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Abstract

Recently a great deal of attention has focused on quantum computation following

a sequence of results [4, 16, 15] suggesting that quantum computers are more powerful

than classical probabilistic computers. Following Shor's result that factoring and the

extraction of discrete logarithms are both solvable in quantum polynomial time, it is

natural to ask whether all of NP can be e�ciently solved in quantum polynomial time.

In this paper, we address this question by proving that relative to an oracle chosen

uniformly at random, with probability 1, the class NP cannot be solved on a quantum

Turing machine in time o(2

n=2

). We also show that relative to a permutation oracle

chosen uniformly at random, with probability 1, the class NP \ co{NP cannot be

solved on a quantum Turing machine in time o(2

n=3

). The former bound is tight since
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recent work of Grover [13] shows how to accept the class NP relative to any oracle on

a quantum computer in time O(2

n=2

).



1 Introduction

Quantum computational complexity is an exciting new area that touches upon the foun-

dations of both theoretical computer science and quantum physics. In the early eighties,

Feynman [12] pointed out that straightforward simulations of quantum mechanics on a clas-

sical computer appear to require a simulation overhead that is exponential in the size of

the system and the simulated time; he asked whether this is inherent, and whether it is

possible to design a universal quantum computer. Deutsch [9] de�ned a general model of

quantum computation | the quantum Turing machine. Bernstein and Vazirani [4] proved

that there is an e�cient universal quantum Turing machine. Yao [17] extended this by

proving that quantum circuits (introduced by Deutsch [10]) are polynomially equivalent to

quantum Turing machines.

The computational power of quantum Turing machines (QTMs) has been explored by

several researchers. Early work by Deutsch and Jozsa [11] showed how to exploit some

inherently quantum mechanical features of QTMs. Their results, in conjunction with sub-

sequent results by Berthiaume and Brassard [5, 6], established the existence of oracles under

which there are computational problems that QTMs can solve in polynomial time with cer-

tainty, whereas if we require a classical probabilistic Turing machine to produce the correct

answer with certainty, then it must take exponential time on some inputs. On the other

hand, these computational problems are in BPP

1

relative to the same oracle, and there-

fore e�ciently solvable in the classical sense. The quantum analogue of the class BPP is

1

BPP is the class of decision problems (languages) that can be solved in polynomial time by probabilistic

Turing machines with error probability bounded by 1/3 (for all inputs). Using standard boosting techniques,

the error probability can then be made exponentially small in k by iterating the algorithm k times and

returning the majority answer.
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the class BQP

2

[5]. Bernstein and Vazirani [4] proved that BPP � BQP � PSPACE,

thus establishing that it will not be possible to conclusively prove that BQP 6= BPP

without resolving the major open problem P

?

= PSPACE. They also gave the �rst evi-

dence that BQP 6= BPP (polynomial-time quantum Turing machines are more powerful

than polynomial-time probabilistic Turing machines), by proving the existence of an ora-

cle relative to which there are problems in BQP that cannot be solved with small error

probability by probabilistic machines restricted to running in n

o(logn)

steps. Since BPP is

regarded as the class of all \e�ciently computable" languages (computational problems),

this provided evidence that quantum computers are inherently more powerful than classical

computers in a model-independent way. Simon [16] strengthened this evidence by proving

the existence of an oracle relative to which BQP cannot even be simulated by probabilis-

tic machines allowed to run for 2

n=2

steps. In addition, Simon's paper also introduced an

important new technique which was one of the ingredients in a remarkable result proved

subsequently by Shor [15]. Shor gave polynomial-time quantum algorithms for the fac-

toring and discrete logarithm problems. These two problems have been well-studied, and

their presumed intractability forms the basis of much of modern cryptography. In view of

these results, it is natural to ask whether NP � BQP; i.e. can quantum computers solve

NP{complete problems in polynomial time?

3

In this paper, we address this question by proving that relative to an oracle chosen

uniformly at random [3], with probability 1, the class NP cannot be solved on a quantum

2

BQP is the class of decision problems (languages) that can be solved in polynomial time by quantum

Turing machines with error probability bounded by 1/3 (for all inputs)|see [4] for a formal de�nition.

We prove in Section 4 of this paper that, as is the case with BPP, the error probability of BQP machines

can be made exponentially small.

3

Actually it is not even clear whether BQP � BPP

NP

; i.e. it is unclear whether nondeterminism

together with randomness is su�cient to simulate quantum Turing machines. In fact, Bernstein and Vazi-

rani's [4] result is stronger than stated above. They actually proved that relative to an oracle, the recursive

Fourier sampling problem can be solved in BQP, but cannot even be solved by Arthur-Merlin games [1]

with a time bound of n

o(log n)

(thus giving evidence that nondeterminism on top of probabilism does not

help). They conjecture that the recursive Fourier sampling cannot even be solved in the unrelativized

polynomial-time hierarchy.
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Turing machine in time o(2

n=2

). We also show that relative to a permutation oracle chosen

uniformly at random, with probability 1, the class NP \ co{NP cannot be solved on a

quantum Turing machine in time o(2

n=3

). The former bound is tight since recent work of

Grover [13] shows how to accept the class NP relative to any oracle on a quantum computer

in time O(2

n=2

). See [7] for a detailed analysis of Grover's algorithm.

What is the relevance of these oracle results? We should emphasize that they do not

rule out the possibility that NP � BQP. What these results do establish is that there is

no black-box approach to solving NP{complete problems by using some uniquely quantum-

mechanical features of QTMs. That this was a real possibility is clear from Grover's [13]

result, which gives a black-box approach to solving NP{complete problems in square-root

as much time as is required classically.

