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Abstract

In this paper we study quantum computation from a complexity theoretic viewpoint. Our �rst result

is the existence of an e�cient universal quantumTuringMachine in Deutsch's model of a quantumTuring

Machine [20]. This construction is substantially more complicated than the corresponding construction

for classical Turing Machines - in fact, even simple primitives such as looping, branching and composition

are not straightforward in the context of quantum Turing Machines. We establish how these familiar

primitives can be implemented, and also introduce some new, purely quantum mechanical primitives,

such as changing the computational basis, and carrying out an arbitrary unitary transformation of

polynomially bounded dimension.

We also consider the precision to which the transition amplitudes of a quantum Turing Machine need

to be speci�ed. We prove that O(logT ) bits of precision su�ce to support a T step computation. This

justi�es the claim that that the quantum Turing Machine model should be regarded as a discrete model

of computation and not an analog one.

We give the �rst formal evidence that quantum Turing Machines violate the modern (complexity

theoretic) formulation of the Church-Turing thesis. We show the existence of a problem, relative to

an oracle, that can be solved in polynomial time on a quantum Turing Machine, but requires super-

polynomial time on a bounded-error probabilistic Turing Machine; and thus not in the class BPP .

The class BQP , of languages that are e�ciently decidable (with small error-probability) on a quantum

Turing Machine, satis�es: BPP � BQP � P

]P

. Therefore there is no possibility of giving a math-

ematical proof that quantum Turing Machines are more powerful than classical probabilistic Turing

Machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.

1 Introduction

Just as the theory of computability has its foundations in the Church-Turing thesis, computational com-

plexity theory rests upon a modern strengthening of this thesis, which asserts that any \reasonable" model

of computation can be e�ciently simulated on a probabilistic Turing Machine (an e�cient simulation is

one whose running time is bounded by some polynomial in the running time of the simulated machine).

Here, we take reasonable to mean in principle physically realizable. Some models of computation, though

interesting for other reasons, do not meet this criterion. For example, it is clear that computers that oper-

ate on arbitrary length words in unit time, or that exactly compute with in�nite precision real numbers are

�
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not realizable. It has been argued that the Turing Machine model (actually, the polynomial time equiva-

lent cellular automaton model) is the inevitable choice once we assume that we can implement only �nite

precision computational primitives. Given the widespread belief thatNP 6� BPP , this would seem to put

a wide range of important computational problems (the NP -hard problems) well beyond the capability of

computers.

However, the Turing Machine fails to capture all physically realizable computing devices for a funda-

mental reason: the Turing Machine is based on a classical physics model of the Universe, whereas current

physical theory asserts that the Universe is quantum physical. Can we get inherently new kinds of (discrete)

computing devices based on quantum physics? Early work on the computational possibilities of quantum

physics [6] asked the opposite question: does quantum mechanic's insistence on unitary evolution restrict

the class of e�ciently computable problems? They concluded that as far as deterministic computation is

concerned, the only additional constraint imposed by quantum mechanics is that the computation must be

reversible, and therefore by Bennett's [7] work it follows that quantum computers are at least as powerful as

classical computers. The issue of the extra computational power of quantum mechanics over probabilistic

computers was �rst raised by by Feynman [25] in 1982. In that paper, Feynman pointed out a very curious

problem: the natural simulation of a quantum physical system on a probabilistic Turing Machine requires

an exponential slowdown. Moreover, it is unclear how to carry out the simulation more e�ciently. In

view of Feynman's observation, we must re-examine the foundations of computational complexity theory,

and the complexity-theoretic form of the Church-Turing thesis, and study the computational power of

computing devices based on quantum physics.

A precise model of a quantum physical computer - hereafter referred to as the quantum Turing Machine

- was formulated by Deutsch [20]. There are two ways of thinking about quantum computers. One way

that may appeal to computer scientists is to think of a quantum Turing Machine as a quantum physical

analogue of a probabilistic Turing Machine - it has an in�nite tape and a transition function, and the

actions of the machine are local and completely speci�ed by this transition function. Unlike probabilistic

Turing Machines, quantum Turing Machines allow branching with complex \probability amplitudes", but

impose the further requirement that the machine's evolution be time-reversible. This view is elaborated

in x3.2. Another way is to view a quantum computer as e�ecting a transformation in a space of complex

superpositions of con�gurations. Quantum physics requires that this transformation be unitary. A quan-

tum algorithm may then be regarded as the decomposition of a unitary transformation into a product of

unitary transformations, each of which makes only simple local changes. This view is elaborated in x3.3.

Both formulations play an important role in the study of quantum computation.

One important concern is whether quantum Turing Machines are really analog devices, since they

involve complex transition amplitudes. It is instructive to examine the analogous question for probabilistic

Turing Machines. There, one might worry that probabilistic machines are not discrete, and therefore not

\reasonable", since they allow transition probabilities to be real numbers. However, there is extensive

work showing that probabilistic computation can be carried out in a such a way that it is so insensitive

to the transition probabilities that they can be allowed to vary arbitrarily in a large range [34, 44, 47]. In

this paper, we show in a similar sense, that quantum Turing Machines are discrete devices: the transition

amplitudes need only be accurate to O(logT ) bits of precision to support T steps of computation. As

Lipton [30] pointed out, it is crucial that the number of bits is O(logT ) and not O(T ) (as it was in an

early version of this paper), since k bits of precision requires pinning down the transition amplitude to one

part in 2

k

. Since the transition amplitude is some physical quantity such as the angle of a polarizer or the

length of a � pulse, we must not assume that we can specify it to better than one part in some polynomial

in T , and therefore the precision must be O(logT ).

Another basic question one may ask is whether it is possible to de�ne the notion of a general purpose
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quantum computer. In the classical case, this question is answered a�rmatively by showing that there is

an e�cient universal Turing Machine. In this paper, we prove that there is an e�cient quantum Turing

Machine. When given as input the speci�cation of an arbitrary QTM M , an input x to M , a time bound

T , and an accuracy �, the universal machine produces a superposition whose Euclidean distance from the

time T superposition of M on x is at most �. Moreover, the simulation time is bounded by a polynomial

in T , jxj, and 1=�. Deutsch [20] gave a di�erent construction of a universal quantum Turing Machine.

The simulation overhead in Deutsch's construction is exponential in T (the issue Deutsch was interested

in was computability, not computational complexity). The structure of the e�cient universal quantum

Turing Machine constructed in this paper is very simple. It is just a deterministic Turing Machine with

a single type of quantum operation | a quantum coin 
ip (an operation that performs a rotation on a

single bit). The existence of this simple universal quantum Turing Machine has a bearing on the physical

realizability of quantum Turing Machines in general, since it establishes that it is su�cient to physically

realize a simple quantum operation on a single bit (in addition to maintaining coherence and carrying out

deterministic operations, of course). Adleman, et. al. [1] and Solovay and Yao [40] have further clari�ed

this point by showing that quantum coin 
ips with amplitudes 3=5 and 4=5 are su�cient for universal

quantum computation.

Quantum computation is necessarily time reversible, since quantum physics requires unitary evolution.

This makes it quite complicated to correctly implement even simple primitives such as looping, branching

and composition. These are described in x4.2. In addition, we also require programming primitives, such

as changing the computational basis, which are purely quantum mechanical. These are described in x5.1.

Another important primitive is the ability to carry out any speci�ed unitary transformation of polynomial

dimension to a speci�ed degree of accuracy. In x6 we show how to build a quantum Turing that implements

this primitive. Finally, all these pieces are put together in x7 to construct the universal quantum Turing

Machine.

We can still ask whether the quantum Turing Machine is the most general model for a computing device

based on quantum physics. One approach to arguing a�rmatively is to consider various other reasonable

models, and to show that the quantum Turing Machine can e�ciently simulate each of them. An earlier

version of this work [11] left open the question of whether standard variants of a quantum Turing Machine,

such as machines with multiple tapes or with modi�ed tape access, are more powerful than the basic model.

Yao [46] showed that these models are polynomially equivalent to the basic model, as are quantum circuits

(which were introduced in [21]. The e�ciency of Yao's simulation has been improved in [10] to show that

the simulation overhead is a polynomial with degree independent of the number of tapes. Arguably, the

full computational power of quantum physics for discrete systems is captured by the quantum analog of

a cellular automaton. It is still an open question whether a quantum cellular automaton might be more

powerful than a quantum Turing Machine (there is also an issue about the correct de�nition of a quantum

cellular automaton). The di�culty has to do with decomposing a unitary transformation that represents

many overlapping sites of activity into a product of simple, local unitary transformations. This problem

has been solved in the special case of linearly bounded quantum cellular automata [24, 45].

Finally, several researchers have explored the computational power of quantum Turing Machines. Early

work by Deutsch and Jozsa [22] showed how to exploit some inherently quantum mechanical features

of QTMs. Their results, in conjunction with subsequent results by Berthiaume and Brassard [12, 13],

established the existence of oracles under which there are computational problems that QTMs can solve in

polynomial time with certainty, whereas if we require a classical probabilistic Turing machine to produce

the correct answer with certainty, then it must take exponential time on some inputs. On the other hand,

these computational problems are in BPP | the class of problems that can be solved in polynomial time

by probabilistic Turing machines that are allowed to give the wrong answer with small probability. Since

BPP is widely considered the class of e�ciently computable problems, these results left open the question
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of whether quantum computers are more powerful than classical computers.

In this paper, we give the �rst formal evidence that quantum Turing Machines violate the modern form

of the Church-Turing thesis, by showing that relative to an oracle there is a problem that can be solved in

polynomial time on a quantum Turing Machine, but cannot be solved in n

o(logn)

time on a probabilistic

Turing Machine with any �xed error probability < 1=2. A detailed discussion about the implications of

these oracle results is in the introduction to x8.4. Simon [39] subsequently strengthened our result in the

time parameter by proving the existence of an oracle relative to which a certain problem can be solved

in polynomial time on a quantum Turing Machine, but cannot be solved in less than 2

n=2

steps on a

probabilistic Turing Machine (Simon's problem is in NP \ co{NP and therefore does not address the

non-determinism issue). More importantly, Simon's paper also introduced an important new technique

which was one of the ingredients in a remarkable result proved subsequently by Shor [36]. Shor gave

polynomial time quantum algorithms for the factoring and discrete log problems. These two problems

have been well-studied, and their presumed intractability forms the basis of much of modern cryptography.

These results have injected a greater sense of urgency to the actual implementation of a quantum computer.

The class BQP , of languages that are e�ciently decidable (with small error-probability) on a quantum

Turing Machine, satis�es: BPP � BQP � P

]P

. This rules out the possibility of giving a mathematical

proof that quantum Turing Machines are more powerful than classical probabilistic Turing Machines (in

the unrelativized setting) unless there is a major breakthrough in complexity theory.

It is natural to ask whether quantum Turing Machines can solve every problem in NP in polynomial

time. Bennett, Bernstein, Brassard and Vazirani [9] give evidence showing the limitations of quantum

Turing Machines. They show that relative to an oracle chosen uniformly at random, with probability 1,

the class NP cannot be solved on a quantum Turing Machine in time o(2

n=2

). They also show that relative

to a permutation oracle chosen uniformly at random, with probability 1, the class NP \ co{NP cannot

be solved on a quantum Turing Machine in time o(2

n=3

). The former bound is tight since recent work

of Grover [28] shows how to accept the class NP relative to any oracle on a quantum computer in time

O(2

n=2

).

Several designs have been proposed for realizing quantum computers [17], [23]. A number of authors

have argued that there are fundamental problems in building quantum computers, most notably the e�ects

of the decoherence of quantum superpositions, or the entanglement of the system with the environment.

Very recently, there have been a sequence of important results showing how to implement quantum error-

correcting codes and also use these codes to make quantum algorithms (quite) robust against the e�ects

of decoherence [16] and [38].

Quantum computation touches upon the foundations of both computer science and quantum physics.

The nature of quantum physics was clari�ed by the Einstein-Podolsky-Rosen paradox and Bell's inequalities

(discussed in [25]) which demonstrate the di�erence between its statistical properties and those of any

\classical" model. The computational di�erences between quantum and classical physics are if anything

more striking, and can be expected to o�er new insights into the nature of quantum physics. For example,

one might naively argue that it is impossible to experimentally verify the exponentially large size of

the Hilbert space associated with a discrete quantum system, since any observation leads to a collapse

of its superposition. However, an experiment demonstrating the exponential speedup o�ered by quantum

computation over classical computation would establish that something like the exponentially large Hilbert

space must exist. Finally, it is important, as Feynman pointed out [25], to clarify the computational

overhead required to simulate a quantum mechanical system. The simple form of the universal quantum

Turing Machine constructed here { the fact that it has only a single non-trivial quantum operation de�ned

on a single bit { suggests that even very simple quantum mechanical systems are capable of universal

quantum computation, and are therefore hard to simulate on classical computers.
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This paper is organized as follows. Section 2 introduces some of the mathematical machinery and

notation we will use. In x3 we introduce the quantum Turing Machine as a natural extension of classical

probabilistic Turing Machines. We also show that quantum Turing Machines need not be speci�ed with

an unreasonable amount of precision. In x4 and x5 we demonstrate the basic constructions which will

allow us to build up large, complicated quantum Turing Machines in subsequent sections. Many actions

which are quite easy for classical machines, such as completing a partially speci�ed machine, running one

machine after another, or repeating the operation of a machine a given number of times, will require non-

trivial constructions for quantum Turing Machines. In x6, we show how to build a single quantum Turing

Machine which can carry out any unitary transformation which is provided as input. Then, in x7, we use

this simulation of unitary transformations to build a universal quantum computer. Finally, in x8 we give

our results, both positive and negative, on the power of quantum Turing Machines.

2 Preliminaries

Let C denote the �eld of complex numbers. For � 2 C, we denote by �

�

its complex conjugate.

Let V be a vector space over C. An inner-product over V is a complex function (�; �) de�ned on V �V

which satis�es

1. 8x 2 V; (x; x)� 0. Moreover (x; x) = 0 i� x = 0.

2. 8x; y; z 2 V; (�x+ �y; z) = �(x; z) + �(y; z).

3. 8x; y 2 V; (x; y) = (y; x)

�

.

The inner-product yields a norm given by kxk = (x; x)

1=2

. In addition to the triangle inequality

kx+ yk � kxk+ kyk, the norm also satis�es the Schwarz inequality k(x; y)k � kxkkyk.

An inner-product space is a vector space V together with an inner-product (�; �).

An inner-product space H over C is a Hilbert space if it is complete under the induced norm; where

H is complete if every Cauchy sequence converges. i.e. if fx

n

g is a sequence with x

n

2 H, such that

lim

n;m!1

kx

n

� x

m

k = 0, then there is an x in H with lim

n!1

kx

n

� xk = 0.

Given any inner-product space V , each vector x 2 V de�nes a linear functional x

�

: V ! C where

x

�

(y) = (x; y). The set of such linear functionals is also an inner-product space, and will be referred to as

the vector-dual of V and denoted V

�

. In the case that V is a Hilbert space, V

�

is called the dual of V , and

is the set of all continuous linear functionals on V , and the dual space V

�

is also a Hilbert space.

In Dirac's notation, a vector from an inner-product space V is identi�ed using the \ket" notation j i,

with some symbol(s) placed inside to distinguish that vector from all others. We denote elements of the

dual space using the \bra" notation h j. Thus the dual of j�i is h�j, and the inner product of vectors j i

and j�i which is the same as the result of applying functional h j to the vector j�i, is denoted by h j�i.

Let U be a linear operator on V . In Dirac's notation, we denote the result of applying U to j�i as

U j�i. U also acts as a linear operator on the dual space V

�

mapping each linear functional h�j of the dual

space to the linear functional which applies U followed by h�j. We denote the result of applying U to h�j

by h�jU .

For any inner-product space V , we can consider the usual vector space basis or Hamel basis: fj�

i

ig

i2I

.

