

v* = (a—Pr[(Y) > 7*|Ho])/ Pr[t(Y) = 7*|Hy].

3 The optimal ROC curve for a combination of classifiers

We characterize the optimal ROC curve for a decision basec @ombination of arbitrary
classifiers—for any given boundon P, we maximizePp. We frame this problem as a Neyman-
Pearson hypothesis test parameterized by the choige Wle assume nothing about the classifiers
except that each produces an outpuf@nl}. In particular, we do not assume the classifiers are
independent or related in any way.

Before introducing our method we analyze the one-classifiee ¢ = 1).
Lemma 1 Let f; be a classifier with performance probabilitid%,; and Pg;. Its optimal ROC

curve is a piecewise linear function parameterized by a fraemetera boundingPr: for a <
Ppl,PD(Oé) = (PDl/Ppl)Oz, and fora > Ppl,PD(a) = [(1—PDl)/(l—Ppl)}(a—Ppl)—f—PDl.

Proof. Whena < Pp;, we can obtain a likelihood ratio test by setting= ¢(1) andvy* = «/ Pp1,
and fora > Ppq, we setr* = £(0) andy* = (o — Pp1)/(1 — Ppy). O



The intuitive interpretation of this result is that to dexse or increase the false alarm rate of the
classifier, we randomize between using its predictions &mdys choosing 1 or 0. In ROC space,
this forms lines interpolating betweé®r, Pp1) and(1,1) or (0, 0), respectively.

To generalize this result for the combinationrotlassifiers, we require the distributiof8Y | Hy)
and P(Y|H,). With this information we then compute and sort the liketiicratios/(y) for all
outcomes € {0,1}". Let L be the list of likelihood ratios ranked from low to high.

Lemma 2 Given any0 < «a < 1, the orderingl determines parameters and~* for a likelihood
ratio test of sizex.

Lemma 2 sets up a classification rule for each interval batwi&elihoods in£ and interpolates
between them to create a test with size exaetlDur meta-classifier does this for any given bound
on its false positive rate, then makes predictions accgrtifequation 1. To find the ROC curve for
our meta-classifier, we pld®p againstPr for all 0 < a < 1. In particular, for eacly € {0,1}"

we can comput®r[¢(Y) > {(y)|Ho], which gives us one value for* and a point in ROC space
(Pr and Pp, follow directly from £ and P). Eachr* will turn out to be the slope of a line segment
between adjacent vertices, and varyifiginterpolates between the vertices. We call the ROC curve
obtained in this way theR-ROC

Theorem 1 The LR-ROC weakly dominates the ROC curve of any possibleication of Boolean
functionsg : {0,1}™ — {0, 1} over the outputs of classifiers.

Proof. Let o’ be the probability of false alarn?z for g. Let 7* and~* be chosen for a test of
sizea’. Then our meta-classifier's decision rule is a likelihootioréest. By the Neyman-Pearson
lemma, no other test has higher power for any given size. eSR@OC space plots power on the
y-axis and size on the-axis, this means that they, for ¢ at Pr = o’ cannot be higher than that of
the LR-ROC. Since this is true at any, the LR-ROC weakly dominates the ROC curve jor O

3.1 Practical considerations

To compute all likelihood ratios for the classifier outcomesneed to know the probability distri-
butionsP(Y|H,) and P(Y|H;). In practice these distributions need to be estimated. Thplsst
method is to run the base classifiers on a training set and caearrences of each outcome. Itis
likely that some outcomes will not occur in the training, il wccur only a small number of times.
Our initial approach to deal with small or zero counts wheinesting was to use add-one smooth-
ing. In our experiments, however, simple special-casdrtreat of zero counts always produced
better results than smoothing, both on the training set artti®test set. See Section 5 for details.

Furthermore, the optimal ROC curve may have a differentiibed ratio for each possible outcome
from then classifiers, and therefore a different pointin ROC spacepsimal ROC curves in general
have up t@®™ points. This implies an exponential (in the number of clims) lower bound on the

running time of any algorithm to compute the optimal ROC euior a combination of classifiers.
For a handful of classifiers, such a bound is not problemahtit,t is impractical to compute the
optimal ROC curve for dozens or hundreds of classifiers. @@y by computing and sorting the
likelihood ratios we avoid a2"-time search over all possible classification functions.)

4 Analysis

4.1 Theindependent case

In this section we take an in-depth look at the case of tworkictassifiersf; and f, that are
conditionally independent given the input's class, so @7, Yz|H.) = P(Y1|H.)P(Y2|H.) for

¢ € {0, 1} (this section is the only part of the paper in which we makeiadgpendence assump-
tions). SinceY; andY; are conditionally independent, we do not need the full jdistribution; we
need only the probabilitieBp,, Pr1, Pp2, andPg to find the combined®, and Pr. For example,
0(01) = (1 — Pp1)Pp2)/((1 = Pr1)Pra).