One way to think of an oracle is as a special subroutine call whose invocation only costs

unit time. In the context of QTMs, subroutine calls pose a special problem that has no

classical counterpart. The problem is that the subroutine must not leave around any bits

beyond its computed answer, because otherwise computational paths with di�erent residual

information do not interfere. This is easily achieved for deterministic subroutines since any

classical deterministic computation can be carried out reversibly so that only the input and

the answer remain. However, this leaves open the more general question of whether a BQP

machine can be used as a subroutine. Our �nal result in this paper is to show how any

BQP machine can be modi�ed into a tidy BQP machine whose �nal superposition consists

almost entirely of a tape con�guration containing just the input and the single bit answer.

Since these tidy BQP machines can be safely used as subroutines, this allows us to show

that BQP

BQP

= BQP. The result also justi�es the de�nition of oracle quantum machines

that we now give.
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2 Oracle Quantum Turing Machines

In this section and the next, we shall assume without loss of generality that the Turing

machine alphabet (for each track or tape) is f0; 1;#g, where \#" denotes the blank symbol.

Initially all tapes are blank except that the input tape contains the actual input surrounded

by blanks. We shall use � to denote f0; 1g.

In the classical setting, an oracle may be described informally as a device for evaluating

some Boolean function A : �

�

! �, on arbitrary arguments, at unit cost per evaluation.

This allows to formulate questions such as \if A were e�ciently computable by a Turing

machine, which other functions (or languages) could be e�ciently computed by Turing

machines?". In the quantum setting, an equivalent question can be asked, provided we

de�ne oracle quantum Turing machines appropriately|which we do in this section|and

provided bounded-error quantum Turing machines can be composed|which we show in

Section 4 of this paper.

An oracle QTM has a special query tape (or track), all of whose cells are blank except for

a single block of non-blank cells. In a well-formed oracle QTM, the Turing machine rules may

allow this region to grow and shrink, but prevent it from fragmenting into non-contiguous

blocks.

4

Oracle QTMs have two distinguished internal states: a pre-query state q

q

and a

post-query state q

a

. A query is executed whenever the machine enters the pre-query state.

If the query string is empty, a no-op occurs, and the machine passes directly to the post-

query state with no change. If the query string is nonempty, it can be written in the form

x � b where x 2 �

�

, b 2 �, and \�" denotes concatenation. In that case, the result of a

call on oracle A is that internal control passes to the post-query state while the contents of

4

This restriction can be made without loss of generality and it can be veri�ed syntactically by allowing

only machines that make sure they do not break the rule before writing on the query tape.
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the query tape changes from jx � bi to jx � (b�A(x))i, where \�" denotes the exclusive-or

(addition modulo 2). Except for the query tape and internal control, other parts of the

oracle QTM do not change during the query. If the target bit jbi is supplied in initial state

j0i, then its �nal state will be jA(x)i, just as in a classical oracle machine. Conversely, if

the target bit is already in state jA(x)i, calling the oracle will reset it to j0i. This ability

to \uncompute" will often prove essential to allow proper interference among computation

paths to take place. Using this fact, it is also easy to see that the above de�nition of oracle

Turing machines yields unitary evolutions if we restrict ourselves to machines that are well-

formed in other respects, in particular evolving unitarily as they enter the pre-query state

and leave the post-query state.

The power of quantum computers comes from their ability to follow a coherent su-

perposition of computation paths. Similarly oracle quantum machines derive great power

from the ability to perform superpositions of queries. For example, oracle A might be

called when the query tape is in state j � 0i =

P

x

�

x

jx � 0i, where �

x

are complex coef-

�cients, corresponding to an arbitrary superposition of queries with a constant j0i in the

target bit. In this case, after the query, the query string will be left in the entangled state

P

x

�

x

jx � A(x)i. It is also useful to be able to put the target bit b into a superposition.

For example, the conditional phase inversion used in Grover's algorithm can be achieved by

performing queries with the target bit b in the nonclassical superposition � = (j0i�j1i)=

p

2.

It can readily be veri�ed that an oracle call with the query tape in state x � � leaves the

entire machine state, including the query tape, unchanged if A(x) = 0, and leaves the entire

state unchanged while introducing a phase factor �1 if A(x) = 1.

It is often convenient to think of a Boolean oracle as de�ning a length-preserving function

on �

�

. This is easily accomplished by interpreting the oracle answer on the pair (x; i) as

the i

th

bit of the function value. The pair (x; i) is encoded as a binary string using any

standard pairing function. A permutation oracle is an oracle which, when interpreted as
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a length-preserving function, acts for each n � 0 as a permutation on �

n

. Henceforth,

when no confusion may arise, we shall use A(x) to denote the length-preserving function

associated with oracle A rather than the Boolean function that gives rise to it.

Let us de�ne BQTime(T (n))

A

as the sets of languages accepted with probability at

least 2=3 by some oracle QTM M

A

whose running time is bounded by T (n). This bound

on the running time applies to each individual input, not just on the average. Notice that

whether or not M

A

is a BQP-machine might depend upon the oracle A|thus M

A

might

be a BQP-machine while M

B

might not be one.

Note: The above de�nition of a quantum oracle for an arbitrary Boolean function will

su�ce for the purposes of the present paper, but the ability of quantum computers to per-

form general unitary transformations suggests a broader de�nition, which may be useful in

other contexts. For example, oracles that perform more general, non-Boolean unitary oper-

ations have been considered in computational learning theory [8] and for hiding information

against classical queries [14].