Every vector j�i 2 V can be expressed as a �nite linear combination of basis vectors. In the case that

k�

i

k = 1 and (h�

i

j; j�

j

i) = 0 for i 6= j, we refer to the basis as an orthonormal basis. With respect to an
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orthonormal basis, we can write each vector j�i 2 V as j�i =

P

i2I

�

i

j�

i

i, where �

i

= h�

i

j�i. Similarly

each dual vector h�j 2 V

�

can be written as as h�j =

P

i2I

�

i

h�

i

j, where �

i

= h�j�

i

i. Thus each element

j�i 2 V can be thought of as a column vector of the �

i

's, and each element h�j 2 V can be thought of

as a row vector of the �

i

's. Similarly each linear operator U may be represented by the set of matrix

elements fh�

i

jU j�

j

ig

i;j2I

, arranged in a \square" matrix with rows and columns both indexed by I . Then,

the \column" of U with index i is the vector U j�

i

i and the \row" of U with index i is the dual vector

h�

i

jU .

For a Hilbert space H, fj�

i

ig

i2I

is a Hilbert space basis for H if it is a maximal set of orthonormal

vectors in H. Every vector j�i 2 H can be expressed as the limit of a sequence of vectors, each of which

can be expressed as a �nite linear combination of basis vectors.

Given a linear operator U in an inner product space, if there is a linear operator U

�

which satis�es

hU

�

�j i = h�jU i for all �;  , then U

�

is called the adjoint or Hermitian conjugate of U . If a linear

operator in an inner product space has an adjoint, it is unique. The adjoint of a linear operator in a

Hilbert space or in a �nite dimensional inner product space always exists. It is easy to see that if the

adjoints of U

1

and U

2

exist then (U

1

+ U

2

)

�

= U

�

1

+ U

�

2

and (U

1

U

2

)

�

= U

�

2

U

�

1

. An operator U is called

Hermitian or self-adjoint if it is its own adjoint (U

�

= U). The linear operator U is called unitary if its

adjoint exists and satis�es U

�

U = UU

�

= I .

If we represent linear operators as \square" matrices indexed over an orthonormal basis, then U

�

is

represented by the conjugate transpose of U . So, in Dirac's notation we have the convenient identity

h�jU

�

j i = (h jU j�i)

�

.

Recall that if the inner-product space V is the tensor product of two inner-product spaces V

1

; V

2

, then

for each pair of vectors j�

1

i 2 V

1

; j�

2

i 2 V

2

there is an associated tensor product j�

1

i 
 j�

2

i in V . In

Dirac's notation, we denote j�

1

i 
 j�

2

i as j�

1

ij�

2

i.

The norm of U is de�ned as kUk = sup

kjxik=1

kU jxik. A linear operator is called bounded if kUk is

�nite. We will freely use the following standard facts about bounded linear operators:

If U

�

exists then kU

�

k = kUk (1)

kU

1

U

2

k � kU

1

kkU

2

k (2)

kU

1

k � kU

2

k � kU

1

+ U

2

k � kU

1

k+ kU

2

k (3)

Notice that a unitary operator U must satisfy kUk = 1. We will often use the following fact which

tells us that if we approximate a series of unitary transformations with other unitary transformations, the

error increases only additively.

Fact 2.0.1 If U

1

; U

0

1

; U

2

; U

0

2

are unitary transformations on an inner-product space then

kU

0

1

U

0

2

� U

1

U

2

k � kU

0

1

� U

1

k+ kU

0

2

� U

2

k

This fact follows from Statements 3 and 2 above, since

kU

0

1

U

0

2

� U

1

U

2

k � kU

0

1

U

0

2

� U

1

U

0

2

k + kU

1

U

0

2

� U

1

U

2

k

� kU

0

1

� U

1

kkU

0

2

k + kU

1

kkU

0

2

� U

2

k

2.1 Miscellaneous notation

If d is a direction 2 fL;Rg, then

�

d is the opposite of d.
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Given two probability distributions P

1

and P

2

over the same domain I , the total variation distance

between P

1

and P

2

is equal to

1

2

P

i2I

jP

1

(i)� P

2

(i)j.

We will refer to the cardinality of a set S as card(S) and the length of a string x as jxj.

3 Quantum Turing Machines

3.1 A physics-like view of randomized computation

Before we formally de�ne a quantum Turing Machine (QTM), we introduce the necessary terminology in

the familiar setting of probabilistic computation. As a bonus, we will be able to precisely locate the point

of departure in the de�nition of a QTM.

Quantum mechanics makes a distinction between a system's evolution and its measurement. In the

absence of measurement, the time evolution of a probabilistic TM can be described by a sequence of

probability distributions. The distribution at each step gives the likelihood of each possible con�guration

of the machine. We can also think of the probabilistic TM as specifying an in�nite dimensional stochastic

matrix

1

M whose rows and columns are indexed by con�gurations. Each column of this matrix gives

the distribution resulting from the corresponding con�guration after a single step of the machine. If we

represent the probability distribution at one time step by a vector jvi, then the distribution at the next

step is given by the product M jvi. In quantum physics terminology, we call the distribution at each step a

\linear superposition" of con�gurations, and we call the coe�cient of each con�guration (its probability)

its \amplitude." The stochastic matrix is referred to as the \time evolution operator".

Three comments are in order. First, not every stochastic matrix has an associated probabilistic TM.

Stochastic matrices obtained from probabilistic TM are �nitely speci�ed and map each con�guration by

making only local changes to it. Second, the support of the superposition can be exponential in the run-

ning time of the machine. Third, we need to constrain the entries allowed in the transition function of our

probabilistic TM. Otherwise, it is possible to smuggle hard to compute quantities into the transition ampli-

tudes, for instance by letting the i

th

bit indicate whether the ith deterministic TM halts on a blank tape.

A common restriction is to allow amplitudes only from the set f0;

1

2

; 1g. More generally, we might allow

any real number in the interval [0; 1] which can be computed by some deterministic algorithm to within

any desired 2

�n

in time polynomial in n. It is easily shown that the �rst possibility is computationally no

more restrictive than the second.

Returning to the evolution of the probabilistic TM, when we observe the machine after some number

of steps, we do not see the linear superposition (probability distribution), but just a sample from it.

If we \observe" the entire machine, then we see a con�guration sampled at random according to the

superposition. The same holds if we observe just a part of the machine. In this case, the superposition

\collapses" to one that corresponds to the probability distribution conditioned on the value observed. By

the linearity of the law of alternatives

2

, the mere act of making observations at times earlier than t does

not change the probability for each outcome in an observation at time t. So, even though the unobserved

superposition may have support that grows exponentially with running time, we need only keep track of

a constant amount of information when simulating a probabilistic TM which is observed at each step.

The computational possibilities of quantum physics arise out of the fact that observing a quantum system

changes its later behavior.

1

Recall that a matrix is stochastic if it has non-negative real entries that sum to 1 in each column.

2

The law of alternatives says exactly that the probability of an event A doesn't change if we �rst check to see whether

event B has happened, P (A) = P (AjB)P (B) + P (AjB)P (B)
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3.2 De�ning a QTM

Our model of randomized computation is already surprisingly close to Deutsch's model of a QTM. The

major change that is required is that in quantum physics, the amplitudes in a system's linear superposition

and the matrix elements in a system's time evolution operator are allowed to be complex numbers rather

than just positive reals. When an observation is made, the probability associated with each con�guration is

not the con�guration's amplitude in the superposition, but rather the squared magnitude of its amplitude.

So instead of always having a linear superposition whose entries sum to 1, we will now always have a linear

superposition whose Euclidean length is 1. This means that QTMs must be de�ned so that their time

evolution preserves the Euclidean length of superpositions.

Making these changes to our model, we arrive at the following de�nitions.

For completeness, let us recall the de�nition of a deterministic TM. There are many standard variations

to the de�nition of deterministic TM, none of which a�ect their computational power. In this paper we will

make our choices consistent with those in Deutsch's paper [20]: we consider TMs with a two-way in�nite

tape and a single tape head which must move left or right one square on each step. We also give standard

de�nitions for interpreting the input, output, and running time of a deterministic TM. Note that although

we usually restrict our discussion to TMs with tape head movements fL;Rg, we will sometimes consider

generalized TMs with tape head movements fL;N;Rg (where N means no head movement).

De�nition 3.2.1 A deterministic Turing Machine is de�ned by a triplet (�; Q; �) where: � is a �nite

alphabet with an identi�ed blank symbol #, Q is a �nite set of states with an identi�ed initial state q

0

and

�nal state q

f

6= q

0

, and �, the deterministic transition function, is a function

� : Q � � ! � � Q � fL;Rg

The TM has a two-way in�nite tape of cells indexed by Z and a single read/write tape head that moves

along the tape.

A con�guration or instantaneous description of the TM is a complete description of the the contents of

the tape, the location of the tape head, and the state q 2 Q of the �nite control. At any time only a �nite

number of tape cells may contain non-blank symbols.

For any con�guration c of TM M , the successor con�guration c

0

is de�ned by applying the transition

function to the current state q and currently scanned symbol � in the obvious way. We write c !

M

c

0

to

denote that c

0

follows from c in one step.

By convention, we require the initial con�guration of M to be satisfy the following conditions: the tape

head is in cell 0, called the start cell, and the machine is in state q

0

. An initial con�guration has input

x 2 (��#)

�

if x is written on the tape in positions 0; 1; 2; : : : and all other tape cells are blank. The TM

halts on input x if it eventually enters the �nal state q

f

. The number of steps a TM takes to halt on input

x is its running time on input x. If a TM halts then its output is the string in �

�

consisting of those tape

contents from the leftmost non-blank symbol to the rightmost non-blank symbol, or the empty string if the

entire tape is blank. A TM which halts on all inputs therefore computes a function from (��#)

�

to �

�

.

We now give a slightly modi�ed version of the de�nition of a QTM provided by Deutsch [20]. As in

the case of probabilistic TM, we must limit the transition amplitudes to e�ciently computable numbers.

Adleman, et. al. [1] and Solovay and Yao [40] have separately shown that further restricting QTMs to

rational amplitudes does not reduce their computational power. In fact, they have shown that the set

of amplitudes f0;�

3

5

;�

4

5

; 1g are su�cient to construct a universal QTM. We give a de�nition of the

computation of a QTM with a particular string as input, but we defer discussing what it means for a QTM

8



to halt or give output until x3.5. Again, we will usually restrict our discussion to QTMs with tape head

movements fL;Rg, but will sometimes consider \generalized" QTMs with tape head movements fL;N;Rg.

As we pointed out in the introduction, unlike in the case of deterministic TMs, these choices do make a

greater di�erence in the case of QTMs. This point is also discussed later in the paper.

De�nition 3.2.2 Call

~

C the set consisting of � 2 C such that there is a deterministic algorithm that

computes the real and imaginary parts of � to within 2

�n

in time polynomial in n.

A quantum Turing Machine (QTM) M is de�ned by a triplet (�; Q; �) where: � is a �nite alphabet

with an identi�ed blank symbol #, Q is a �nite set of states with an identi�ed initial state q

0

and �nal

state q

f

6= q

0

, and �, the quantum transition function, is a function

� : Q � � !

~

C

� � Q � fL;Rg

The QTM has a two-way in�nite tape of cells indexed by Z and a single read/write tape head that moves

along the tape. We de�ne con�gurations, initial con�gurations, and �nal con�gurations exactly as for

deterministic TMs.

Let S be the inner-product space of �nite complex linear combinations of con�gurations of M with the

Euclidean norm. We call each element � 2 S a superposition of M . The QTMM de�nes a linear operator

U

M

: S ! S, called the time evolution operator ofM as follows: IfM starts in con�guration c with current

state p and scanned symbol �. Then after one stepM will be in superposition of con�gurations  =

P

i

�

i

c

i

,

where each non-zero �

i

corresponds to a transition �(p; �; �; q; d), and c

i

is the new con�guration that results

from applying this transition to c. Extending this map to the entire space S through linearity gives the

linear time evolution operator U

M

.

Note that we de�ned S by giving an orthonormal basis for it: namely the con�gurations ofM . In terms

of this standard basis, each superposition  2 S may be represented as a vector of complex numbers indexed

by con�gurations. The time evolution operator U

M

may be represented by the (countable dimensional)

\square" matrix with columns and rows indexed by con�gurations where the matrix element from column

c and row c

0

gives the amplitude with which con�guration c leads to con�guration c

0

in a single step ofM .

For convenience, we will overload notation and use the expression �(p; �; �; q; d) to denote the amplitude

in �(p; �) of j�ijqijdi.

The next de�nition provides an extremely important condition that QTMs must satisfy to be consistent

with quantum physics. We have introduced this condition in the form stated below for expository purposes.

As we shall see later (in x3.3), there are other equivalent formulations of this condition that are more familiar

to quantum physics.

De�nition 3.2.3 We will say that M is well-formed if the its time evolution operator U

M

preserves

Euclidean length.

Well-formedness is a necessary condition for a QTM to be consistent with quantum physics. As we shall

see in the next subsection, well-formedness is equivalent to unitary time evolution, which is a fundamental

requirement of quantum physics.

Next, we de�ne the rules for observing the QTM M . For those familiar with quantum mechanics, we

should state that the de�nition below restricts the measurements to be in the computational basis of S.

This is because the actual basis in which the measurement is performed must be e�ciently computable,

and therefore we may, without loss of generality, perform the rotation to that basis during the computation

itself.

9



De�nition 3.2.4 When QTM M in superposition  =

P

i

�

i

c

i

is observed or measured, con�guration c

i

is seen with probability j�j

2

. Moreover, the superposition of M is updated to  

0

= c

i

.

We may also perform a partial measurement, say only on the �rst cell of the tape. In this case, sup-

pose that the �rst cell may contain the values 0 or 1, and suppose the superposition was  =

P

i

�0

i

c0

i

+

P

i

�1

i

c1

i

, where the c0

i

are those con�gurations that have a 0 in the �rst cell, and c1

i

are those con�g-

urations that have a 1 in the �rst cell. Measuring the �rst cell results in Pr[0] =

P

i

j�0

i

j

2

. Moreover,

if a 0 is observed, the new superposition is given by

1

p

Pr[0]

P

i

�0

i

c0

i

. i.e. the part of the superposition

consistent with the answer, with amplitudes scaled to give a unit vector.

Note that the well-formedness condition on a QTM simply says that the the time evolution operator

of a QTM must satisfy the condition that in each successive superposition, the sum of the probabilities of

all possible con�gurations must be 1.

Notice that a QTM di�ers from a classical TM in that the \user" has decisions beyond just choosing an

input. A priori it is not clear whether multiple observations might increase the power of QTMs This point

is discussed in more detail in [10], and there it is shown that one may assume without loss of generality

that the QTM is only observed once. Therefore, in this paper, we shall make simplifying assumptions

about the measurement of the �nal result of the QTM. The fact that these assumptions do not result in

any loss of generality follows from the results in [10].

In general, the \output" of a QTM is a sample from a probability distribution. We can regard two

QTMs as functionally equivalent, for practical purposes, if their output distributions are su�ciently close

to each other. A formal de�nition of what it means for one QTM to simulate another is also given in [10].

As in the case of classical TMs, the formal de�nition is quite unwieldy. In the actual constructions, it will

be easy to see in what sense they are simulations. Therefore we will not replicate the formal de�nitions

from [10] here. We give a more informal de�nition below:

De�nition 3.2.5 We say that QTM M

0

simulates M with slowdown f with accuracy �, if the following

holds: let D be a distribution such that observing M on input x after T steps produces a sample from D.

let D

0

be a distribution such that observing M

0

on input x after f(T ) steps produces a sample from D

0

.

Then we say that M

0

simulates M with accuracy � if jD � D

0

j � �.

We will sometimes �nd it convenient to measure the accuracy of a simulation by calculating the Eu-

clidean distance between the target superposition and the superposition achieved by the simulation. The

following shows that the variation distance between the resulting distributions is at most 4 times this

Euclidean distance.