The assumption thaft; and f, are conditionally independent and proper defines a pantidrong
on the likelihood ratio:¢(00) < ¢(10) < ¢(11) and£(00) < ¢(01) < £(11). Without loss of



Table 1: Two probability distributions.

Class 1 {,) Class 0 Hy) Class 1 {H,) Class 0 Hy)
Y; Yi Y, Yy
Y| 0 1 Y| 0 1 Y[ 0 1 Y[ 0 1
0 |02 0.375 0 |05 01 0 02 01 001 03
1]01 0325 1103 01 1102 05 1105 01

(a) (b)

generality, we assum&00) < ¢(01) < ¢(10) < ¢(11). This ordering breaks the likelihood ratio’s
range(0, o) into five regions; choosing in each region defines a different decision rule.

The trivial cased) < 7 < £(00) and¢(11) < 7 < oo correspond to always classifying as

1 and 0, respectively.Pp and Pr are therefore both equal to 1 and both equal to 0, respec-
tively. For the casé(00) < 7 < ¢(01), Pr[{(Y)>7] = Pr(Y=01vY =10VY =11] =
Pr[Y; = 1V Y; =1]. Thresholds in this range define an OR rule for the classifieith, Pp, =

Pp1 + Pps — Pp1Ppe and Pp = Ppy + Ppa — Pr1Pro. For the casé(01) < 7 < £(10), we
havePr [¢(Y) > 7] = Pr[Y =10VvY = 11] = Pr[Y; = 1]. Therefore the performance proba-
bilities are simplyPp, = Pp; and Pr = Pp;. Finally, the casé(10) < 7 < /(11) implies that
Pr[¢(Y) > 7] = Pr[Y = 11], and therefore thresholds in this range define an AND ruleh wit
Pp = Pp1Pps and Pr = Ppy Pro. Figure la illustrates this analysis with an example.

The assumption of conditional independence is a sufficiemdlition for ensuring that the AND and
OR rules improve on the ROCCH farclassifiers, as the following result shows.

Theorem 2 If the distributions of the outputs afproper binary classifier;, Ys, ..., Y, are con-
ditionally independent given the instance class, then thiatp in ROC space for the rules AND
Y1 AYoA---AY,)and OR 7 VY, VvV --- VY,) are strictly above the convex hull of the ROC
curves of the base classifiefs, . . ., f,,. Furthermore, these Boolean rules belong to the LR-ROC.

Proof. The likelihood ratio of the case when AND outputsis given by ¢(11---1) =
(Pp1Pp2 - Ppyn)/(Pr1Pra - - Pry). The likelihood ratio of the case when OR does not output
is given by?(00---0) = [(1—Pp1)(1 — Pp2) -+ - (1 — Ppy)]/[(1 = Pr1)(1 — Pga) - - - (1 — Pry,)].
Now recall that for proper classifielfs, Pp; > Pr; and thug1— Pp;)/(1— Pr;) < 1 < Pp;/PF;.
Itis now clear that(00 - - - 0) is the smallest likelihood ratio arid11 - - - 1) is the largest likelihood
ratio, since others are obtained only by swappihg p); and(1 — P(F7D)i), and therefore the OR
and AND rules will always be part of the optimal set of deaisidor conditionally independent clas-
sifiers. These rules astrictly above the ROCCH: becauégll---1) > Pp;/Ppa, andPp1/Ppo

is the slope of the line fronf0, 0) to the first point in the ROCCHY({), the AND point must be
above the ROCCH. A similar argument holds for OR sifi@® - - - 0) < (1 — Ppy,)/(1 — Ppy,). O

4.2 Two examples

We return now to the general case with no independence asisunsip We present two example
distributions for the two-classifier case that demonsirgeresting results.

The first distribution appears in Table 1a. The likelihoaibraalues are(00) = 0.4, £(10) = 3.75,
£(01) = 1/3, and{(11) = 3.25, giving us¢(01) < ¢(00) < ¢(11) < £(10). The three non-trivial
rules correspond to the Boolean functidisv —Ys, Y7, andY; A —Y5. Note thatY; appears only
negatively despite being a proper classifier, and both thB ANd OR rules are sub-optimal.

The distribution for the second example appears in Tablé'hb.likelihood ratios of the outcomes
are/(00) = 2.0, £(10) = 1/3, £(01) = 0.4, and/(11) = 5, s0£(10) < £(01) < £(00) < £(11)
and the three points defining the optimal ROC curve-are Vv Y,, (Y7 @ Y2), andY; A Y; (see
Figure 1b). In this case, an XOR rule emerges from the likelthratio analysis.