Most broadly, a quantum oracle may be de�ned as a device that, when called, applies

a �xed unitary transformation U to the current contents jzi of the query tape, replacing it

by U jzi. Such an oracle U must be de�ned on a countably in�nite-dimensional Hilbert space,

such as that spanned by the binary basis vectors j�i; j0i; j1i; j00i; j01i; j10i; j11i; j000i, : : : ,

where � denotes the empty string. Clearly, the use of such general unitary oracles still

yields unitary evolution for well-formed oracle Turing machines. Naturally, these oracles

can map inputs onto superpositions of outputs, and vice versa, and they need not even be

length-preserving. However, in order to obey the dictum that a single machine cycle ought

not to make in�nite changes in the tape, one might require that U jzi have amplitude zero

on all but �nitely many basis vectors. (One could even insist on a uniform and e�ective

version of the above restriction.) Another natural restriction one may wish to impose upon
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U is that it be an involution, U

2

= I , so that the e�ect of an oracle call can be undone by

a further call on the same oracle. Again this may be crucial to allow proper interference to

take place. Note that the special case of unitary transformation considered in this paper,

which corresponds to evaluating a classical Boolean function, is an involution.

3 On the Di�culty of Simulating Nondeterminism on

QTMs

The computational power of QTMs lies in their ability to maintain and compute with

exponentially large superpositions. It is tempting to try to use this \exponential parallelism"

to simulate non-determinism. However, there are inherent constraints on the scope of this

parallelism, which are imposed by the formalism of quantum mechanics.

5

In this section,

we explore some of these constraints.

To see why quantum interference can speed up NP problems quadratically but not

exponentially, consider the problem of distinguishing the empty oracle (8

x

A(x) = 0) from

an oracle containing a single random unknown string y of known length n (i.e. A(y)=1, but

8

x6=y

A(x)=0). We require that the computer never answer yes on an empty oracle, and seek

to maximize its \success probability" of answering yes on a nonempty oracle. A classical

computer can do no better than to query distinct n{bit strings at random, giving a success

probability 1=2

n

after one query and k=2

n

after k queries. How can a quantum computer do

5

There is a super�cial similarity between this exponential parallelism in quantum computation and the

fact that probabilistic computations yield probability distributions over exponentially large domains. The

di�erence is that in the probabilistic case, the computational path is chosen by making a sequence of random

choices|one for each step. In the quantum-mechanical case, it is possible for several computational paths

to interfere destructively, and therefore it is necessary to keep track of the entire superposition at each step

to accurately simulate the system.
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better, while respecting the rule that its overall evolution be unitary, and, in a computation

with a nonempty oracle, all computation paths querying empty locations evolve exactly as

they would for an empty oracle? A direct quantum analog of the classical algorithm would

start in an equally-weighted superposition of 2

n

computation paths, query a di�erent string

on each path, and �nally collapse the superposition by asking whether the query had found

the nonempty location. This yields a success probability 1=2

n

, the same as the classical

computer. However, this is not the best way to exploit quantum parallelism. Our goal

should be to maximize the separation between the state vector j 

k

i after k interactions

with an empty oracle, and the state vector j 

k

(y)i after k interactions with an oracle

nonempty at an unknown location y. Starting with a uniform superposition

j 

0

i =

1

p

2

n

X

x

jxi;

it is easily seen that the separation after one query is maximized by a unitary evolution to

j 

1

(y)i =

1

p

2

n

X

x

(�1)

�

x;y

jxi = j 

0

i �

2

p

2

n

jyi:

This is a phase inversion of the term corresponding to the nonempty location. By testing

whether the post-query state agrees with j 

0

i we obtain a success probability

1� jh 

0

j 

1

(y)ij

2

� 4=2

n

approximately four times better than the classical value. Thus, if we are allowed only one

query, quantum parallelism gives a modest improvement, but is still overwhelmingly likely

to fail because the state vector after interaction with a nonempty oracle is almost the same

as after interaction with an empty oracle. The only way of producing a large di�erence after

one query would be to concentrate much of the initial superposition in the y term before

the query, which cannot be done because that location is unknown.
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Having achieved the maximum separation after one query, how best can that separation

be increased by subsequent queries? Various strategies can be imagined, but a good one

(called \inversion about the average" by Grover [13]) is to perform an oracle-independent

unitary transformation so as to change the phase di�erence into an amplitude di�erence,

leaving the y term with the same sign as all the other terms but a magnitude approximately

threefold larger. Subsequent phase-inverting interactions with the oracle, alternating with

oracle-independent phase-to-amplitude conversions, cause the distance between j 

0

i and

j 

k

(y)i to grow linearly with k, approximately as 2k=

p

2

n

when k �

p

N=2. This results in a

quadratic growth of the success probability, approximately as 4k

2

=2

n

for small k. The proof

of Theorem 3.5 shows that this approach is essentially optimal: no quantum algorithm can

gain more than this quadratic factor in success probability compared to classical algorithms,

when attempting to answer NP-type questions formulated relative to a random oracle.

3.1 Lower Bounds on Quantum Search

We will sometimes �nd it convenient to measure the accuracy of a simulation by calculating

the Euclidean distance

6

between the target and simulation superpositions. The following

theorem from [4] shows that the simulation accuracy is at most 4 times worse than this

Euclidean distance.

Theorem 3.1 If two unit-length superpositions are within Euclidean distance " then observ-

ing the two superpositions gives samples from distributions which are within total variation

distance

7

at most 4".