Lemma 3.2.6 Let �;  2 S such that k�k = k k = 1, and k��  k � �. Then the total variation distance

between the probability distributions resulting from measurements of � and  is at most 4�.

Proof. Let � =

P

i

�

i

jii and  =

P

i

�

i

jii. Observing � gives each jii with probability j�

i

j

2

, while

observing  gives each jii with probability j�

i

j

2

. Let � = � �  =

P

i

(�

i

� �

i

)jii. Then the latter

probability, j�

i

j

2

, can be expressed as:

�

i

�

�

i

= (�

i

+ 


i

)(�

i

+ 


i

)

�

= j�

i

j

2

+ j


i

j

2

+ �

i




�

i

+ 


i

�

�

i

Therefore, the total variation distance between these two distributions is at most

X

i

k


i

k

2

+ j�

i




�

i

j+ j


i

�

�

i

j �

X

i

j


i

j

2

+ h
jj�i+ h�jj
i � �

2

+ 2k�kk
k � �

2

+ 2�

Finally, note that since we have unit superpositions, we must have � � 2. 2
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3.3 Quantum computing as a unitary transformation

In the preceding sections, we introduced QTMs as an extension of the notion of probabilistic TMs. We

stated there that a QTM is well-formed if it preserves the norm of the superpositions. In this section, we

explore a di�erent, and extremely useful, alternative view of QTMs: in terms of properties of the time

evolution operator. We prove that a QTM is well-formed i� its time evolution is unitary. Indeed unitary

time evolution is a fundamental constraint imposed by quantum mechanics, and we chose to state the

well-formedness condition in the last section mainly for expository purposes.

Understanding unitary evolution from an intuitive point of view is quite important to comprehending

the computational possibilities of quantum mechanics. Let us explore this in the setting of a quantum

mechanical system that consists of n parts each of which can be in one of two states, labeled j0i and j1i

(these could be n particles, each with a spin state). If this were a classical system, then at any given instant

it would be in a single con�guration which could be described by n bits. However, in quantum physics, the

system is allowed to be in a linear superposition of con�gurations, and indeed the instantaneous state of

the system is described by a unit vector in the 2

n

dimensional vector space, whose basis vectors correspond

to all the 2

n

con�gurations. Therefore to describe the instantaneous state of the system, we must specify

2

n

complex numbers. The implications of this are quite extraordinary: even for a small system consisting

of 200 particles, nature must keep track of 2

200

complex numbers just to `remember' its instantaneous

state. Moreover, it must update these numbers at each instant to evolve the system in time. This is an

extravagant amount of e�ort, since 2

200

is larger than the standard estimates on the number of particles in

the visible universe. So if nature puts in such extravagant amounts of e�ort to evolve even a tiny system

at the level of quantum mechanics, it would make sense that we should design our computers to take

advantage of this.

However, unitary evolution and the rules for measurement in quantum mechanics place signi�cant

constraints on how these features can be exploited for computational purposes. One of the basic primitives

that allows these features to be exploited while respecting the unitarity constraints is the discrete fourier

transform | this is described in more detail in x8.4. Here we consider some very simple cases: One

interesting phenomenon supported by unitary evolution is the interference of computational paths. In

a probabilistic computation the probability of moving from one con�guration to another is the sum of

the probabilities of each possible path from the former to the latter. The same is true of the probability

amplitudes in quantum computation, but not necessarily of the probabilities of observations. Consider for

example applying the transformation U =

 

1

p

2

1

p

2

1

p

2

�

1

p

2

!

twice in sequence to the same tape cell which

at �rst contains the symbol 0. If we observe the cell after the �rst application of U , we see either symbol

with probability 1=2. If we then observe after applying U a second time, the symbols are again equally

likely. However, since U

2

is the identity, if we only observe at the end, we see a 0 with probability 1.

So, even though there are two computational paths that lead from the initial 0 to a �nal symbol 1, they

interfere destructively cancelling each other out. The two paths leading to a 0 interfere constructively so

that even though both have probability 1=4 when we observe twice we have probability 1 of reaching 0 if

we observe only once. Such a boosting of probabilities, by an exponential factor, lies at the heart of the

QTM's advantage over a probabilistic TM in solving the Fourier sampling problem.

Another constraint inherent in computation using unitary transformations is reversibility. We show in

x4.2 that for any QTM M there is a corresponding QTM M

R

, whose time evolution operator is the con-

jugate transpose of the time evolution operator of M , and therefore undoes the actions of M . Sections 3.5

and 4.1 are devoted to de�ning the machinery to deal with this feature of QTMs.

We prove below in Appendix A that a QTM is well-formed if and only if its time evolution operator
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is unitary. This establishes that our de�nition (which did not mention unitary evolution for expository

purposes) does satisfy the fundamental constraint imposed by quantum mechanics | unitary evolution.

Actually one could still ask why this is consistent with quantum mechanics, since the space S of �nite

linear combinations of con�gurations is not a Hilbert space since it is not complete. To see that this

doesn't present a problem, notice that S is a dense subset of the Hilbert space H of all (not just �nite)

linear combinations of con�gurations. Moreover, any unitary operator U on S has a unique extension

^

U

to H; and

^

U is unitary and its inverse is

^

U

�

. The proof is quite simple. Let

^

U and

^

U

�

be the continuous

extensions of U and U

�

to H. Let x; y 2 H. Then there are sequences fx

n

g; fy

n

g 2 S such that x

n

! x

and y

n

! y. Moreover, for all n, (Ux

n

; y

n

) = (x

n

; U

�

y

n

). Taking limits, we get that (

^

Ux; y) = (x;

^

U

�

y),

as desired.

As an aside, we should brie
y mention that another resolution of this issue is achieved by following

Feynman [26], who suggested that if we use a quantum mechanical system with Hamiltonian U +U

�

, then

the resulting system has a local, time invariant Hamiltonian. It is easy to probabilistically recover the

computation of the original system from the computation of the new one.

It is interesting to note that the following theorem would not be true if we de�ned QTMs using a

one-way in�nite tape. In that case, the trivial QTM which always moves its tape head right would be

well-formed, but its time evolution would not be unitary since it's start con�guration could not be reached

from any other con�guration.

Theorem A.0.12 A QTM is well-formed i� its time evolution operator is unitary.

3.4 Precision required in a QTM

One important concern is whether QTMs are really analog devices, since they involve complex transition

amplitudes. The issue here is how accurately these transition amplitudes must be speci�ed to ensure that

the correctness of the computation is not compromised. In an earlier version of this paper, we showed that

T

O(1)

bits of precision are su�cient to correctly carry out T steps of computation to within accuracy � for

any constant �. Lipton [30] pointed out that for the device to be regarded as a discrete device, we must

require that its transition amplitudes be speci�ed to at most one part in T

O(1)

(as opposed to accurate to

within T

O(1)

bits of precision). This is because the transition amplitude represents some physical quantity

such as the angle of a polarizer or the length of a � pulse, and we must not assume that we can specify

it to better than one part in some polynomial in T , and therefore the number of bits of precision must be

O(logT ). This is exactly what we proved shortly after Lipton's observation, and we present that proof in

this section.

The next theorem shows that because of the unitary time evolution errors in the superposition made

over a sequence of steps will, in the worst case, only add.

Theorem 3.4.1 Let U be the time evolution operator of a QTM M and T > 0. If j�

0

i; j

~

�

0

i; : : : ; j�

T

i; j

~

�

T

i

are superpositions of U such that

kj�

i

i � j

~

�

i

ik � �

j�

i

i = U j

~

�

i�1

i

then kj

~

�

T

i � U

T

j�

0

ik � T�.

Proof. Let j 

i

i = j

~

�

i

i � j�

i

i. Then we have

j

~

�

T

i = U

T

j�

0

i+ U

T

j 

0

i+ U

T�1

j 

1

i+ � � �+ j 

T

i
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The theorem follows by the triangle inequality since U is unitary and kj 

i

ik � �. 2

De�nition 3.4.2 We say that QTMs M and M

0

are �-close if they have the same state set and alphabet

and if the di�erence between each pair of corresponding transition amplitudes has magnitude at most �.

Note that M and M

0

can be �-close even if one or both are not well-formed.

The following theorem shows that two QTMs which are close in the above sense give rise to time

evolution operators which are close to each other, even if the QTMs are not well-formed. As a simple

consequence, the time evolution operator of a QTM is always bounded, even if the QTM is not well-

formed.

Theorem 3.4.3 If QTMs M and M

0

with alphabet � and state set Q are �-close, then the di�erence in

their time evolutions has norm at most 2 card(�) card(Q)�. Moreover, this statement holds even if one or

both of the machines are not well-formed.

Proof. Let QTMs M and M

0

with alphabet � and state set Q be given which are �-close. Let U be the

time evolution of M , and let U

0

be the time evolution of M

0

.

Now, consider any unit length superposition of con�gurations j�i =

P

j

�

j

jc

j

i. Then we can express

the di�erence in the machines' operation on j�i as follows.

U j�i � U

0

j�i =

X

j

0

@

X

i2P (j)

(�

i;j

� �

0

i;j

)�

i

1

A

jc

j

i

where P (j) is the set of i such that con�guration c

i

can lead to c

j

in a single step of M or M

0

, and where

�

i;j

and �

0

i;j

are the amplitudes with which c

i

leads to c

j

in M and M

0

.

Applying the triangle inequality and the fact that the square of the sum of n reals is at most n times

the sum of their squares, we have

kU j�i � U

0

j�ik

2

=

P

j

�

�

�

P

i2P (j)

(�

i;j

� �

0

i;j

)�

i

�

�

�

2

�

P

j

2 card(�) card(Q)

P

i2P (j)

�

�

�
(�

i;j

� �

0

i;j

)�

i

�

�

�

2

Then since M and M

0

are �-close, we have

P

j

2 card(�) card(Q)

P

i2P (j)

�

�

�
(�

i;j

� �

0

i;j

)�

i

�

�

�

2

= 2 card(�) card(Q)

P

j

P

i2P (j)

�

�

�
�

i;j

� �

0

i;j

�

�

�

2

j�

i

j

2

� 2 card(�) card(Q)�

2

P

j

P

i2P (j)

j�

i

j

2

Finally since for any con�guration c

j

, there are at most 2 card(�) card(Q) con�gurations that can lead

to c

j

in a single step, we have

2 card(�) card(Q)�

2

P

j

P

i2P (j)

j�

i

j

2

� 4 card(�)

2

card(Q)

2

�

2

P

i

j�

i

j

2

= 4 card(�)

2

card(Q)

2

�

2

Therefore, for any unit length superposition j�i

k(U � U

0

)j�ik � 2 card(�) card(Q)�
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2

The following corollary shows that O(logT ) bits of precision are su�cient in the transition amplitudes

to simulate T steps of a QTM to within accuracy � for any constant �.

Corollary 3.4.4 LetM = (�; Q; �) be a well-formed QTM. and letM

0

be a QTM which is

�

24 card(�) card(Q)T

-

close to M , where � > 0. Then M

0

simulates M for time T with accuracy �. Moreover, this statment holds

even if M

0

is not well-formed.

Proof. Let b =

1

24 card(�) card(Q)T

. Without loss of generality, we further assume � < 1=2.

Consider running M and M

0

with the same initial superposition. Since M is well-formed, by Theo-

rem A.0.12, its time evolution operator U is unitary. By Theorem 3.4.3 on page 13 the time evolution

operator of M

0

, U

0

, is within � =

�

12T

of U .

Applying U

0

can always be expressed as applying U and then adding a perturbation of length at most

� times the length of the current superposition. So, the length of the superposition of U

0

at time t is at

most (1 + �)

t

. Since � � 1=T , this length is at most e. Therefore, appealing to Theorem 3.4.1 above, the

di�erence between the superpositions ofM and M

0

at time T is a superposition of norm at most 3�T �

�

4

.

Finally, Lemma 3.2.6 on page 10 tells us that observing M

0

at time T gives a sample from a distribution

which is within total variation distance � of the distributions sampled from by observing M at time T .

2

3.5 Input/output conventions for QTMs

Timing is of crucial importance to the operation of a QTM, because computational paths can only interfere

if they take the same number of time steps. Equally important are the position of the tape head and

alignment of the tape contents. In this subsection, we introduce several input/output conventions on

QTMs and deterministic TMs which will help us maintain these relationships while manipulating and

combining machines.

We would like to think of our QTMs as �nishing their computation when they reach the �nal state

q

f

. However, it is unclear how we should regard a machine which reaches a superposition in which some

con�gurations are in state q

f

but others are not. We try to avoid such di�culties by saying that a QTM

halts on a particular input if it reaches a superposition consisting entirely of con�gurations in state q

f

.

De�nition 3.5.1 A �nal con�guration of a QTM is any con�guration in state q

f

. If when QTM M is

run with input x, at time T the superposition contains only �nal con�gurations and at any time less than

T the superposition contains no �nal con�guration, then M halts with running time T on input x. The

superposition of M at time T is called the �nal superposition of M run on input x. A polynomial-time

QTM is a well-formed QTM which on every input x halts in time polynomial in the length of x.

We would like to de�ne the output of a QTM which halts as the superposition of the tape contents of

the con�gurations in the machine's �nal superposition. However, we must be careful to note the position of

the tape head and the alignment relative to the start cell in each con�guration since these details determine

whether later paths interfere. Recall that the output string of a �nal con�guration of a TM is its tape

contents from the leftmost non-blank symbol to the rightmost non-blank symbol. This means that giving
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an output string leaves unspeci�ed the alignment of this string on the tape and the location of the tape

head to be identi�ed. When describing the input/output behavior of a QTM we will sometimes describe

this additional information. When we do not, the additional information will be clear from context. For

example, we will often build machines in which all �nal con�gurations have the output string beginning in

the start cell with the tape head scanning its �rst symbol.

De�nition 3.5.2 A QTM is called well-behaved if it halts on all input strings in a �nal superposition

where each con�guration has the tape head in the same cell. If this cell is always the start cell, we call the

machine stationary. Similarly, a deterministic TM is called stationary if it halts on all inputs with its tape

head back in the start cell.

To simplify our constructions, we will often build QTMs and then combine them in simple ways, like

running one after the other or iterating one a varying number of times. To do so we must be able to add

new transitions into the initial state q

0

of a machine. However, since there may already be transitions

into q

0

, the resulting machine may not be reversible. But, we can certainly redirect the transitions out

of the �nal state q

f

of a reversible TM or a well-behaved QTM without a�ecting its behavior. Note that

for a well-formed QTM, if q

f

always leads back to q

0

, then there can be no more transitions into q

0

. In

that case, redirecting the transitions out of q

f

will allow us to add new ones into q

0

without violating

reversibility. We will say that a machine with this property is in normal form. Note that a well-behaved

QTM in normal form always halts before using any transition out of q

f

and therefore also before using

any transition into q

0

. This means that altering these transitions will not alter the relevant part of the

machine's computation. For simplicity, we arbitrarily de�ne normal form QTMs to step right and leave

the tape unchanged as they go from state q

f

to q

0

.

De�nition 3.5.3 A QTM or deterministic TM M = (�; Q; �) is in normal form if

8� 2 � �(q

f

; �) = j�ijq

0

ijRi

We will need to consider QTMs with the special property that any particular state can be entered while

the machine's tape head steps in only one direction. Though not all QTMs are \unidirectional", we will

show that any QTM can be e�ciently simulated by one that is. Unidirectionality will be a critical concept

in reversing a QTM, in completing a partially described QTM, and in building our universal QTM. We

further describe the advantages of unidirectional machines after Theorem 5.2.2 in x5.2.

De�nition 3.5.4 A QTM M = (�; Q; �) is called unidirectional if each state can be entered from only

one direction: In other words, if �(p

1

; �

1

; �

1

; q; d

1

) and �(p

2

; �

2

; �

2

; q; d

2

) are both non-zero, then d

1

= d

2

.

Finally, we will �nd it convenient to use the common tool of thinking of the tape of a QTM or

deterministic TM as consisting of several tracks.