These examples show that for true optimal results it is nfficent to use weighted voting rules
w11 + weYs + - + w,Y, > 7, wherew € (0,00) (like some ensemble methods). Weighted
voting always has AND and OR rules in its ROC curve, so it caahways express optimal rules.



0.8

Pp

0.4

0.2

YIAY;

Yy

iyl

VYoo 7

Y, T

77777 ROC of f;
- - - -ROCof f2
LR-ROC

ROC of f]
ROC of fz
LR-ROC

0.2

0.4 P 0.6 0.8

@)

0.2

04 p, 06

(b)

0.8

fr f2

\f’ Or ginal ROC
1 ——LR-ROC

0.2 0.4 Pr 0.6 0.8 1

(©

Figure 1: (a) ROC for two conditionally independent classifiers. (b) ROC curve for the distributions
in Table 1b. (c) Original ROC curve and optimal ROC curve for example in Section 4.4.

4.3 Optimality of the ROCCH

We have seen that in some cases, rules exist with points strictly above the ROCCH. As the following
result shows, however, there are conditions under which the ROCCH is optimal.

Theorem 3 Considern classifiersfi, .. ., f,. The convex hull of pointsPr;, Pp;) with (0,0) and
(1, 1) (the ROCCH) is an optimal ROC curve for the combinatiofYif=1) = (Y; = 1) fori < j
and the following ordering hold<(00 - - - 0) < £(00---01) < £(00---011) < --- < £(1---1).

Proof. The condition(Y; = 1) = (Y; = 1) for ¢ < j implies that we only need to consider 2
points in the ROC space (the two extra points@@) and(1, 1)) rather thar™. It also implies the
following conditions on the joint distributior®r[Y; = 0A---AY; =0A Y11 =1A---AY, =
1|Hy) = Ppiy1 — Pry, andPr[Y; = 1A --- AY,, = 1|Hy] = Pp;. With these conditions
and the ordering condition on the likelihood ratios, we hBv&(Y) > ¢(1---1)|Hy] = 0, and
Pr[¢(Y) > £(0---01---1)|Ho] = Pp;. Therefore, finding the optimal threshold of the likelihood

ratio test forPr;—1 < a < Pp;, we gett* = £(0---01---1), and forPr; < a < Ppiy1,

i—1
7% =¢(0---01---1). This change in* implies that the poinPr; is part of the LR-ROC. Setting

a = Pp; (thust* =£(0---01---1) andy*=0) impliesPr[¢(Y) > 7*|H;| = Pp;. O

%

The conditionY; = 1 = Y; = 1 fori < j is the same inclusion condition Flach and Wu use
for repairing an ROC curve [2]. It intuitively represents the performance in ROC space of a single
classifier with different operating points. The next section explores this relationship further.

4.4 Repairing an ROC curve

Flach and Wu give a voting technique to repair concavities in an ROC curve that generates operating
points above the ROCCH [2]. Their intuition is that points underneath the convex hull can be
mirrored to appear above the convex hull in much the same way as an improper classifier can be
negated to obtain a proper classifier. Although their algorithm produces better ROC curves, their
solution will often yield curves with new concavities (see for example Flach and Wu’s Figure 4 [2]).
Their algorithm has a similar purpose to ours, but theirs is a local greedy optimization technique,
while our method performs a global search in order to find the best ROC curve.

Figure 1c shows an example comparing their method to ours. Consider the following probabil-
ity distribution on a random variabl¥ < {0,1}%: P((00,10,01,11)|H;) = (0.1,0.3,0.0,0.6),
P((00,10,01,11)|Hy) = (0.5,0.001,0.4,0.099). Flach and Wu’'s method assumes the original
ROC curve to be repaired has thmeedels, or operating pointg; predicts 1 wherk¥ € {11}, f,
predicts 1 wherY € {11,01}, and f5 predicts 1 wherY € {11,01,10}. If we apply Flach and

Wu'’s repair algorithm, the poing; is corrected to the point}; however, the operating points ¢f

and f3 remain the same.
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Figure 2: Empirical ROC curves for experimental resultsaur {UCI datasets.

Our method improves on this result by ordering the likelithoatios/(01) < ¢(00) < £(11) < £(10)
and using that ordering to make three different ruléspredicts 1 wherY € {10}, f; predicts 1
whenY € {10, 11}, andf3 predicts 1 wherY € {10, 11, 00}.