6

The Euclidean distance between j�i =

P

x

�

x

jxi and j i =

P

x

�jxi is de�ned as (

P

x

j�

x

� �

x

j

2

)

1=2

.

7

The total variation distance between two distributions D and D

0

is

P

x

jD(x)�D

0

(x)j.
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De�nition 3.2 Let j�

i

i be the superposition of M

A

on input x at time i. We denote by

q

y

(j�

i

i) the sum of squared magnitudes in j�

i

i of con�gurations of M which are querying

the oracle on string y. We refer to q

y

(j�

i

i) as the query magnitude of y in j�

i

i.

Theorem 3.3 Let j�

i

i be the superposition of M

A

on input x at time i. Let " > 0. Let

F � [0; T � 1] � �

�

be a set of time-strings pairs such that

P

(i;y)2F

q

y

(j�

i

i) �

"

2

T

. Now

suppose the answer to each query (i; y) 2 F is modi�ed to some arbitrary �xed a

i;y

(these

answers need not be consistent with an oracle). Let j�

0

i

i be the time i superposition of M

on input x with oracle A modi�ed as stated above. Then jj�

T

i � j�

0

T

ij � ".

Proof. Let U be the unitary time evolution operator of M

A

. Let A

i

denote an oracle such

that if (i; y) 2 F then A

i

(y) = a

i;y

and if (i; y) =2 F then A

i

(y) = A(y). Let U

i

be the

unitary time evolution operator of M

A

i

. Let j�

i

i be the superposition of M

A

on input x

at time i. We de�ne jE

i

i to be the error in the i

th

step caused by replacing the oracle A

with A

i

. Then

jE

i

i = U

i

j�

i

i � U j�

i

i:

So we have

j�

T

i = U j�

T�1

i = U

T

j�

T�1

i � jE

T�1

i = � � � = U

T

� � �U

1

j�

0

i �

T�1

X

i=0

U

T�1

� � �U

i

jE

i

i:

Since all of the U

i

are unitary, jU

T�1

� � �U

i

jE

i

ij = jjE

i

ij.

The sum of squared magnitudes of all of the E

i

is equal to

P

(i;y)2F

q

y

(j�

i

i) and therefore

at most

"

2

T

2

. In the worst case, the U

T�1

� � �U

i

jE

i

is could interfere constructively; however,

the squared magnitude of their sum is at most T times the sum of their squared magnitudes,

i.e. "

2

. Therefore jj�

T

i � j�

0

T

ij � ". 2
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Corollary 3.4 Let A be an oracle over alphabet �. For y 2 �

�

, let A

y

be any oracle such

that 8x 6= y A

y

(x) = A(x). Let j�

i

i be the time i superposition of M

A

on input x and

j�

i

i

(y)

be the time i superposition of M

A

y

on input x. Then for every " > 0, there is a set

S of cardinality at most

2T

2

"

2

such that 8y =2 S

�

�

�
j�

T

i � j�

T

i

(y)

�

�

�
� ".

Proof. Since each j�

t

i has unit length,

P

T�1

i=0

P

y

q

y

(j�

i

i) � T . Let S be the set of strings

y such that

P

T�1

i=0

q

y

(j�

i

i) �

"

2

2T

. Clearly card(S) �

2T

2

"

2

.

If y =2 S then

P

T�1

i=0

q

y

(j�

i

i) <

"

2

2T

. Therefore by Theorem 3.3 8y =2 S

�

�

�
j�

i

i � j�

i

i

(y)

�

�

�
� ".

2

Theorem 3.5 For any T (n) which is o(2

n=2

), relative to a random oracle, with probabil-

ity 1, BQTime(T (n)) does not contain NP.

Proof. Recall from Section 2 that an oracle can be thought of as a length-preserving

function: this is what we mean below by A(x). Let L

A

= fy : 9x A(x) = yg. Clearly, this

language is contained in NP

A

. Let T (n) = o(2

n=2

). We show that for any bounded-error

oracle QTM M

A

running in time at most T (n), with probability 1, M

A

does not accept

the language L

A

. The probability is taken over the choice of a random length-preserving

oracle A. Then, since there are a countable number of QTMs and the intersection of a

countable number of probability 1 events still has probability 1, we conclude that with

probability 1, no bounded error oracle QTM accepts L

A

in time bounded by T (n).

Since T (n) = o(2

n=2

), we can pick n large enough so that T (n) �

2

n=2

20

. We will show

that the probability that M gives the wrong answer on input 1

n

is at least 1=8 for every

13



way of �xing the oracle answers on inputs of length not equal to n. The probability is taken

over the random choices of the oracle for inputs of length n.

Let us �x an arbitrary length-preserving function from strings of lengths other than n

over alphabet �. Let C denote the set of oracles consistent with this arbitrary function.

Let A be the set of oracles in C such that 1

n

has no inverse (does not belong to L

A

). If the

oracle answers to length n strings are chosen uniformly at random, then the probability

that the oracle is in A is at least 1=4. This is because the probability that 1

n

has no inverse

is (

2

n

�1

2

n

)

2

n

which is at least 1=4 (for n su�ciently large). Let B be the set of oracles in C

such that 1

n

has a unique inverse. As above, the probability that a randomly chosen oracle

is in B is (

2

n

�1

2

n

)

2

n

�1

which is at least 1=e.