De�nition 3.5.5 A multi-track TM with k tracks is a TM whose alphabet � is of the form �

1

��

2

�� � ���

k

with a special blank symbol # in each �

i

so that the blank in � is (#; : : : ;#). We specify the input by

specifying the string on each \track", and optionally by specifying the alignment of the contents of the

tracks. So, a TM run on input x

1

; x

2

; : : : ; x

k

2 �

k

i=1

(�

i

�#)

�

is started in the (superposition consisting

only of the) initial con�guration with the non-blank portion of the i

th

coordinate of the tape containing

the string x

i

starting in the start cell. More generally, on input x

1

jy

1

; x

2

jy

1

; : : : ; x

k

jy

k

with x

i

; y

i

2 �

�

i

the

non-blank portion of the i

th

track is x

i

y

i

aligned so that the �rst symbol of each y

i

is in the start cell. Also,

input x

1

; x

2

; : : : ; x

k

with x

l+1

; : : : ; x

k

= � is abbreviated as x

1

; x

2

; : : : ; x

l

.

15



4 Programming a QTM

In this section we explore the fundamentals of building up a QTM from several simpler QTMs. Im-

plementing basic programming primitives, such as looping, branching, and reversing a computation is

straightforward for deterministic TMs. However, these constructions are more di�cult for QTMs because

one must be very careful to maintain reversibility. In fact, the same di�culties arise when building re-

versible deterministic TMs. However, building reversible TMs up out of simpler reversible TMs has never

been necessary. This is because Bennett [7] showed how to e�ciently simulate any deterministic TM with

one which is reversible. So, one can build a reversible TM by �rst building the desired computation with

a non-reversible machine, and then using Bennett's construction. None of the constructions in this section

make any special use of the quantum nature of QTMs, and in fact all techniques used are the same as

those required to make the analogous construction for reversible TMs.

We will show in this section that reversible TMs are a special case of QTMs. So, as Deutsch [20] noted,

Bennett's result allows any desired deterministic computation to be carried out on a QTM. However,

Bennett's result is not su�cient to allow us to use deterministic computations when building up QTMs,

because the di�erent computation paths of a QTM will only interfere properly provided that they take

exactly the same number of steps. We will therefore carry out a modi�ed version of Bennett's construction

to show that any deterministic computation can be carried out by a reversible TM whose running time

depends only on the length of its input. Then, di�erent computation paths of a QTM will take the same

number of steps provided that they carry out the same deterministic computation on inputs of the same

length.

4.1 Reversible Turing Machines

De�nition 4.1.1 A reversible Turing Machine is a deterministic TM for which each con�guration has at

most one predecessor.

Note that we have altered the de�nition of a reversible TM from the one used by Bennett [7, 8] so that

our reversible TMs are a special case of our QTMs. First, we have restricted our reversible TM to move

its head only left and right, instead of also allowing it to stay still. Second, we insist that the transition

function � be a complete function rather than a partial function. Finally, we consider only reversible TMs

with a single tape, though Bennett worked with multi-tape machines.

Theorem 4.1.2 Any reversible TM is also a well-formed QTM.

Proof. The transition function � of a deterministic TM maps the current state and symbol to an update

triple. If we think of it as instead giving the unit superposition with amplitude 1 for that triple and 0

elsewhere, then � is also a quantum transition function and we have a QTM. The time evolution matrix

corresponding to this QTM contains only the entries 1 and 0. Since Corollary B.0.14 proven below in

Appendix B tells us that each con�guration of a reversible TM has exactly one predecessor, this matrix

must be a permutation matrix. If the TM is reversible then there must be at most one 1 in each row.

Therefore any superposition of con�gurations

P

i

�

i

jc

i

i is mapped by this time evolution matrix to some

other superposition of con�gurations

P

i

�

i

jc

0

i

i. So, the time evolution preserves length, and the QTM is

well-formed. 2

Previous work of Bennett shows that reversible machines can e�ciently simulate deterministic TMs.

Of course, if a deterministic TM computes a function which is not one-to-one, then no reversible machine
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can simulate it exactly. Bennett [7] showed that a generalized reversible TM can do the next best thing,

which is to take any input x and compute x;M(x) where M(x) is the output of M on input x. He also

showed that if a deterministic TM computes a function which is one-to-one, then there is a generalized

reversible TM that computes the same function. For both constructions, he used a multi-tape TM and

also suggested how the simulation could be carried out using only a single-tape machine. Morita et.al. [33]

use Bennett's ideas, and some further techniques, to show that any deterministic TM can be simulated by

a generalized reversible TM with a two symbol alphabet.

We will give a slightly di�erent simulation of a deterministic TM with a reversible machine that

preserves an important timing property.

First, we describe why timing is of critical importance. In later sections, we will build QTMs with

interesting and complex interference patterns. However, two computational paths can only interfere if they

reach the same con�guration at the same time. We will often want paths to interfere which run much of

the same computation, but with di�erent inputs. We can only be sure they interfere if we know that these

computations can be carried out in exactly the same running time. We therefore want to show that any

function computable in deterministic polynomial time can be computed by a polynomial time reversible

TM in such a way that the running time of the latter is determined entirely by the length of its input.

Then, provided that all computation paths carry out the same deterministic algorithms on the inputs of

the same length, they will all take exactly the same number of steps.

We prove the following theorem in Appendix B on page 55 using ideas from the constructions of Bennett

and Morita et.al.

Theorem 4.1.3 (Synchronization Theorem) If f is a function mapping strings to strings which can

be computed in deterministic polynomial time and such that the length of f(x) depends only on the length

of x, then there is a polynomial time, stationary, normal form reversible TM which given input x, produces

output x; f(x), and whose running time depends only on the length of x.

If f is a function from strings to strings that such that both f and f

�1

can be computed in deterministic

polynomial time, and such that the length of f(x) depends only on the length of x, then there is a polynomial

time, stationary, normal form reversible TM which given input x, produces output f(x), and whose running

time depends only on the length of x.

4.2 Programming primitives

We now show how to carry out several programming primitives reversibly. The Branching, Reversal, and

Looping Lemmas will be used frequently in subsequent sections.

The proofs of the following two lemmas are straightforward and are omitted. However, they will be

quite useful as we build complicated machines, since they allow us to build a series of simpler machines

while ignoring the contents of tracks not currently being used.

Lemma 4.2.1 Given any QTM (reversible TM)M = (�; Q; �) and any set �

0

, there is a QTM (reversible

TM) M

0

= (�� �

0

; Q; �

0

) such that M

0

behaves exactly as M while leaving its second track unchanged.

Lemma 4.2.2 Given any QTM (reversible TM) M = (�

1

� � � � � �

k

; Q; �) and permutation � : [1; k]!

[1; k], there is a QTM (reversible TM) M

0

= (�

�(1)

� � � � � �

�(k)

; Q; �

0

) such that the M

0

behaves exactly

as M except that its tracks are permuted according to �.
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The following two lemmas are also straightforward, but stating them separately makes Lemma 4.2.5

below easy to prove. The �rst deals with swapping transitions of states in a QTM. We can swap the

outgoing transitions of states p

1

and p

2

for transition function � by de�ning �

0

(p

1

; �) = �(p

2

; �), �

0

(p

2

; �) =

�(p

1

; �) and �

0

(p; �) = �(p; �) for p 6= p

1

; p

2

. Similarly, we can swap the incoming transitions of states q

1

and q

2

by de�ning �

0

(p; �; �; q

1

; d) = �(p; �; �; q

2

; d), �

0

(p; �; �; q

2

; d) = �(p; �; �; q

1

; d), and �

0

(p; �; �; q; d) =

�(p; �; �; q; d) for q 6= q

1

; q

2

.

Lemma 4.2.3 If M is a well-formed QTM (reversible TM), then swapping the incoming or outgoing

transitions between a pair of states in M gives another well-formed QTM (reversible TM).

Lemma 4.2.4 LetM

1

= (�; Q

1

; �

1

) and M

2

= (�; Q

2

; �

2

) be two well-formed QTMs (reversible TMs) with

the same alphabet and disjoint state sets. Then then the union of the two machines,M = (�; Q

1

[Q

2

; �

1

[�

2

)

and with arbitrarily chosen start state q

0

2 Q

1

[ Q

2

is also a well-formed QTM (reversible TM).

Using the two preceding lemmas, we can insert one machine in place of a state in another. When

we perform such an insertion, the computations of the two machines might disturb each other. However,

sometimes this can easily be seen not to be the case. For example, in the insertion used by the Dovetailing

Lemma below, we will insert one machine for the �nal state of a well-behaved QTM, so that the computation

of the original machine has completed before the inserted machine begins. In the rest of the insertions we

carry out the two machines will operate on di�erent tracks, so the only possible disturbance involves the

position of the tape head.

Lemma 4.2.5 If M

1

and M

2

are normal form QTMs (reversible TMs) with the same alphabet, and q is

a state of M

1

, then there is a normal form QTM M which acts as M

1

except that each time it would enter

state q, it instead runs machine M

2

.

Proof. Let M

1

and M

2

be as stated with initial and �nal states q

1;0

; q

2;0

; q

1;f

; q

2;f

, and with q a state of

M

1

.

Then we can construct the desired machineM as follows. First, take the union ofM

1

andM

2

according

to Lemma 4.2.4 on page 18 and make the start state q

1;0

if q 6= q

1;0

and q

2;0

otherwise, and make the �nal

state q

1;f

if q 6= q

1;f

and q

2;f

otherwise. Then, swap the incoming transitions of q and q

2;0

and the outgoing

transitions of q and q

2;f

according to Lemma 4.2.3 on page 18 to get the well-formed machine M .

Since M

1

is in normal form, the �nal state of M leads back to its initial state no matter whether q is

the initial state of M

1

, the �nal state of M

1

, or neither. 2

Next, we show how to take two machines and form a third by \dovetailing" one onto the end of the

other. Notice, that when we dovetail QTMs, the second QTM will be started with the �nal superposition of

the �rst machine as its input superposition. If the second machine has di�ering running times for various

strings in this superposition, then the dovetailed machine might not halt even though the two original

machines were well-behaved. Therefore, a QTM built by dovetailing two well-behaved QTMs may not

itself be well-behaved.

Lemma 4.2.6 (Dovetailing Lemma) If M

1

and M

2

are well-behaved, normal form QTMs (reversible

TMs) with the same alphabet, then there is a normal form QTM (reversible TM) M which carries out the

computation of M

1

followed by the computation of M

2

.
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Proof. Let M

1

and M

2

be well-behaved, normal form QTMs (reversible TMs) with the same alphabet

and with start states and �nal states q

1;0

; q

2;0

; q

1;f

; q

2;f

.

To construct M , we simply insert M

2

for the �nal state of M

1

using Lemma 4.2.5 on page 18.

To complete the proof we need to show that M carries out the computation of M

1

followed by that

of M

2

.

To see this, �rst recall that since M

1

and M

2

are in normal form, the only transitions into q

1;0

and q

2;0

are from q

1;f

and q

2;f

respectively. This means that no transitions in M

1

have been changed except for

those into or out of state q

1;f

. Therefore, since M

1

is well-behaved and does not prematurely enter state

q

1;f

, the machine M , when started in state q

1;0

, will compute exactly as M

1

until M

1

would halt. At that

point M will instead reach a superposition with all con�gurations in state q

2;0

. Then, since no transitions

in M

2

have been changed except for those into or out of q

2;f

, M will proceed exactly as if M

2

had been

started in the superposition of outputs computed by M

1

. 2

Now, we show how to build a conditional branch around two existing QTMs or reversible TMs. The

branching machine will run one of the two machines on its �rst track input, depending on its second track

input. Since a TM can have only one �nal state, we must rejoin the two branches at the end. We can join

reversibly if we write back out the bit that determined which machine was used. The construction will

simply build a reversible TM that accomplishes the desired branching and rejoining, and then insert the

two machines for states in this branching machine.

Lemma 4.2.7 (Branching Lemma) If M

1

and M

2

are well-behaved, normal form QTMs (reversible

TMs) with the same alphabet, then there is a well-behaved, normal form QTM (reversible TM) M such

that if the second track is empty, M runs M

1

on its �rst track and leaves its second track empty, and if

the second track has a 1 in the start cell (and all other cells blank), M runs M

2

on its �rst track and

leaves the 1 where its tape head ends up. In either case, M takes exactly four time steps more than the

appropriate M

i

.

Proof. Let M

1

and M

2

be well-behaved, normal form QTMs (reversible TMs) with the same alphabet.

Then we can construct the desired QTM as follows. We will show how to build a stationary, normal

form reversible TM BR which always takes four time steps and leaves its input unchanged, always has a

superposition consisting of a single con�guration, and has two states q

1

and q

2

with the following properties.

If BR is run with a 1 in the start cell, and blanks elsewhere, then BR visits q

1

once with a blank tape

and with its tape head in the start cell and doesn't visit q

2

at all, and similarly if BR is run with a blank

tape then BR visits q

2

once with a blank tape and with its tape head in the start cell and doesn't visit q

1

at all. Then if we extend M

1

and M

2

to have a second track with the alphabet of BR, extend BR to have

a �rst track with the common alphabet of M

1

and M

2

, and insert M

1

for state q

1

and M

2

for state q

2

in

BR, we will have the desired QTM M .

We complete the construction by exhibiting the reversible TM BR. The machine enters state q

0

1

or q

0

2

depending on whether the start cell contains a 1 and steps left, and enters the corresponding q

1

or q

2

while

stepping back right. Then it enters state q

3

while stepping left and state q

f

while stepping back right.

So, we let BR have alphabet f#; 1g, state set fq

0

; q

1

; q

0

1

; q

2

; q

0

2

; q

3

; q

f

g and transition function de�ned

by the following table
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# 1

q

0

#; q

0

2

; L #; q

0

1

; L

q

0

1

#; q

1

; R

q

0

2

#; q

2

; R

q

1

1; q

3

; L

q

2

#; q

3

; L

q

3

#; q

f

; R

q

f

#; q

0

; R 1; q

0

; R

It can be veri�ed that the transition function of BR is one-to-one and that it can enter each state while

moving in only one direction. Therefore, appealing to Theorem B.0.15 on page 56 it can be completed to

give a reversible TM. 2

Finally, we show how to take a unidirectional QTM or reversible TM and build its reverse. Two

computational paths of a QTM will interfere only if they reach con�gurations that do not di�er in any

way. This means that we must be careful when building a QTM to erase any information that might di�er

along paths which we want to interfere. We will therefore sometimes use this lemma when constructing a

QTM to allow us to completely erase an intermediate computation.

Since the time evolution of a well-formed QTM is unitary, we could reverse a QTM by applying the

unitary inverse of its time evolution. However, this transformation is not the time evolution of a QTM

since it acts on a con�guration by changing tape symbols to the left and right of the tape head. However,

since each state in a unidirectional QTM can be entered while moving in only one direction, we can reverse

the head movements one step ahead of the reversal of the tape and state. Then, the reversal will have its

tape head in the proper cell each time a symbol must be changed.

De�nition 4.2.8 If QTMs M

1

and M

2

have the same alphabet, then we say that M

2

reverses the compu-

tation of M

1

if identifying the �nal state of M

1

with the initial state of M

2

and the initial state of M

1

with

the �nal state of M

2

gives the following. For any input x on which M

1

halts, if c

x

and �

x

are the initial

con�guration and �nal superposition of M

1

on input x, then M

2

halts on initial superposition �

x

with �nal

superposition consisting entirely of con�guration c

x

.

Lemma 4.2.9 (Reversal Lemma) If M is a normal form, reversible TM or unidirectional QTM then

there is a normal form, reversible TM or QTM M

0

that reverses the computation of M while taking two

extra time steps.

Proof. We will prove the lemma for normal form, unidirectional QTMs, but the same argument proves

the lemma for normal form reversible TMs.