5 Experiments

We ran experiments to test the performance of our combiniethad on theadult, hypothyroid
sick-euthyroid andsick datasets from the UCI machine learning repository [6]. Wasetfive base
classifiers from the YALE machine learning platform [7]: PRRa decision list algorithm), SMO
(Sequential Minimal Optimization), SimpleLogistic, Vaieerceptron, and Y-NaiveBayes. We used
default settings for all classifiers. Tlaelult dataset has around 30,000 training points and 15,000
test points and thsickdataset has around 2000 training points and 700 test pdihésothers each
have around 2000 points that we split randomly into 100@ingi and 1000 test.

For each experiment, we estimate the joint distributionrbintng the base classifiers on a training
set and counting the outcomes. We compute likelihood ré&dice| outcomes and order them. When
outcomes have no examples, we trgétas near-infinite and/- as near-zero and defifig0 = 1.



We derive a sequence of decision rules from the likelihotidsaomputed on the training set. We
can compute an optimal ROC curve for the combination by dogrthe number of true positives
and false positives each rule achieves. In the test set winesales learned on the training set.

5.1 Results

The ROC graphs for our four experiments appear in Figure 2. ROC curves in these experiments
all rise very quickly and then flatten out, so we show only thege of Pr; for which the values
are interesting. We can draw some general conclusions fresetgraphs. First, PART clearly
outperforms the other base classifiers in three out of fopeements, though it seems to overfit
on the hypothyroid dataset. The LR-ROC dominates the ROGsuwf the base classifiers on both
training and test sets. The ROC curves for the base classéferall strictly below the LR-ROC
in results on the test sets. The results on training sets s@éanply that the LR-ROC is primarily
classifying like PART with a small boost from the other cléisss; however, the test set results (in
particular, Figure 2b) demonstrate that the LR-ROC geimmbetter than the base classifiers.

The robustness of our method to estimation errors is urinerba our experiments we found that
smoothing did not improve generalization, but undoubtexly method would benefit from better
estimation of the outcome distribution and increased rlass.

We ran separate experiments to test how many classifiers etiroch could support in practice.
Estimation of the joint distribution and computation of tR®C curve finished within one minute
for 20 classifiers (not including time to train the individutassifiers). Unfortunately, the inherent
exponential structure of the optimal ROC curve means we aagxpect to do significantly better
(at the same rate, 30 classifiers would take over 12 hours@uolhdgsifiers almost a year and a half).

6 Related work

Our work is loosely related to ensemble methods suchagging[8] and boosting[9] because

it finds meta-classification rules over a set of base classifldowever, bagging and boosting each
take one base classifier and train many times, resamplirep@ighting the training data to generate
classifier diversity [10] or increase the classification gim11]. The decision rules applied to
the generated classifiers are (weighted) majority votimgcdntrast, our method takes any binary
classifiers and finds optimal combination rules from the ngeneeral space of all binary functions.

Ranking algorithms, such as RankBoost [12], approach tbbl@m of ranking points by score or
preference. Although we present our methods in a differght,lour decision rule can be interpreted
as a ranking algorithm. RankBoost, however, is a boostiggrahm and therefore fundamentally
different from our approach. Ranking can be used for classgitin by choosing a cutoff or threshold,
and in fact ranking algorithms tend to optimize the commoratnder the ROC Curve (AUC)
metric. Although our method may have the side effect of méiimy the AUC, its formulation is
different in that instead of optimizing a single global nietit is a constrained optimization problem,
maximizing Pp for eachPr.

Another more similar method for combining classifiersiacking[13]. Stacking trains aneta-
learnerto combine the predictions of several base classifiers;dn faur method might be consid-
ered a stacking method with a particular meta-classifi@antbe difficult to show the improvement
of stacking in general over selecting the best base-leaskdier [14]; however, stacking has a use-
ful interpretation as generalized cross-validation thakes it practical. Our analysis shows that our
combination method is the optimal meta-learner in the NeyRearson sense, but incorporating the
model validation aspect of stacking would make an intemgstixtension to our work.

7 Conclusion

In this paper we introduce a new way to analyze a combinafiafassifiers and their ROC curves.
We give a method for combining classifiers and prove that @ggsmal in the Neyman-Pearson
sense. This work raises several interesting questions.

Although the algorithm presented in this paper avoids cimgcthe whole doubly exponential num-
ber of rules, the exponential factor in running time limite thumber of classifiers that can be



combined in practice. Can a good approximation algorithpr@gch optimality while having lower
time complexity? Though in general we make no assumptioonsitalbdependence, Theorem 2
shows that certain simple rules are optimal when we do knawttie classifiers are independent.
Theorem 3 proves that the ROCCH can be optimal when ardytput combinations are possible.
Perhaps other restrictions on the distribution of outcooaaslead to useful special cases.
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