Given an oracle A in A, we can modify its answer on any single input, say y, to 1

n

and

therefore get an oracle A

y

in B. We will show that for most choices of y, the acceptance

probability of M

A

on input 1

n

is almost equal to the acceptance probability of M

A

y

on

input 1

n

. On the other hand, M

A

must reject 1

n

and M

A

y

must accept 1

n

. Therefore M

cannot accept both L

A

and L

A

y

. By working through the details more carefully, it is easy

to show thatM fails on input 1

n

with probability at least 1=8 when the oracle is a uniformly

random function on strings of length n, and is an arbitrary function on all other strings.

Let A

y

be the oracle such that A

y

(y) = 1

n

and 8z 6= y A

y

(z) = A(z). By Corol-

lary 3.4 there is a set S of at most 338T

2

(n) strings such that the di�erence between the

i

th

superposition of M

A

y

on input 1

n

and M

A

on input 1

n

has norm at most 1=13. Using

Theorem 3.1 we can conclude that the di�erence between the acceptance probabilities of

M

A

y

on input 1

n

and M

A

on input 1

n

is at most 1=13� 4 < 1=3. Since M

A

y

should accept

1

n

with probability at least 2=3 and M

A

should reject 1

n

with probability at least 2=3, we

can conclude that M fails to accept either L

A

or L

A

y

.
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So, each oracle A 2 A for which M correctly decides whether 1

n

2 L

A

can, by changing

a single answer of A to 1

n

, be mapped to at least (2

n

� card(S)) � 2

n�1

di�erent oracles

A

f

2 B for which M fails to correctly decide whether 1

n

2 L

A

f

. Moreover, any particular

A

f

2 B is the image under this mapping of at most 2

n

� 1 oracles A 2 A, since where it

now answers 1

n

, it must have given one of the 2

n

� 1 other possible answers. Therefore, the

number of oracles in B for which M fails must be at least 1=2 the number of oracles in A

for which M succeeds. So, calling a the number of oracles in A for which M fails, M must

fail for at least a+1=2(card(A)� a) oracles. Therefore M fails to correctly decide whether

1

n

2 L

A

with probability at least (1=2)P [A] � 1=8.

It is easy to conclude that M decides membership in L

A

with probability 0 for a uni-

formly chosen oracle A. 2

Note: Theorem 3.3 and its Corollary 3.4 isolate the constraints on \quantum parallelism"

imposed by unitary evolution. The rest of the proof of the above theorem is similar in spirit

to standard techniques used to separate BPP from NP relative to a random oracle [3].

For example, these techniques can be used to show that, relative to a random oracle A,

no classical probabilistic machine can recognize L

A

in time o(2

n

). However, quantum ma-

chines can recognize this language quadratically faster, in time O(

p

2

n

), using Grover's

algorithm [13]. This explains why a substantial modi�cation of the standard technique was

required to prove the above theorem.

The next result about NP\ co{NP relative to a random permutation oracle requires a

more subtle argument; ideally we would like to apply Theorem 3.3 after asserting that the

total query magnitude with which A

�1

(1

n

) is probed is small. However, this is precisely

what we are trying to prove in the �rst place.
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Theorem 3.6 For any T (n) which is o(2

n=3

), relative to a random permutation oracle,

with probability 1, BQTime(T (n)) does not contain NP \ co{NP.

Proof. For any permutation oracle A, let L

A

= fy : �rst bit of A

�1

(y) is 1g. Clearly,

this language is contained in (NP \ co{NP)

A

. Let T (n) = o(2

n=3

). We show that for any

bounded-error oracle QTMM

A

running in time at most T (n), with probability 1,M

A

does

not accept the language L

A

. The probability is taken over the choice of a random permu-

tation oracle A. Then, since there are a countable number of QTMs and the intersection

of a countable number of probability 1 events still has probability 1, we conclude that with

probability 1, no bounded error oracle QTM accepts L

A

in time bounded by T (n).

Since T (n) = o(2

n=3

), we can pick n large enough so that T (n) �

2

n=3

100

. We will show

that the probability that M gives the wrong answer on input 1

n

is at least 1=8 for every

way of �xing the oracle answers on inputs of length not equal to n. The probability is taken

over the random choices of the permutation oracle for inputs of length n.

Consider the following method of de�ning random permutations on f0; 1g

n

: let

x

0

; x

1

; : : :x

T+1

be a sequence of strings chosen uniformly at random in f0; 1g

n

. Pick �

0

uniformly at random among permutations such that �(x

0

) = 1

n

. Let �

i

= �

i�1

� � , where

� is the transposition (x

i�1

; x

i

), i.e. �

i

(x

i

) = �

i�1

(x

i�1

) and �

i

(x

i�1

) = �

i�1

(x

i

). Clearly

each �

i

is a random permutation on f0; 1g

n

.