LetM = (�; Q; �) be a normal form, unidirectional QTM with initial and �nal states q

0

and q

f

, and for

each q 2 Q let d

q

be the direction which M must move while entering state q. Then, we de�ne a bijection

� on the set of con�gurations of M as follows. For con�guration c in state q, let �(c) be the con�guration

derived from c by moving the tape head one square in direction

�

d

q

(the opposite of direction d

q

). Since

the set of superpositions of the form jci give an orthonormal basis for the space of superpositions of M ,

we can extend � to act as a linear operator on this space of superpositions by de�ning �jci = j�ci. It is

easy to see that � is a unitary transformation on the space of superpositions on M .

Our new machine M

0

will have the same alphabet as M , and state set given by Q together with new

initial and �nal states q

0

0

and q

0

f

. The following three statements su�ce to prove that M

0

reverses the

computation of M while taking two extra time steps.

20



1. If c is a �nal con�guration ofM , and c

0

is the con�guration c with state q

f

replaced by state q

0

0

, then

a single step of M

0

takes superposition jc

0

i to superposition �(jci).

2. If a single step of M takes superposition j�

1

i to superposition j�

2

i, where j�

2

i has no support on

a con�guration in state q

0

, then a single step of M

0

takes superposition �(j�

2

i) to superposition

�(j�

1

i).

3. If c is an initial con�guration of M , and c

0

is the con�guration c with state q

0

replaced by state q

0

f

,

then a single step of M

0

takes superposition �(jci) to superposition jc

0

i.

To see this, let x be an input on which M halts, and let j�

1

i; : : : ; j�

n

i be the sequence of superpositions

of M on input x, so that j�

1

i = jc

x

i where c

x

is the initial superposition of M on x, and j�

n

i has support

only on �nal con�gurations of M . Then, since the time evolution operator of M is linear, Statement 1

tells us that if we form the initial con�guration j�

0

n

i of M

0

by replacing each state q

f

in the j�

n

i with

state q

0

0

, then M

0

takes j�

0

n

i to �(j�

n

i) in a single step. Since M is in normal form, none of j�

2

i; : : : ; j�

n

i

have support on any superposition in state q

0

. Therefore, Statement 2 tells us that the next n steps ofM

0

lead to superpositions �(j�

n�1

i); : : : ; �(j�

1

i). Finally, Statement 3 tells us that a single step of M

0

maps

superposition �(jc

x

i) to superposition jc

0

x

i.

We de�ne the transition function �

0

to give a well-formed M

0

satisfying these three statements with

the following transition rules.

1. �

0

(q

0

0

; �) = j�ijq

f

ij

�

d

q

f

i

2. For each q 2 Q� q

0

and each � 2 �

�

0

(q; �) =

X

p;�

�(p; �; �; q; d

q

)

�

j�ijpij

�

d

p

i

3. �

0

(q

0

; �) = j�ijq

0

f

ijd

q

0

i

4. �

0

(q

0

f

; �) = j�ijq

0

0

ijRi

The �rst and third rules can easily be seen to ensure Statements 1 and 3. The second rule can be

seen to ensure Statement 2 as follows: Since M is in normal form, it maps a superposition j�

1

i to a

superposition j�

2

i with no support on any con�guration in state q

0

if and only if j�

1

i has no support

on any con�gurations in state q

f

. Therefore, the time evolution of M de�nes a unitary transformation

from the space S

1

of superpositions of con�gurations in states from the set Q

1

= Q � q

f

to the space of

superpositions S

2

of con�gurations in states from the set Q

2

= Q � q

0

. This fact also tells us that the

second rule above de�nes a linear transformation from space S

2

back to space S

1

. Moreover, if M takes

con�guration c

1

with a state from Q

1

leads with amplitude � to con�guration c

2

with a state from Q

2

,

then M

0

takes con�guration �(c

2

) to con�guration �(c

1

) with amplitude �

�

. Therefore, the time evolution

of M

0

on space S

2

is the composition of � and its inverse around the conjugate transpose of the time

evolution of M . Since this conjugate transpose must also be unitary, the second rule above actually gives

a unitary transformation from the space S

2

to the space S

1

which satis�es Statement 2 above.

Since M

0

is clearly in normal form, we complete the proof by showing that M

0

is well-formed. To see

this, just note that each of the four rules de�nes a unitary transformation to one of a set of four mutually

orthogonal subspaces of the spaces of superpositions of M

0

. 2
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The Synchronization Theorem will allow us to take an existing QTM and put it inside a loop so that

the machine can be run any speci�ed number of times.

Building a reversible machine that loops inde�nitely is trivial. However, if we want to loop some �nite

number of times, we need to carefully construct a reversible entrance and exit. As with the Branching

Lemma above, the construction will proceed by building a reversible TM that accomplishes the desired

looping, and then inserting the QTM for a particular state in this looping machine. However, there are

several di�culties. First, in this construction, as opposed to the branching construction, the reversible TM

leaves an intermediate computation written on its tape while the QTM runs. This means that inserting a

non-stationary QTM would destroy the proper functioning of the reversible TM. Second, even if we insert a

stationary QTM, the second (and any subsequent) time the QTM is run, it may be started in superposition

on inputs of di�erent lengths, and hence may not halt. There is therefore no general statement we are able

to make about the behavior of the machine once the insertion is carried out. Instead, we describe here the

reversible looping TM constructed in Appendix C on page 61 and argue about speci�c QTMs resulting

from this machine when they are constructed.

Lemma 4.2.10 (Looping Lemma) There is a stationary, normal form, reversible TMM and a constant

c with the following properties. On input any positive integer k written in binary, M runs for time

O(k log

c

k) and halts with its tape unchanged. Moreover, M has a special state q

�

such that on input k, M

visits state q

�

exactly k times, each time with its tape head back in the start cell.

5 Changing the basis of a QTM's computation

In this section we introduce a fundamentally quantum mechanical feature of quantum computation, namely

changing the computational basis during the evolution of a QTM. In particular, we will �nd it useful to

change to a new orthonormal basis for the transition function in the middle of the computation { each

state in the new state set is a linear combination of states from the original machine.

This will allow us to simulate a general QTM with one that is unidirectional. It will also allow us to

prove that any partially de�ned quantum transition function which preserves length can be extended to

give a well-formed QTM.

We start by showing how to change the basis of the states of a QTM. Then we give a set of conditions

for a quantum transition function that are necessary and su�cient for a QTM to be well-formed. The last

of these conditions, called separability, will allow us to construct a basis of the states of a QTM which will

allow us to prove the Unidirection and Completion Lemmas below.

5.1 The change of basis

If we take a well-formed QTM and choose a new orthonormal basis for the space of superpositions of its

states, then translating its transition function into this new basis will give another well-formed QTM that

evolves just as the �rst under the change of basis. Note, that in this construction, the new QTM has the

same time evolution operator as the original machine. However, the states of the new machine di�er from

those of the old. This change of basis will allow us to prove Lemmas 5.3.2 and 5.3.4 below.

Lemma 5.1.1 Given a QTM M = (�; Q; �) and a set of vectors B from

~

C

Q

which forms an orthonormal

basis for C

Q

, there is a QTM M

0

= (�; B; �

0

) which evolves exactly as M under a change of basis from Q

to B.
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Proof. Let M = (�; Q; �) be a QTM and B an orthonormal basis for C

Q

.

Since B is an orthonormal basis, this establishes a unitary transformation from the space of superpo-

sitions of states in Q to the space of superpositions of states in B. Speci�cally, for each p 2 Q we have the

mapping

jpi !

X

v2B

hpjjvi jvi

Similarly, we have a unitary transformation from the space of superpositions of con�gurations with states

in Q to the space of con�gurations with states in B. In this second transformation, a con�guration with

state p is mapped to the superposition of con�gurations where the corresponding con�guration with state

v appears with amplitude hpjjvi.

Let us see what the time evolution ofM should look like under this change of basis. InM a con�guration

in state p reading a � evolves in a single time step to the superposition of con�gurations corresponding to

the superposition �(p; �).

�(p; �) =

X

�;q;d

�(p; �; �; q; d) j�ijqijdi

With the change of basis, the superposition on the right hand side will instead be

X

�;v;d

 

X

q

hqjvi �(p; �; �; q; d)

!

j�ijvijdi

Now, since the state symbol pair jvij�i in M

0

corresponds to the superposition

X

p

hvjpi jpij�i

in M , we should have in M

0

�

0

(v; �) =

X

p

hvjpi

0

@

X

�;v

0

;d

 

X

q

hqjv

0

i �(p; �; �; q; d)

!

1

A

j�ijv

0

ijdi

Therefore, M

0

will behave exactly as M under the change of basis if we de�ne �

0

by saying that for

each v; � 2 B � �

�

0

(v; �) =

X

�;v

0

;d

 

X

p;q

hvjpi hqjv

0

i �(p; �; �; q; d)

!

j�ijv

0

ijdi

Since the vectors in B are contained in

~

C

Q

, each amplitude of �

0

is contained in

~

C.

Finally, note that the time evolution of M

0

must preserve Euclidean length since it is exactly the time

evolution of the well-formed M under the change of basis. 2

5.2 Local conditions for QTM well-formedness

In our discussion of reversible TMs in Appendix B we �nd properties of a deterministic transition function

which are necessary and su�cient for it to be reversible. Similarly, our next theorem gives three properties

of a quantum transition function which together are necessary and su�cient for it to be well-formed. The

�rst property insures that the time evolution operator preserves length when applied to any particular

con�guration. Adding the second insures that the time evolution preserves the length of superpositions
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of con�gurations with their tape head in the same cell. The third property, which concerns \restricted"

update superpositions, handles superpositions of con�gurations with tape heads in di�ering locations. This

third property will be of critical use in the constructions of Lemmas 5.3.2 and 5.3.4 below.

De�nition 5.2.1 We will also refer to the superposition of states

X

q2Q

�(p; �; �; q; d)jqi

resulting from restricting �(p; �) to those pieces writing symbol � and moving in direction d as a direction

d-going restricted superposition, denoted by �(p; �j�; d).

Theorem 5.2.2 A QTM M = (�; Q; �) is well-formed i� the following conditions hold

Unit length

8 p; � 2 Q� � k�(p; �)k= 1

Orthogonality

8 (p

1

; �

1

) 6= (p

2

; �

2

) 2 Q� � �(p

1

; �

1

) � �(p

2

; �

2

) = 0

Separability

8 (p

1

; �

1

; �

1

); (p

2

; �

2

; �

2

) 2 Q� �� � �(p

1

; �

1

j�

1

; L) � �(p

2

; �

2

j�

2

; R) = 0

Proof. Let U be the time evolution of a proposed QTM M = (�; Q; �). We know M is well-formed

i� U

�

exists and U

�

U gives the identity, or equivalently i� the columns of U have unit length and are

mutually orthogonal. Clearly, the �rst condition speci�es exactly that each column has unit length. In

general, con�gurations whose tapes di�er in a cell not under either of their heads, or whose tape heads

are not either in the same cell or exactly two cells apart, cannot yield the same con�guration in a single

step. Therefore such pairs of columns are guaranteed to be orthogonal, and we need only consider pairs of

con�gurations for which this is not the case. The second condition speci�es the orthogonality of pairs of

columns for con�gurations that di�er only in that one is in state p

1

reading �

1

while the other is in state

p

2

reading �

2

.

Finally, we must consider pairs of con�gurations with their tape heads two cells apart. Such pairs can

only interfere in a single step if they di�er at most in their states and in the symbol written in these cells.

The third condition speci�es the orthogonality of pairs of columns for con�gurations which are identical

except that the second has its tape head two cells to the left, is in state p

2

instead of p

1

, has a �

2

instead

of a �

2

in the cell under its tape head, and has a �

1

instead of a �

1

two cells to the left. 2

Now consider again unidirectional QTMs, those in which each state can be entered while moving in

only one direction. When we considered this property for deterministic TMs, it meant that when looking

at a deterministic transition function �, we could ignore the direction update and think of � as giving a

bijection from the current state and tape symbol to the new symbol and state. Here, if � is a unidirectional

quantum transition function, then it certainly satis�es the separability condition since no left-going and

right-going restricted superpositions have a state in common. Moreover, update triples will always share

the same direction if they share the same state. Therefore, a unidirectional � is well-formed i�, ignoring the

direction update, � gives a unitary transformation from superpositions of current state and tape symbol

to superpositions of new symbol and state.
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5.3 Unidirection and Completion Lemmas

The separability condition of Theorem 5.2.2 allows us to simulate any QTM with a unidirectional QTM by

applying a change of basis. The same change of basis will also allow us to complete any partially speci�ed

quantum transition function which preserves length.

It is straightforward to simulate a deterministic TM with one which is unidirectional. Simply split each

state q into two states q

r

and q

l

, both of which are given the same transitions that q had, and then edit

the transition function so that transitions moving right into q enter q

r

and transitions moving left into q

enter q

l

. The resulting machine is clearly not reversible since the transition function operates the same on

each pair of states q

r

; q

l

.

To simplify the unidirection construction, we �rst show how to interleave a series of quantum transition

functions.

Lemma 5.3.1 Given k state sets Q

0

; : : : ; Q

k�1

; Q

k

= Q

0

and k transition functions each mapping from

one state set to the next

�

i

: Q

i

� �!

~

C

��Q

i+1

�fL;Rg

such that each �

i

preserves length, there is a well-formed QTM M with state set

S

i

(Q

i

; i) which alternates

stepping according to each of the k transition functions.

Proof. Suppose we have k state sets transition functions as stated above. Then we let M be the QTM

with the same alphabet, with state set given by the union of the individual state sets

S

i

(Q

i

; i), and with

transition function according to the �

i

�((p; i); �) =

X

�;q;d

�

i

(p; �; �; q; d)j�ijq; i+ 1ijdi

Clearly, the machine M alternates stepping according to �

0

; : : : ; �

k�1

. It is also easy to see that the time

evolution of M preserves length; If j�i is a superposition of con�gurations with squared length �

i

in the

subspace with con�gurations with states from Q

i

, then � maps � to a superposition with squared length

�

i

in the subspace with con�gurations with states from Q

i+1

. 2

Lemma 5.3.2 (Unidirection Lemma) Any QTM M is simulated, with slowdown by a factor of 5, by

a unidirectional QTM M

0

. Furthermore, if M is well-behaved and in normal form, then so is M

0

.

Proof. The key idea is that the separability condition of a well-formed QTM allows a change of basis to

a state set in which each state can be entered from only one direction.

The separability condition says that

8 (p

1

; �

1

; �

1

); (p

2

; �

2

; �

2

) 2 Q� �� �

�(p

1

; �

1

j�

1

; L) � �(p

2

; �

2

j�

2

; R) = 0

This means that we can split C

Q

into mutually orthogonal subspacesC

L

andC

R

such that span(C

L

;C

R

) =

C

Q

and

8 (p

1

; �

1

; �

1

) 2 Q� �� �

�(p

1

; �

1

j�

1

; d) 2 C

d
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Now, as shown in Lemma 5.1.1 above, under a change of basis from state set Q to state set B the new

transition function is de�ned by

�

0

(v; �; �; v

0

; d) =

X

p;q

hvjpihqjv

0

i�(p; �; �; q; d)

So, choose orthonormal bases B

L

and B

R

for the spaces C

L

and C

R

and let M

0

= (�; B

L

[ B

R

; �

0

) be

the QTM constructed according to Lemma 5.1.1 which evolves exactly as M under a change of basis from

state set Q to state set B = B

L

[B

R

. Then any state in M

0

can be entered in only one direction. To see

this, �rst note that since �(p; �j�; d) 2 B

d

and v =

P

q

hvjqijqi, the separability condition implies that for

v 2 B

d

X

q

�(p; �; �; q; d)hvjqi

�

= 0

Therefore, for any v; �; �; v

0

2 B � �� �� B

d

�

0

(v; �; �; v

0

; d) =

X

p;q

hvjpihqjv

0

i�(p; �; �; q; d)

=

X

p

hvjpi

X

q

hqjv

0

i�(p; �; �; q; d) = 0

Therefore any state in B can be entered while traveling in only one direction.

Unfortunately, this new QTM M

0

might not be able to simulate M . The problem is that the start

state and �nal state of M might correspond under the change of basis isomorphism to superpositions of

states in M

0

, meaning that we would be unable to de�ne the necessary start and �nal states forM

0

. To �x

this problem, we use �ve time steps to simulate each step ofM and interleave the �ve transition functions

using Lemma 5.3.1 on page pagerefinterleaving.lemma.

1. Step right leaving the tape and state unchanged.

�

0

(p; �) = j�ijpijRi

2. Change basis from Q to B while stepping left.

�

1

(p; �) =

X

b2B

hpjbij�ijbijLi

3. M

0

carries out a step of the computation of M . So, �

2

is just the quantum transition function �

0

from QTM M

0

constructed above.

4. Change basis back from B to Q while stepping left.

�

3

(b; �) =

X

p2Q

hbjpij�ijpijLi

5. Step right leaving the tape and state unchanged.

�

4

(p; �) = j�ijpijRi
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If we construct QTM M

0

with state set (Q�f0; 1; 4g[ (B�f2; 3g) using Lemma 5.3.1 on page 25 and

let M

0

have start and �nal states (q

0

; 0) and (q

f

; 0) then M

0

simulates M with slowdown by a factor of 5.

Next, we must show that each of the �ve transition functions obeys the well-formedness conditions and

hence according to Lemma 5.3.1 that the interleaved machine is well-formed.

The transition function �

2

= �

0

certainly obeys the well-formedness conditions since M

0

is a well-

formed QTM. Also, �

0

and �

4

obey the three well-formedness conditions since they are deterministic and

reversible. Finally, the transition functions �

1

and �

3

satisfy the unit length and orthogonality conditions

since they implement a change of basis, and they obey the separability condition since they only move in

one direction.

Finally, we must show that ifM is well-behaved and in normal form then we can makeM

0

well-behaved

and in normal form.

So, suppose M is well-behaved and in normal form. Then there is a T such that at time T the

superposition includes only con�gurations in state q

f

with the tape head back in the start cell, and at any

time less than T the superposition contains no con�guration in state q

f

. But this means that when M

0

is run on input x, the superposition at time 5T includes only con�gurations in state (q

f

; 0) with the tape

head back in the start cell, and the superposition at any time less than 5T contains no con�guration in

state (q

f

; 0). Therefore M

0

is also well-behaved.

Then for any input x, there is a T such thatM enters a series of T � 1 superpositions of con�gurations

all with states in Q � fq

0

; q

f

g and then enters a superposition of con�gurations all in state q

f

with the

tape head back in the start cell. Therefore, on input x M

0

enters a series of 5T � 1 superpositions of

con�gurations all with states in Q

0

� f(q

f

; 0); (q

0

; 4)g and then enters a superposition of con�gurations all

in state (q

f

; 0) with the tape head back in the start cell. Therefore,M

0

is well-behaved. Also, swapping the

outgoing transitions of (q

f

; 0) and (q

0

; 4), which puts M

0

in normal form, will not change the computation

of M

0

on any input x. 2

When we construct a QTM, we will often only be concerned with a subset of its transitions. Luckily,

any partially de�ned transition function that preserves length can be extended to give a well-formed QTM.

De�nition 5.3.3 A QTM M whose quantum transition function �

0

is only de�ned for a subset S � Q��

is called a partial QTM. If the de�ned entries of �

0

satisfy the three conditions of Theorem 5.2.2 on page 24

then M is called a well-formed partial QTM.

Lemma 5.3.4 (Completion Lemma) Suppose M is a well-formed partial QTM with quantum transi-

tion function �. Then there is a well-formed QTMM

0

with the same state set and alphabet whose quantum

transition function �

0

agrees with � wherever the latter is de�ned.

Proof. We noted above that a unidirectional quantum transition function is well-formed i�, ignoring the

direction update, it gives a unitary transformation from superpositions of current state and tape symbol

to superpositions of new symbol and state. So if our partial QTM is unidirectional, then we can easily �ll

in the unde�ned entries of � by extending the set of update superpositions of � to an orthonormal basis

for the space of superpositions of new symbol and state.

For a general �, we can use the technique of Lemma 5.1.1 on page 22 to change the basis of � away from

Q so that each state can be entered while moving in only one direction, extend the transition function,

and then rotate back to the basis Q.

We can formalize this as follows:
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Let M = (�; Q; �) be a well-formed partial QTM with � de�ned on the subset S � Q � �. Denote by

S the complement of S in Q� �.

As in the proof of the Unidirection Lemma above, the separability condition allows us to partition C

Q

into mutually orthogonal subspaces C

L

and C

R

such that span(C

L

;C

R

) = C

Q

and

8 (p

1

; �

1

; �

1

) 2 S � �

�(p

1

; �

1

j�

1

; d) 2 C

d

Then, we choose orthonormal bases B

L

and B

R

for C

L

and C

R

, and consider the unitary transformation

from superpositions of con�gurations with states in Q to the space of con�gurations with states in B =

B

L

[B

R

, where any con�guration with state p is mapped to the superposition of con�gurations where the

corresponding con�guration with state v appears with amplitude hpjvi.

If we call �

0

the partial function � followed by this unitary change of basis, then we have

�

0

(p; �) =

X

�;v;d

 

X

q

hqjvi�(p; �; �; q; d)

!

j�ijvijdi

Since � preserves length and �

0

is � followed by a unitary transformation, �

0

also preserves length.

But now �

0

can enter any state in B while moving in only one direction. To see this, �rst note that

since �(p; �; �; d) 2 B

d

and v =

P

q

hvjqijqi, the separability condition implies that for v 2 B

d

X

q

�(p; �; �; q; d)hvjqi

�

= 0

Therefore, for any p; �; �; v 2 S � �� B

d

�

0

(p; �; �; v; d) =

X

q

hqjvi�(p; �; �; q; ) = 0

Therefore any state in B can be entered while traveling in only one direction.

Then, since the direction is implied by the new state, we can think of �

0

as mapping the current state

and symbol to a superposition of new symbol and state. Since �

0

preserves length, the set �

0

(S) is a set of

orthonormal vectors, and we can expand this set to an orthonormal basis of the space of superpositions

of new symbol and state. Adding the appropriate direction updates and assigning these new vectors arbi-

trarily to �

0

(

�

S), we have a completely de�ned �

0

that preserves length. Therefore, assigning �(

�

S) as �

0

(

�

S)

followed by the inverse of the basis transformation gives a completion for � that preserves length. 2

6 An e�cient QTM implementing any given unitary transformation

Suppose that the tape head of a QTM is con�ned to a region consisting of k contiguous tape cells (the tape

is blank outside this region). Then the time evolution of the QTM can be described by a d dimensional

unitary transformation, where d = kcard(Q)card(�)

k

. In this section we show conversely that there is a

QTM that given any d dimensional unitary transformation as input, carries out that transformation (on a

region of its tape). To make this claim precise we must say how the d dimensional unitary transformation

is speci�ed. We assume that an approximation to the unitary transformation is speci�ed by a d�d complex

matrix whose entries are approximations to the entries of the actual unitary matrix corresponding to the
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desired transformation. We show in Theorem 6.4.1 on page 37 that there is a QTM which on input � and

a d dimensional transformation which is within distance

�

2(10

p

d)

d

of a unitary transformation carries out a

transformation which is an � approximation to the desired unitary transformation. Moreover, the running

time of the QTM is bounded by a polynomial in d and 1=�.

In a single step, a QTM can map a single con�guration into a superposition of a bounded number of

con�gurations. Therefore, in order to carry out an (approximation to an) arbitrary unitary transformation

on a QTM, we show how to approximate it by a product of simple unitary transformations - each such

simple transformation acts as the identity in all but two dimensions. We then show that there is a particular

simple unitary transformation, such that any given simple transformation can be expressed as a product of

permutation matrices and powers of this �xed simple matrix. Finally, we put it all together, and show how

to design a single QTM that carries out an arbitrary unitary transformation - this QTM is deterministic

except for a single kind of quantum coin-
ip.

The decomposition of an arbitrary unitary transformation into a product of simple unitary transforma-

tions is similar to work carried out by Deutsch [21]. Deutsch's work, although phrased in terms of quantum

computation networks, can be viewed as showing that a d dimensional unitary transformation can be de-

composed into a product of transformations where each applies a particular unitary transformation to 3

dimensions and acts as the identity elsewhere. We must consider here several issues of e�ciency not ad-

dressed by Deutsch. First, we are concerned that the decomposition contain a number of transformations

which is polynomial in the dimension of the unitary transformation and in the desired accuracy. Second,

we desire that the decomposition can itself be e�ciently computed given the desired unitary transforma-

tion as input. For more recent work on the e�cient simulation of a unitary transformation by a quantum

computation network see [5] and the references therein.

6.1 Measuring errors in approximated transformations

In this section, we will deal with operators (linear transformations) on �nite dimensional Hilbert spaces.

It is often convenient to �x an orthonormal basis for the Hilbert space and describe the operator by a

�nite matrix with respect to the chosen basis. Let e

1

; : : : ; e

d

be an orthonormal basis for Hilbert space

H = C

d

. Then we can represent an operator U on H by a d � d complex matrix M , whose i; j

th

entry

m

i;j

is (Ue

j

; e

i

). The i

th

row of the matrix M is given by e

i

T

M , and we will denote it by M

i

. We denote

by M

i

�

the conjugate transpose of M

i

. The j

th

column of M is given by Me

j

. U

�

, the adjoint of U , is

represented by the d� d matrix M

�

. M is unitary i� MM

�

= M

�

M = I . It follows that if M is unitary

then the rows (and columns) of M are orthonormal.

Recall that for a bounded linear operator U on a Hilbert space H, the norm of U is de�ned as

jU j = sup

kxk=1

jUxj

If we represent U by the matrix M , then we can de�ne the norm of the matrix M to be same as the norm

of U . Thus, since we're working in a �nite dimensional space,

kMk = max

kvk=1

kMvk

.

Fact 6.1.1 If U is unitary then kUk = kU

�

k = 1.
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Proof. 8x 2 H, kUxk

2

= (Ux; Ux) = (x; U

�

Ux) = (x; x) = kxk

2

. Therefore kUk = 1, and similar

reasoning shows kU

�

k = 1. 2

We will �nd it useful to keep track of how far our approximations are from being unitary. We will use

the following simple measure of a transformation's distance from being unitary.

De�nition 6.1.2 A bounded linear operator U is called �-close to unitary if there is a unitary operator

~

U

such that kU �

~

Uk � �. If we represent U by the matrix M , then we can equivalently say that M is �-close

to unitary if there is a unitary matrix

~

M such that kM �

~

Mk � �.

Notice that, appealing to Statement 3 in x2 if U is �-close to unitary then 1�� � kUk � 1+�. However,

the converse is not true. For example the linear transformation

 

1 0

0 0

!

has norm 1 but is 1 away from

unitary.

Next, we show that if M is close to unitary, then the rows of M are close to unit length and will be

close to orthogonal.

Lemma 6.1.3 If a d dimensional complex matrix M is �-close to unitary, then:

1� � � kM

i

k � 1 + � (4)

8i 6= j kM

i

M

j

�

k � 2� + 3�

2

(5)

Proof. Let

~

M be the unitary matrix such that kM �

~

Mk � �. Let N =M �

~

M . Then we know that for

each i, k

~

M

i

k = 1 and kN

i

k � �.

So, for any i, we have M

i

= N

i

+

~

M

i

. Therefore 1� � � kM

i

k � 1 + �.

Next, since

~

M is unitary, it follows that for i 6= j,

~

M

i

~

M

�

j

= 0. Therefore, (M

i

�N

i

)(M

�

j

� N

�

j

) = 0.

Expanding this as a sum of four terms, we get

M

i

M

�

j

=M

i

N

�

j

+N

i

M

�

j

�N

i

N

�

j

Since kMk � 1+� and kNk � �, the Schwarz inequality tells us that kM

i

N

�

j

k � (1+�)�, kN

i

M

�

j

k � �(1+�),

and kN

i

N

�

j

k � �

2

. Using the triangle inequality we conclude that kM

i

M

�

j

k � 2(1 + �)� + �

2

. Therefore

kM

i

M

j

�

k � 2� + 3�

2

. 2

We will also use the following standard fact that a matrix with small entries must have small norm.

Lemma 6.1.4 If M is a d-dimensional square complex matrix such that jm

i;j

j � � for all i; j, then

kMk � d�.

Proof. If each entry of M has magnitude at most �, then clearly each row M

i

of M must have norm at

most

p

d�. So, if v is a d-dimensional column vector with jvj = 1, we must have

kMvk

2

=

X

i

kM

i

vk

2

�

X

i

d�

2

= d

2

�

2

where the inequality follows from the Scwarz Inequality. Therefore kMk � d�. 2

30



6.2 Decomposing a unitary transformation

We now describe a class of exceedingly simple unitary transformations which we will be able to carry out

using a single QTM. These \near-trivial" transformations either apply a phase shift in one dimension or

apply a rotation between two dimensions, while acting as the identity otherwise.

De�nition 6.2.1 A d�d unitary matrix M is near-trivial if it satis�es one of the following two conditions

1. M is the identity except that one of its diagonal entries is e

i�

for some � 2 [0; 2�]. i.e. 9j m

j;j

=

e

i�

; 8k 6= j m

k;k

= 1, and 8k 6= l m

k;l

= 0.

2. M is the identity except that the submatrix in one pair of distinct dimensions j and k is the rotation by

some angle � 2 [0; 2�]:

 

cos � � sin �

sin � cos �

!

. So, as a transformation M is near-trivial if there exists �

and i 6= j such that Me

i

= (cos �)e

i

+(sin �)e

j

, Me

j

= �(sin �)e

i

+(cos �)e

j

, and 8k 6= i; j Me

k

= e

k

,

We call a transformation which satis�es the former a near-trivial phase shift, and we call a transformation

which satis�es the latter a near-trivial rotation.

We will write a near-trivial matrix M in the following way. If M is a phase shift of e

i�

in dimension

j then we will write down [j; j; �] and if M is a rotation of angle � between dimensions j and k we will

write down [j; k; �]. This convention guarantees that the matrix that we are specifying is a near-trivial

matrix and therefore a unitary matrix, even if for precision reasons we write down an approximation to

the matrix that we really wish to specify. This feature will substantially simplify our error analyses.

Before we show how to use near-trivial transformations to carry out an arbitrary unitary transformation,

we �rst show how to use them to map any particular vector to a desired target direction.

Lemma 6.2.2 There is a deterministic algorithm which on input a vector v 2 C

d

and a bound � > 0,

computes near trivial matrices U

1

; : : : ; U

2d�1

such that

kU

1

� � �U

2d�1

v � kvke

1

k � �

where e

1

is the unit vector in the �rst coordinate direction. The running time of the algorithm is bounded

by a polynomial in d, log 1=� and the length of the input.

Proof. First, we use d phase shifts to map v into the space IR

d

. We therefore want to apply to each

dimension i with v

i

6= 0 the phase shift

v

�

i

kv

i

k

. So, we let P

i

be the near-trivial matrix which applies to

dimension i the phase shift by angle �

i

where �

i

= 0 if v

i

= 0, and otherwise �

i

= 2� � cos

�1

Re(v

i

)

kv

i

k

or cos

�1

Re(v

i

)

kv

i

k

depending whether Im(v

i

) is positive or negative. Then P

1

� � �P

d

v is the vector with i

th

coordinate kv

i

k.