Consider a sequence of permutation oracles A

i

, such that A

i

(y) = A

j

(y) if y =2 f0; 1g

n

and A

i

(y) = �

i

(y) if y 2 f0; 1g

n

. Denote by j�

i

i the time i superposition of M

A

T (n)

on

input 1

n

, and by j�

0

i

i the time i superposition of M

A

T (n)�1

on input 1

n

. By construction,

with probability exactly 1=2, the string 1

n

is a member of exactly one of the two languages

L

A

T (n)

and L

A

T (n)�1

. We will show that E[

�

�

�
j�

T (n)

i � j�

0

T (n)

i

�

�

�
] � 1=50. Here the expectation

16



is taken over the random choice of the oracles. By Markov's bound, P [

�

�

�
j�

T (n)

i � j�

0

T (n)

i

�

�

�
�

2=25] � 3=4. Applying Theorem 3.1 we conclude that if

�

�

�
j�

T (n)

i � j�

0

T (n)

i

�

�

�
� 2=25, then the

acceptance probability of M

A

T (n)

and M

A

T (n)�1

di�er by at most 8=25 < 1=3, and hence

either both machines accept input 1

n

or both reject that input. Therefore M

A

T (n)

and

M

A

T (n)�1

give the same answers on input 1

n

with probability at least 3=4. By construction,

the probability that the string 1

n

belongs to exactly one of the two languages L

A

T (n)

and

L

A

T (n)�1

is equal to P [�rst bit of x

T (n)�1

6= �rst bit of x

T (n)

] = 1=2. Therefore, we can

conclude that with probability at least 1=4, either M

A

T (n)

or M

A

T (n)�1

gives the wrong

answer on input 1

n

. Since each of A

T (n)

and A

T (n)�1

are chosen from the same distribution,

we can conclude that M

A

T (n)

gives the wrong answer on input 1

n

with probability at

least 1=8.

To bound E[

�

�

�
j�

T (n)

i � j�

0

T (n)

i

�

�

�
], we show that j�

T (n)

i and j�

0

T (n)

i are each close to

a certain superposition j 

T (n)

i. To de�ne this superposition, run M on input 1

n

with

a di�erent oracle on each step: on step i, use A

i

to answer the oracle queries. De-

note by j 

i

i, the time i superposition that results. Consider the set of time-string pairs

S = f(i; x

j

) : j � i; 0 � i � Tg. It is easily checked that the oracle queries in the computa-

tion described above and those of M

A

T (n)

and M

A

T (n)+1

di�er only on the set S. We claim

that the expected query magnitude of any pair in the set is at most 1=2

n

, since for j � i,

we may think of x

j

as having been randomly chosen during step j, after the superposition

of oracle queries to be performed has already been written on the oracle tape. Let � be the

sum of the query magnitudes for time-string pairs in S. Then

E[�] � card(S)=2

n

=

 

T (n) + 1

2

!

=2

n

�

T (n)

2

2

n

17



for T (n) � 4. Let " be a random variable such that � = "

2

=2T (n). Then by Theorem 3.3,

�

�

�
j�i � j�

T (n)

i

�

�

�
� " and

�

�

�
j�i � j�

0

T (n)

i

�

�

�
� ". We showed above that

E["

2

=T (n)] = E[�] �

T (n)

2

2

n

:

But E["=

p

2T (n)]

2

� E["

2

=2T (n)]. Therefore

E["] =

q

2T (n)E["=

q

2T (n)] �

q

2T (n)E["

2

=2T (n)] �

s

2T (n)

T (n)

2

2

n

�

r

2

100

3

< 1=100:

Therefore E[

�

�

�
j�i � j�

T (n)

i

�

�

�
] � E["] < 1=100 and E[

�

�

�
j�i � j�

0

T (n)

i

�

�

�
] � E["] < 1=100. It fol-

lows that E[

�

�

�
j�

T (n)

i � j�

0

T (n)

i

�

�

�
] < 1=50.

Finally, it is easy to conclude that M decides membership in L

A

with probability 0 for

a uniformly random permutation oracle A. 2

Note: In view of Grover's algorithm [13], we know that the constant \1=2" in the statement

of Theorem 3.5 cannot be improved. On the other hand, there is no evidence that the

constant \1=3" in the statement of Theorem 3.6 is fundamental. It may well be that

Theorem 3.6 would still hold (albeit not its current proof) with 1=2 substituted for 1=3.

Corollary 3.7 Relative to a random permutation oracle, with probability 1, there exists

a quantum one-way permutation. Given the oracle, this permutation can be computed

e�ciently even with a classical deterministic machine, yet it requires exponential time to

invert even on a quantum machine.

Proof. Given an arbitrary permutation oracle A for which A

�1

can be computed in time

o(2

n=3

) on a quantum Turing machine, it is just as easy to decide L

A

as de�ned in the proof

18



of Theorem 3.6. It follows from that proof that this happens with probability 0 when A is

a uniformly random permutation oracle. 2

4 Using a Bounded-Error QTM as a Subroutine

The notion of a subroutine call or an oracle invocation provides a simple and useful abstrac-

tion in the context of classical computation. Before making this abstraction in the context of

quantum computation, there are some subtle considerations that must be thought through.

For example, if the subroutine computes the function f , we would like to think of an invo-

cation of the subroutine on the string x as magically writing f(x) in some designated spot

(actually xoring it to ensure unitarity). In the context of quantum algorithms, this abstrac-

tion is only valid if the subroutine cleans up all traces of its intermediate calculations, and

leaves just the �nal answer on the tape. This is because if the subroutine is invoked on a

superposition of x's, then di�erent values of x would result in di�erent scratch-work on the

tape, and would prevent these di�erent computational paths from interfering. Since erasing

is not a unitary operation, the scratch-work cannot, in general, be erased post-facto. In the

special case where f can be e�ciently computed deterministically, it is easy to design the

subroutine so that it reversibly erases the scratch-work|simply compute f(x), copy f(x)

into safe storage, and then uncompute f(x) to get rid of the scratch work [2]. However,

in the case that f is computed by a BQP machine, the situation is more complicated.

This is because only some of the computational paths of the machine lead to the correct

answer f(x), and therefore if we copy f(x) into safe storage and then uncompute f(x),

computational paths with di�erent values of f(x) will no longer interfere with each other,

and we will not reverse the �rst phase of the computation. We show, nonetheless, that if

we boost the success probability of the BQP machine before copying f(x) into safe storage
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and uncomputing f(x), then most of the weight of the �nal superposition has a clean tape

with only the input x and the answer f(x). Since such tidy BQP machines can be safely

used as subroutines, this allows us to show that BQP

BQP

= BQP. The result also justi�es

our de�nition of oracle quantum machines.

The correctness of the boosting procedure is proved in Theorems 4.13 and 4.14. The

proof follows the same outline as in the classical case, except that we have to be much

more careful in simple programming constructs such as looping, etc. We therefore borrow

the machinery developed in [4] for this purpose, and present the statements of the relevant

lemmas and theorems in the �rst part of this section. The main new contribution in this

section is in the proofs of Theorems 4.13 and 4.14. The reader may therefore wish to skip

directly ahead to these proofs.

4.1 Some Programming Primitives for QTMs

In this subsection, we present several de�nitions, lemmas and theorems from [4].

Recall that a QTM M is de�ned by a triplet (�; Q; �) where: � is a �nite alphabet with

an identi�ed blank symbol #, Q is a �nite set of states with an identi�ed initial state q

0

and �nal state q

f

6= q

0

, and �, the quantum transition function, is a function

� : Q � � !

~

C

� � Q � fL;Rg

where

~

C is the set of complex numbers whose real and imaginary parts can be approximated

to within 2

�n

in time polynomial in n.
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De�nition 4.1 A �nal con�guration of a QTM is any con�guration in state q

f

. If when

QTM M is run with input x, at time T the superposition contains only �nal con�gurations

and at any time less than T the superposition contains no �nal con�guration, then M halts

with running time T on input x. The superposition of M at time T is called the �nal

superposition of M run on input x. A polynomial-time QTM is a well-formed QTM which

on every input x halts in time polynomial in the length of x.

De�nition 4.2 A QTM M is called well-behaved if it halts on all input strings in a �nal

superposition where each con�guration has the tape head in the same cell. If this cell is

always the start cell, we call the QTM stationary.

We will say that a QTM M is in normal form if all transitions from the distinguished

state q

f

lead to the distinguished state q

0

, the symbol in the scanned cell is left unchanged,

and the head moves right, say. Formally:

De�nition 4.3 A QTM M = (�; Q; �) is in normal form if

8� 2 � �(q

f

; �) = j�ijq

0

ijRi

Theorem 4.4 If f is a function mapping strings to strings which can be computed in

deterministic polynomial time and such that the length of f(x) depends only on the length

of x, then there is a polynomial-time, stationary, normal form QTM which given input x,

produces output x; f(x), and whose running time depends only on the length of x.

If f is a one-to-one function from strings to strings that such that both f and f

�1

can be

computed in deterministic polynomial time, and such that the length of f(x) depends only on
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the length of x, then there is a polynomial-time, stationary, normal form QTM which given

input x, produces output f(x), and whose running time depends only on the length of x.

De�nition 4.5 A multi-track Turing machine with k tracks is a Turing machine whose

alphabet � is of the form �

1

��

2

�� � ���

k

with a special blank symbol # in each �

i

so that

the blank in � is (#; : : : ;#). We specify the input by specifying the string on each \track"

(separated by `;'), and optionally by specifying the alignment of the contents of the tracks.

Lemma 4.6 Given any QTM M = (�; Q; �) and any set �

0

, there is a QTM

M

0

= (�� �

0

; Q; �

0

) such that M

0

behaves exactly as M while leaving its second track un-

changed.

Lemma 4.7 Given any QTMM = (�

1

�� � ���

k

; Q; �) and permutation � : [1; k]! [1; k],

there is a QTM M

0

= (�

�(1)

� � � � � �

�(k)

; Q; �

0

) such that the M

0

behaves exactly as M

except that its tracks are permuted according to �.

Lemma 4.8 If M

1

and M

2

are well-behaved, normal form QTMs with the same alphabet,

then there is a normal form QTM M which carries out the computation of M

1

followed by

the computation of M

2

.

Lemma 4.9 Suppose that M is a well-behaved, normal form QTM. Then there is a normal

form QTM M

0

such that on input x; k with k > 0, the machine M

0

runs M for k iterations

on its �rst track.
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De�nition 4.10 If QTMsM

1

andM

2

have the same alphabet, then we say thatM

2

reverses

the computation of M

1

if the following holds: for any input x on which M

1

halts, let c

x

and

�

x

be the initial con�guration and �nal superposition of M

1

on input x. Then M

2

on input

the superposition �

x

, halts with �nal superposition consisting entirely of con�guration c

x

.

Note that for M

2

to reverse M

1

, the �nal state of M

2

must be equal to the initial state of

M

1

and vice versa.

Lemma 4.11 IfM is a normal form QTM which halts on all inputs, then there is a normal

form QTM M

0

that reverses the computation of M with slowdown by a factor of 5.

Finally, recall the de�nition of the class BQP.

De�nition 4.12 LetM be a stationary, normal form, multi-track QTMM whose last track

has alphabet f#; 0; 1g. We say that M accepts x if it halts with a 1 in the last track of the

start cell. Otherwise we say that M rejects x.