Next, we use d� 1 rotations to move all of the weight of the vector into dimension 1. So, we let R

i

be

the near-trivial matrix which applies to dimensions i and i+ 1 the rotation by angle �

i

where

�

i

= cos

�1

kv

i

k

q

P

d

j=i

kv

j

k

2

if the sum in the denominator is not 0 and �

i

= 0 otherwise. Then

R

1

� � �R

d�1

P

1

� � �P

d

v = kvke

1
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Now, instead of producing these values �

i

; �

i

exactly, we can in time polynomial in d and log 1=�, and

the length of the input compute values �

0

i

and �

0

i

which are within � =

�

(2d�1)kvk

of the desired values. Call

P

0

i

and R

0

i

the near-trivial matrices corresponding to P

i

and R

i

but using these approximations. Then,

since the distance between points at angle � and �

0

on the unit circle in the real plane is at most j� � �

0

j,

kR

i

�R

0

i

k � �:

Thinking of the same inequality on the unit circle in the complex plane, we have

kP

i

� P

0

i

k � �:

Finally, since each matrix P

i

; P

0

i

; R

i

; R

0

i

is unitary, Fact 2.0.1 on page 6 gives us

kR

0

1

� � �R

0

d�1

P

0

1

� � �P

0

d

� R

1

� � �R

d�1

P

1

� � �P

d

k � (2d� 1)�

and therefore

kR

0

1

� � �R

0

d�1

P

0

1

� � �P

0

d

v � kvke

1

k � (2d� 1)�kvk = �

2

We now show how the ability to map a particular vector to a desired target direction allows us to

approximate an arbitrary unitary transformation.

Theorem 6.2.3 There is a deterministic algorithm running in time polynomial in d and log 1=� and the

length of the input which when given as input U; � where � > 0 and U is a d� d complex matrix which is

�

2(10

p

d)

d

-close to unitary, computes d-dimensional near-trivial matrices U

1

; : : : ; U

n

, with n polynomial in d

such that kU � U

n

� � �U

1

k � �.

Proof. First we introduce notation to simplify the proof. Let U be a d� d complex matrix. Then we say

U is k-simple if its �rst k rows and columns are the same as those of the d-dimensional identity. Notice

that the product of two d� d k-simple matrices is also k-simple.

If U were d-simple, we would have U = I and the desired computation would be trivial. In general,

the U which our algorithm must approximate will not even be 1-simple. So, our algorithm will proceed

through d phases, such that during the i

th

phase the remaining problem is reduced to approximating a

matrix which is i+ 1 simple.

Suppose we start to approximate a k-simple U with a series of near-trivial matrices with the product

V . Then to approximate U , we would still need to produce a series of near-trivial matrices whose product

W satis�es W � UV

�

. To reduce the problem we must therefore compute near-trivial matrices whose

product V is such that UV

�

is close to being k+1-simple. We can accomplish this by using the algorithm

of Lemma 6.2.2 above.

So, let U be given which is k-simple and is �-close to unitary, and let Z be the lower right d� k�d� k

submatrix of Z. We invoke the procedure of Lemma 6.2.2 on inputs Z

T

1

(the vector corresponding to the

�rst row of Z) and �. The output is a sequence of d� k-dimensional near trivial matrices V

1

; : : : ; V

2d�2k�1

such that their product V = V

1

� : : :� V

2d�2k�1

has the property that kV Z

T

1

� kZ

1

ke

1

k � �.

Now suppose that we extend V and the V

i

back to d dimensional, k-simple matrices, and we let

W = UV

�

. Then clearly V is unitary and V and W are k-simple. In fact, since V is unitary and U is

�-close to unitary, W is also �-close to unitary. Moreover, W is close to being k+ 1-simple as desired. We
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will show below that the k+1

st

row of W satis�es kW

k+1

� e

T

k+1

k � 2�, and that the entries of the k+1

st

column of W satisfy kw

j;k+1

k � 6� for j 6= k + 1.

So, let X be the d� d, k + 1-simple matrix such that

x

1;1

= 1; x

j;1

= 0 for j 6= 1; x

1;j

= 0 for j 6= 1; x

j;l

= w

j;l

for j; l > l+ 1

It follows from our bounds on the norm of the �rst row of W and on the entries of the �rst column of W

that kW �Xk � 2�+6

p

d�. Since W is �-close to unitary, we can then conclude that X is 3�+6

p

d�-close

to unitary.

Unfortunately, we cannot compute the entries ofW = UV

�

exactly. Instead, appealing to Lemma 6.1.4

on page 30, we compute them to within �=d to obtain a matrix

^

W such that k

^

W �Wk � �. Let's use

the entries of

^

W to de�ne matrix

^

X analogous to X . Using the triangle inequality, it is easy to see

that kW �

^

Xk � 3� + 6

p

d� and

^

X is 4� + 6

p

d�-close to unitary. If we are willing to incur an error of

kW �

^

Xk � 3�+6

p

d�, then we are left with the problem of approximating the k+1-simple

^

X by a product

of near-trivial matrices. Therefore, we have reduced the problem of approximating the k-simple matrix

U by near-trivial matrices to the problem of approximating the k + 1-simple matrix

^

X by near-trivial

matrices while incurring two sources of error:

1. An error of kW �

^

Xk � 3� + 6

p

d�, since we are approximating

^

X instead of W .

2. The new matrix

^

X is only 4� + 6

p

d�-close to unitary.

Let �

0

= 10

p

d�. Clearly �

0

is an upper-bound on both the sources of error cited above. Therefore,

the total error in the approximation is just

P

d

j=1

(10

p

d)

j

� � 2(10

p

d)

d

�. The last inequality follows since

10

p

d � 2 and therefore the sum can be bounded by a geometric series. Therefore, the total error in the

approximation is bounded by �, since by assumption U is �-close to unitary for � =

�

2(10

p

d)

d

.

It is easy to see that this algorithm runs in time polynomial in d and log 1=�. Our algorithm consists of

d iterations of �rst calling the algorithm from Lemma 6.2.2 on page 31 to compute V and then computing

the matrix

^

X. Since the each iteration takes time polynomial in d and log

(10

p

d)

d

�

, these d calls take a total

time polynomial in d and log 1=�.

Finally, we show as required that the k + 1

st

row of W satis�es kW

k+1

� e

T

k+1

k � 2�, and that the

entries of the k + 1

st

column of W satisfy kw

j;k+1

k � 6� for j 6= k + 1. To see this, �rst recall that

the lower dimension V satis�es kV Z

T

1

� kZ

1

ke

1

k � � where Z

1

is the �rst row of the lower right k � k

submatrix of U . Therefore, the higher dimension V satis�es kV U

T

k+1

� kU

k+1

ke

k+1

k � �. Then, since

1 � � � kU

k+1

k � 1 + �, it follows that kV U

T

k+1

� e

k+1

k � 2�. Therefore, the k + 1

st

row of W satis�es

kW

k+1

� e

T

k+1

k � 2�.

Next, we will show that this implies that the entries of the k + 1

st

column of W satisfy kw

j;k+1

k �

6� for j 6= k + 1. To see this, �rst notice that since V is unitary and U is delta close to unitary, W is also

�-close to unitary. This means that, by Statement 5 of Lemma 6.1.3 on page 30

�

�

�
W

k+1

W

�

j

�

�

�
� 2�+3�

2

. Now

let us use the condition kW

k+1

� e

T

k+1

k � 2�. This implies that jw

k+1;k+1

j � 1� 2�. Also, let us denote by

^

W

j

the d�1 dimensional row vector arrived at by dropping w

j;k+1

fromW

j

. Then the condition thatW

k+1

is close to e

T

k+1

also implies that k

^

W

k+1

k � 2�. Also, the fact that W is �-close to unitary implies that

k

^

W

j

k � 1 + �. Putting all this together, we have 2� + 3�

2

�

�

�

�
W

k+1

W

�

j

�

�

�
=

�

�

�
w

k+1;k+1

w

�

j;k+1

+

^

W

k+1

^

W

j

�

�

�

�
�

�

�

�
w

k+1;k+1

w

�

j;k+1

�

�

�
�

�

�

�

^

W

k+1

^

W

j

�

�

�

�
. Therefore

�

�

�
w

k+1;k+1

w

�

j;k+1

�

�

�
� 2�+3�

2

+

�

�

�

^

W

k+1

^

W

j

�

�

�

�
� 2�+3�

2

+2�(1+�) �

4� + 5�

2

. Therefore jw

j;k+1

j �

4�+5�

2

1�2�

. Finally, since we may assume that � � 1=10, we have jw

j;k+1

j � 6�.
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2

6.3 Carrying out near-trivial transformations

In this section, we show how to construct a single QTM that can carry out, at least approximately, any

speci�ed near-trivial transformation. Since a near-trivial transformation can apply an arbitrary rotation,

either between two dimensions or in the phase of a single dimension, we must �rst show how a �xed

rotation can be used to e�ciently approximate an arbitrary rotation. Note that a single copy of this �xed

rotation gives the only "non-classical" amplitudes (those other than 0; 1) in the transition function of the

universal QTM constructed below. See Adleman, et. al. [1] and Solovay and Yao [40] for the constructions

of universal QTMs whose amplitudes are restricted to a small set of rationals.

Lemma 6.3.1 Let R = 2�

P

1

i=1

2

�2

i

Then there is a deterministic algorithm taking time polynomial in log 1=� and the length of the input

which on input �; � with � 2 [0; 2�] and � > 0, produces integer output k bounded by a polynomial in 1=�

such that

jkR� �j mod 2� � �

Proof. First, we describe a procedure for computing such a k.

Start by calculating n, a power of 2, such that � >

2�

2

n�1

. Next, approximate

�

2�

as a fraction with

denominator 2

n

. In other words, �nd an integer m 2 [1; 2

n

] such that

�

�

�

�

�

2�

�

m

2

n

�

�

�

�

�

1

2

n

Then we can let k = m2

n

because

m2

n

Rmod 2� =

 

2�m

1

X

i=1

2

n�2

i

!

mod 2�

=

0

@

2�m

1

X

i=logn+1

2

n�2

i

1

A

mod 2�

=

0

@

2�m

2

n

+ 2�m

1

X

i=logn+2

2

n�2

i

1

A

mod 2�

and since

m

1

X

i=logn+2

2

n�2

i

� m2

n�4n+1

� 2

n�3n+1

� 2

�2n+1
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we have

jm2

n

R� �j mod 2� �

�

�

�

�

m2

n

R�

2�m

2

n

�

�

�

�

mod 2� +

�

�

�

�

2�m

2

n

� �

�

�

�

�

�

2�

2

2n�1

+

2�

2

n

<

2�

2

n�1

< �

2

At this point it should be clear that a single QTM can carry out any sequence of near-trivial trans-

formations to any desired accuracy �. We formalize this notion below, by showing that there is a QTM

that accepts as input the descriptions of a sequence of near-trivial transformations, and an error bound �,

and applies an � approximation of the product of these transformations on any given superposition. The

formalization is quite tedious, and the reader is encouraged to skip the rest of the subsection if the above

statement is convincing.

Below, we give a formal de�nition of what it means for a QTM to carry out a transformation.

De�nition 6.3.2 Let � [ # be the alphabet of the �rst track of QTM M . Let V be the complex vector

space of superpositions of k length strings over �. Let U be a linear transformation on V, and let x

U

be a string that encodes U (perhaps approximately). We say that x

U

causes M to carry out the k cell

transformation U with accuracy � in time T if for every j�i 2 V, on input j�ijx

U

ij�i, M halts in exactly T

steps with its tape head back in the start cell and with �nal superposition (U

0

j�i)jxi, where U

0

is a unitary

transformation on V such that kU � U

0

k � �. Moreover, for a family A of transformations, we say that M

carries out these transformations in polynomial time if T is bounded by a polynomial in 1=� and the length

of the input.

In the case that A contains transformations that are not unitary, we say that M carries out the set of

transformations A with closeness factor c if for any � > 0 and any U 2 A which is c�-close to unitary,

there is a unitary transformation U

0

with kU

0

� Uk � � such that jx

U

ij�i causes M to carry out the

transformation U

0

in time which is polynomial in 1=� and the length of its input.

Recall that a near-trivial transformation written as x; y; � calls for a rotation between dimensions x

and y of angle � if x 6= y and a phase shift of e

i�

to dimension x otherwise. So, we want to build a

stationary, normal form QTM that takes as input w; x; y; �; � and transforms w according to the near-

trivial transformation described by x; y; � with accuracy �. We also need this QTM's running time to

depend only on the length of w but not its value. If this is the case then the machine will also halt on an

initial superposition of the form j�ijx; y; �ij�i where j�i is a superposition of equal-length strings w.

Lemma 6.3.3 There is a stationary, normal form QTM M with �rst track alphabet f#; 0; 1g that carries

out the set of near-trivial transformations on its �rst track in polynomial time.

Proof. Using the encoding x; y; � for near-trivial transformations described above in x6.2, we will show

how to construct QTMs M

1

and M

2

with �rst track alphabet f#; 0; 1g such thatM

1

carries out the set of

near-trivial rotations on its �rst track in polynomial time, and M

2

carries out the set of near-trivial phase

shifts on its �rst track in polynomial time. Using the Branching Lemma (page pagerefbranching.lemma
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on these two machines, we can construct a QTM that behaves correctly provided there is an extra track

containing a 1 when x = y and we have a phase shift to perform, and containing a 0 when x 6= y and we

have a rotation to perform. We can then construct the desired QTM M by dovetailing before and after

with machines that compute and erase this extra bit based on x; y. The Synchronization Theorem lets us

construct two such stationary, normal form QTMs whose running times depend only on the lengths of x

and y. Therefore, this additional computation will not disturb the synchronization of the computation.

Next, we show how to construct the QTM M

1

to carry out near-trivial rotations.

It is easy to construct a QTM which on input b, applies a rotation by angle � between j0i and j1i, while

leaving b alone if b = #. But Lemma 6.3.1 above tells us that we can achieve any rotation by applying

the single rotation R at most a polynomial number of times. Therefore the following �ve step process will

allow us to apply a near-trivial rotation. We must be careful that when we apply the rotation, the two

computational paths with b 2 f0; 1g di�er only in b since otherwise they will not interfere.

1. Calculate k such that k Rmod 2� 2 [� � �; � + �].

2. Transform w; x; y into b; x; y; z where b = 0 if w = x, b = 1 if w = y and w 6= x, and b = # otherwise,

and where z = w if b = # and z is the empty string otherwise.

3. Run the rotation applying machine k times on the �rst bit of z.

4. Reverse Step 2 transforming #; x; y; w with w 6= x; y into w; x; y, transforming 0; x; y into x; x; y, and

transforming 1; x; y with x 6= y into y; x; y.

5. Reverse Step 1 erasing k.

We build the desired QTM M by constructing a QTM for each of these �ve steps and then dovetailing

them together.

First, notice that the length of the desired output of Steps 1,2,4, and 5 can be computed just from the

length of the input. Therefore, using Lemmas 6.3.1 from page 34 and the Synchronization Theorem from

page 17, we can build polynomial time, stationary, normal form QTMs for Steps 1,2,4, and 5 which run in

time which depends on the lengths of w; x; y, but not their particular values.

To complete the construction we must build a machine for the rotation with these same properties.

The stationary, normal form QTM R with alphabet f#; 0; 1g, state set fq

0

; q

1

; q

f

g and transition function

de�ned by

# 0 1

q

0

j#ijq

1

ijLi cosRj0ijq

1

ijLi � sinRj0ijq

1

ijLi

+ sinRj1ijq

1

ijLi +cosRj1ijq

1

ijLi

q

1

j#ijq

f

ijRi

q

f

j#ijq

0

ijRi j0ijq

0

ijRi j1ijq

0

ijRi

runs for constant time and applies rotation R between start cell contents j0i and j1i while leaving other

inputs unchanged. Inserting R for the special state in the reversible TM from the Looping Lemma, we

can construct a normal form QTM which applies rotation kR between inputs j0; ki and j1; ki while leaving

input j#w; ki unchanged. Since the machine we loop on is stationary and takes constant time regardless

of its input, the resulting looping machine is stationary and takes time depending only on k.