A QTM accepts the language L � (��#)

�

with probability p if M accepts with prob-

ability at least p every string x 2 L and rejects with probability at least p every string

x 2 (� � #)

�

� L. We de�ne the class BQP (bounded-error quantum polynomial time)

as the set of languages which are accepted with probability 2=3 by some polynomial-time

QTM. More generally, we de�ne the class BQTime(T (n)) as the set of languages which

are accepted with probability 2=3 by some QTM whose running time on any input of length

n is bounded by T (n).
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4.2 Boosting and Subroutine Calls

Theorem 4.13 If QTM M accepts language L with probability 2=3 in time T (n) > n,

with T (n) time-constructible, then for any " > 0, there is a QTM M

0

which accepts L with

probability 1� " in time cT (n) where c is polynomial in log 1=" but independent of n.

Proof. Let M be a stationary QTM which accepts the language L in time T (n).

We will build a machine that runs k independent copies of M and then takes the

majority vote of the k answers. On any input x, M will have some �nal superposition

of strings

P

i

�

i

jx

i

i. If we call A the set of i for which x

i

has the correct answer M(x) then

P

i2A

j�

i

j

2

� 2=3. Now running M on separate copies of its input k times will produce

P

i

1

;:::;i

k

�

i

1

� � ��

i

k

jx

i

1

i � � � jx

i

k

i. Then the probability of seeing jx

i

1

i � � � jx

i

k

i such that the

majority have the correct answer M(x) is the sum of j�

i

1

j

2

� � � j�

i

k

j

2

such that the majority

of i

1

; : : : ; i

k

lie in A. But this is just like taking the majority of k independent coin 
ips

each with probability at least 2=3 of heads. Therefore there is some constant b such that

when k = b log 1=", the probability of seeing the correct answer will be at least 1� ".

So, we will build a machine to carry out the following steps.

1. Compute n = T (jxj).

2. Write out k copies of the input x spaced out with 2n blank cells in between, and write

down k and n on other tracks.

3. Loop k times on a machine that runs M and then steps n times to the right.

4. Calculate the majority of the k answers and write it back in the start cell.
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We construct the desired QTM by building a QTM for each of these four steps and then

dovetailing them together.

Since Steps 1, 2, and 4 require easily computable functions whose output length depend

only on k and the length of x, we can carry them out using well-behaved, normal form

QTMs, constructed using Theorem 4.4, whose running times also depend only on k and the

length of x.

So, we complete the proof by constructing a QTM to run the given machine k times.

First, using Theorem 4.4 we can construct a stationary, normal form QTM which drags the

integers k and n one square to the right on its work track. If we add a single step right

to the end of this QTM and apply Lemma 4.9, we can build a well-behaved, normal form

QTM moves which n squares to the right, dragging k and n along with it. Dovetailing this

machine afterM , and then applying Lemma 4.9 gives a normal form QTM that runs M on

each of the k copies of the input. Finally, we can dovetail with a machine to return with k

and n to the start cell by using Lemma 4.9 two more times around a QTM which carries k

and n one step to the left. 2

The extra information on the output tape of a QTM can be erased by copying the desired

output to another track, and then running the reverse of the QTM. If the output is the

same in every con�guration in the �nal superposition, then this reversal will exactly recover

the input. Unfortunately, if the output di�ers in di�erent con�gurations, then saving the

output will prevent these con�gurations from interfering when the machine is reversed, and

the input will not be recovered. We show is the same in most of the �nal superposition,

then the reversal must lead us close to the input.
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Theorem 4.14 If the language L is contained in the class BQTime(T (n)), with T (n) > n

and T (n) time-constructible, then for any " > 0, there is a QTM M

0

which accepts L with

probability 1 � " and has the following property. When run on input x of length n, M

0

runs for time bounded by cT (n), where c is a polynomial in log 1=", and produces a �nal

superposition in which jxijL(x)i, with L(x) = 1 if x 2 L and 0 otherwise, has squared

magnitude at least 1� ".

Proof. Let M = (�; Q; �) be a stationary, normal form QTM which accepts language L in

time bounded by T (n).

According to Theorem 4.13, at the expense of a slowdown by factor which is polynomial

in log 1=" but independent of n, we can assume that M accepts L with probability 1� "=2

on every input.

Then we can construct the desired M

0

by running M , copying the answer to another

track, and then running the reverse of M . The copy is easily accomplished with a simple

two-step machine that steps left and back right while writing the answer on a clean track.

Using Lemma 4.11, we can construct a normal form QTM M

R

which reverses M . Finally,

with appropriate use of Lemmas 4.6 and 4.7, we can construct the desired stationary QTM

M

0

by dovetailing machines M and M

R

around the copying machine.

To see that this M

0

has the desired properties, consider running M

0

on input x of

length n. M

0

will �rst run M on x producing some �nal superposition of con�gurations

P

y

�

y

jyi of M on input x. Then it will write a 0 or 1 in the extra track of the start cell

of each con�guration, and run M

R

on this superposition j�i =

P

y

�

y

jyijb

y

i. If we were

to instead run M

R

on the superposition j�

0

i =

P

y

�

y

jyijM(x)i we would after T (n) steps

have the superposition consisting entirely of the �nal con�guration with output x;M(x).
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Clearly, h�j�

0

i is real, and since M has success probability at least 1�"=2, h�j�

0

i �

p

1� ".

Therefore, since the time evolution ofM

R

is unitary and hence preserves the inner product,

the �nal superposition of M

0

must have an inner product with jxijM(x)i which is real and

at least 1� "=2. Therefore, the squared magnitude in the �nal superposition of M

0

of the

�nal con�guration with output x;M(x) must be at least (1� "=2)

2

� 1� ". 2

Corollary 4.15 BQP

BQP

= BQP.
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