Finally, with appropriate use of Lemmas 4.2.1 on page 17 and 4.2.2 on page 17 we can dovetail these

�ve stationary, normal form QTMs to achieve a stationary, normal form QTM M that implements the
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desired computation. Since, the phase application machine run in time which is independent of w, x, and

y, and the other four run in time which depends only on the length of w, x, and y, the running time of M

depends on the length of w, x, and y but not on their particular values. Therefore it halts with the proper

output not only if run on an input with a single string w, but also if run on an initial superposition with

di�erent strings w but with the same near-trivial transformation and �.

The QTM M

2

to carry out near-trivial phase shifts is the same as M

1

except that we replace the

transition function of the simple QTM which applies a phase shift rotation by angle R as follows giving a

stationary QTM which applies phase shift e

iR

if b is a 0 and phase shift 1 otherwise.

# 0 1

q

0

j#ijq

1

ijLi e

iR

j0ijq

1

ijLi j1ijq

1

ijLi

q

1

j#ijq

f

ijRi

q

f

j#ijq

0

ijRi j0ijq

0

ijRi j1ijq

0

ijRi

The proof that this gives the desired M

2

is identical to the proof for M

1

and is omitted. 2

6.4 Carrying out a unitary transformation on a QTM

Now that we can approximate a unitary transformation by a product of near-trivial transformations, and

we have a QTM to carry out the latter, we can build a QTM to apply an approximation of a given unitary

transformation.

Theorem 6.4.1 (Unitary Transformation Theorem) There is a stationary, normal form QTM M

with �rst track alphabet f#; 0; 1g that carries out the set of all transformations on its �rst track in poly-

nomial time with required closeness factor

1

2(10

p

d)

d

for transformations of dimension d.

Proof. Given an � > 0 and a transformation U of dimension d = 2

k

which is

�

2(10

p

d)

d

-close to unitary, we

can carry out U to within � on the �rst k cells of the �rst track using the following steps.

1. Calculate and write on clean tracks

�

2n

, and a list of near-trivial U

1

; : : : ; U

n

such that kU � U

n

� � �U

1

k �

�=2, and such that n is polynomial in 2

k

.

2. Apply the list of transformations U

1

; : : : ; U

n

, each to within

�

2n

.

3. Erase U

1

; : : : ; U

n

, and

�

2n

.

We can construct a QTM to accomplish these steps as follows. First, using Lemma 6.2.3 on page 32

and the Synchronization Theorem on page 17, we can build polynomial time, stationary, normal form

QTMs for Steps 1 and 3 which run in time which depends only on U and �. Finally, we can build a

stationary, normal form QTM to accomplish Step 2 in time which is polynomial in 2

k

and 1=� as follows.

We have a stationary, normal form QTM constructed in Lemma 6.3.3 on page 35 to apply any speci�ed

near-trivial transformation to within a given bound �. We dovetail this with a machine, constructed using

the Synchronization Theorem on page 17, that rotates U

1

around to the end of the list of transformations.

Since the resulting QTM is stationary, and takes time which depends only on � and the U

i

, we can insert

it for the special state in the machine of the Looping Lemma to give the desired QTM for Step 2.
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With appropriate use of Lemmas 4.2.1 on page 17 and 4.2.2 on page 17, dovetailing the QTMs for

these three steps gives the desired M

0

. Since the running times of the three QTMs are independent of the

contents of the �rst track, so is the running time of M

0

. Finally, notice that when we run M

0

we apply to

the �rst k cells of the �rst track, we apply a unitary transformation U

0

with

kU

0

� Uk � kU

0

� U

n

� � �U

1

k+ kU

n

� � �U

1

� Uk � n

�

2n

+

�

2

� �

as desired. 2

7 Constructing a universal QTM

A universal QTM must inevitably decompose one step of the simulated machine using many simple steps.

A step of the simulated QTM is a mapping from the computational basis to a new orthonormal basis. A

single step of the universal QTM can only map some of the computational basis vectors to their desired

destinations. In general this partial transformation will not be unitary, because the destination vectors will

not be orthogonal to the computational bases which have not yet been operated on. The key construction

that enables us to achieve a unitary decomposition is the Unidirection Lemma. Applying this lemma, we

get a QTM whose mapping of the computational basis has the following property; there is a decomposition

of the space into subspaces of constant dimension, such that each subspace gets mapped onto another.

More speci�cally, we saw in the previous section that we can construct a QTM that carries out to a

close approximation any speci�ed unitary transformation. On the other hand, we have also noted that

the transition function of a unidirectional QTM speci�es a unitary transformation from superpositions of

current state and tape symbol to superpositions of new symbol and state. This means a unidirectional

QTM can be simulated by repeatedly applying this �xed-dimensional unitary transformation followed by

the reversible deterministic transformation that moves the simulated tape head according to the new state.

So, our universal machine will �rst convert its input to a unidirectional QTM using the construction of the

Unidirection Lemma, and then simulate this new QTM by repeatedly applying this unitary transformation

and reversible deterministic transformation.

Since we wish to construct a single machine that can simulate every QTM, we must build it in such

a way that every QTM can be provided as input. Much of the de�nition of a QTM is easily encoded:

We can write down the size of the alphabet �, with the �rst symbol assumed to be the blank symbol,

and we can write down the size of the state set Q, with the �rst state assumed to be the start state. To

complete the speci�cation, we need to describe the transition function � by giving the 2 card(�)

2

card(Q)

2

amplitudes of the form �(i

1

; i

2

; i

3

; i

4

; d). If we had restricted the de�nition of a QTM to include only

machines with rational transition amplitudes, then we could write down each amplitude explicitly as the

ratio of two integers. However, we have instead restricted the de�nition of a QTM to include only those

machines with amplitudes in

~

C, which means that for each amplitude there is a deterministic algorithm

which computes the amplitude's real and imaginary parts to within 2

�n

in time polynomial in n. We will

therefore specify � by giving a deterministic algorithm that computes each transition amplitude to within

2

�n

in time polynomial in n.

Since the universal QTM we will construct returns its tape head to the start cell after simulating each

step of the desired machine, it will incur a slowdown which is (at least) linear in T . We conjecture that

with more care a universal QTM can be constructed whose slowdown is only polylogarithmic in T .

Theorem 7.0.2 There is a normal form QTMM such that for any well-formed QTM M , any � > 0, and

any T , M can simulate M with accuracy � for T steps with slowdown polynomial in T and 1=�.
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Proof. As described above, our approach will be �rst to use the construction of the Unidirection Lemma to

build a unidirectional QTMM

0

which simulatesM with slowdown by a factor of 5, and then to simulateM

0

.

We will �rst describe the simulation ofM

0

, and then return to describe the easily computable preprocessing

that needs to be carried out.

So, suppose M = (�; Q; �) is a unidirectional QTM that we wish to simulate on our universal QTM.

We start by reviewing the standard technique of representing the con�guration of a target TM on the

tape of a universal TM. We will use one track of the tape of our universal QTM to simulate the current

con�guration ofM . Since the alphabet and state set ofM could have any �xed size, we will use a series of

log card(Q� �) cells of our tape, referred to as a \supercell", to simulate each cell of M . Each supercell

holds a pair of integers p; � where � 2 [1; card(�)] represents the contents of the corresponding cell of M ,

and p 2 [0; card(Q)] represents the state ofM , if its tape head is scanning the corresponding cell and p = 0

otherwise. Since the tape head of M can only move distance T away from the start cell in time T , we only

need supercells for the 2T + 1 cells at the center of M 's tape (and we place markers to denote the ends).

Now we know that if we ignore the update direction, then � gives a unitary transformation U of

dimension d = card(Q� �) from superpositions of current state and tape symbol to superpositions of

new state and symbol. So, we can properly update the superposition on the simulation tracks if we �rst

apply U to the current state and symbol of M , and then move the new state speci�cation left or right one

supercell according to the direction in which that state of M can be entered.

We will therefore build a QTM STEP that carries out one step of the simulation as follows. In addition

to the simulation track, this machine will is provided as input a desired accuracy 
, a speci�cation of U

(which is guaranteed to be




2(10

p

d)

d

-close to the unitary), and a string s 2 f0; 1g

card(Q)

which gives the

direction in which each state of M can be entered. The machine STEP operates as follows.

1. Transfer the current state and symbol p; � to empty work space near the start cell, leaving a special

marker in their place.

2. Apply U to p; � to within 
, transforming p; � into a superposition of new state and symbol q; � .

3. Reverse Step 1, transferring q; � back to the marked, empty supercell (and emptying the work space).

4. Transfer the state speci�cation q one supercell to the right or left depending whether the q

th

bit of

s is a 0 or 1.

Using the Synchronization Theorem on page 17, we can construct stationary, normal form QTMs for

Steps 1, 3, and 4 which take time which is polynomial in T and (for a �xed M) depends only on T . Step 2

can be carried out in time polynomial in card(�); card(Q); and 
 with the unitary transformation applying

QTM constructed in the Unitary Transformation Theorem. With appropriate use of Lemmas 4.2.1 on

page 17 and 4.2.2 on page 17, dovetailing these four normal form QTMs gives us the desired normal form

QTM STEP .

Since each of the four QTMs takes time which depends (for a �xed M) only on T and � so does STEP .

Therefore, if we insert STEP for the special state in the reversible TM constructed in the Looping Lemma,

and provide additional input T , the resulting QTM STEP

0

will halt after time polynomial in T and 1=�

after simulating T steps of M with accuracy T�.

Finally, we construct the desired universal QTM M by dovetailing STEP

0

after a QTM which carries

out the necessary preprocessing. In general, the universal machine must simulate QTMs which are not

unidirectional. So, the preprocessing for desired QTMM , desired input x, and desired simulation accuracy
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� consists of �rst carrying out the construction of Unidirection Lemma to build a unidirectional QTM M

0

which simulates M with slowdown by a factor of 5

3

. The following inputs are then computed for STEP

0

.

1. The proper 2T + 1 supercell representation of the initial con�guration of M

0

with input x.

2. The d-dimensional transformation U for M

0

with each entry written to accuracy

�

40T (10

p

d)

d+2

3. The string of directions s for M

0

.

4. The desired number of simulation steps 5T , and the desired accuracy 
 = �=40T .

It can be veri�ed that each of these inputs to M can be computed in deterministic time which is

polynomial in T , 1=�, and the length of the input. If the transformation U is computed to the speci�ed

accuracy, the transformation actually provided to STEP will be within

�

40T (10

p

d)

d

of the desired unitary

U , and so will be

�

40T (10

p

d

d

)

-close to unitary as required for the operation of STEP . So, each time STEP

applies runs with accuracy �=40T , it will have applied a unitary transformation which is within �=20T

of U . Therefore, after 5T runs of STEP , we will have applied a unitary transformation which is within

�=4 of the 5T step transformation of M

0

. This means that observing the simulation track of M after

it has completed will give a sample from a distribution which is within total variation distance � of the

distribution sampled from by observing M on input x at time T . 2

8 The computational power of QTMs

In this section, we explore the computational power of QTMs from a complexity theoretic point of view. It

is natural to de�ne quantum analogues of classical complexity classes [13]. In classical complexity theory,

BPP is regarded as the class of all languages that are e�ciently computable on a classical computer.

The quantum analog of BPP | BQP (bounded-error quantum polynomial time) | should similarly be

regarded as the class of all languages that are e�ciently computable on a QTM.

8.1 Accepting languages with QTMs

De�nition 8.1.1 Let M be a stationary, normal form, multi-track QTM M whose last track has alphabet

f#; 0; 1g. If we run M with string x on the �rst track and the empty string elsewhere, wait until M halts

4

,

and then observe the last track of the start cell, we will see a 1 with some probability p. We will say that

M accepts x with probability p and rejects x with probability 1� p.

Consider any language L � (��#)

�

.

We say that QTM M exactly accepts the L if M accepts every string x 2 L with probability 1 and

rejects every string x 2 (��#)

�

� L with probability 1.

We de�ne the class EQP (exact or error-free quantum polynomial time) as the set of languages which

are exactly accepted by some polynomial time QTM. More generally, we de�ne the class EQTime (T (n))

3

Note that the transition function of M

0

is again speci�ed with a deterministic algorithm, which depends on the algorithm

for the transition function of M

4

This can be accomplished by performing a measurement to check whether the machine is in the �nal state q

f

. Making

this partial measurement does not have any other e�ect on the computation of the QTM
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as the set of languages which are exactly accepted by some QTM whose running time on any input of length

n is bounded by T (n).

A QTM accepts the language L � (� � #)

�

with probability p if M accepts with probability at least

p every string x 2 L and rejects with probability at least p every string x 2 (� � #)

�

� L. We de�ne

the class BQP (bounded-error quantum polynomial time) as the set of languages which are accepted with

probability 2=3 by some polynomial time QTM. More generally, we de�ne the class BQTime (T (n)) as the

set of languages which are accepted with probability 2=3 by some QTM whose running time on any input

of length n is bounded by T (n).

The limitation of considering only stationary, normal form QTMs in these de�nitions is easily seen not

to limit the computational power by appealing to the stationary, normal form universal QTM constructed

in Theorem 7.0.2 on page 38.

8.2 Upper and lower bounds on the power of QTMs

Clearly EQP � BQP . Since reversible TMs are a special case of QTMs, Bennett's results imply that

P � EQP and BPP � BQP . We include these two simple proofs for completeness.

Theorem 8.2.1 P � EQP

Proof. Let L be a language in P . Then there is some polynomial time deterministic algorithm that

on input x produces output 1 if x 2 L and 0 otherwise. Appealing to the Synchronization Theorem on

page pagerefdet.synchronized, there is therefore a stationary, normal form QTM running in polynomial

time which on input x produces output x; 1 if x 2 L and x; 0 otherwise. This is an EQP machine accepting

L. 2

Theorem 8.2.2 BPP � BQP

Proof. Let L be a language in BPP . Then there must be a polynomial p(n) and a polynomial time

deterministic TM M with 0; 1 output which satisfy the following. For any string x of length n, if we call

S

x

the set of 2

p(n)

bits computed by M on the inputs x; y with y 2 f0; 1g

p(n)

, then the proportion of 1's in

S

x

is at least 2=3 when x 2 L and at most 1=3 otherwise. We can use a QTM to decide whether a string

x in the language L by �rst breaking into a superposition split equally among all jxijyi and then running

this deterministic algorithm.

First, we dovetail a stationary, normal form QTM which takes input x to output x; 0

p(n)

with a

stationary, normal form QTM constructed as in Theorem 8.4.1 below which applies a Fourier transform to

the contents of its second track. This gives us a stationary, normal form QTM which on input x produces

the superposition

P

y2f0;1g

p(n)

1

2

p(n)=2

jxijyi. Dovetailing this with a synchronized, normal form version of

M built according to the Synchronization Theorem on page pagerefdet.synchronized gives a polynomial

time QTM which on input x produces a �nal superposition

X

y2f0;1g

p(n)

1

2

p(n)=2

jxijyijM(x; y)i

Since the proportion of 1's in S

x

is at least 2=3 if x 2 L and at most 1=3 otherwise, observing the bit on

the third track will give the proper classi�cation for string x with probability at least 2=3. Therefore, this
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is a BQP machine accepting the language L. 2

Clearly BQP is in exponential time. The next result gives the �rst non-trivial upper bound on BQP .

Theorem 8.2.3 BQP � PSPACE

Proof. Let M = (�; Q; �) be a BQP machine with running time p(n).

According to Theorem 3.4.3 on page 13, any QTM M

0

which is

�

24 card(�) card(Q)p(n)

-close

to M will simulate M for p(n) steps with accuracy �. If we simulate M with accuracy 1=12, then the

success probability will still be at least 7=12. Therefore, we need only work with the QTM M

0

where each

transition amplitude from M is computed to its �rst log (288 card(�) card(Q)p(n)) bits.

Now the amplitude of any particular con�guration at time T is the sum of the amplitudes of each

possible computational path of M

0

of length T from the start con�guration to the desired con�guration.

The amplitude of each such path can be computed exactly in polynomial time. So, if we maintain a stack

of at most p(n) intermediate con�gurations we can carry out a depth-�rst search of the computational tree

to calculate the amplitude of any particular con�guration using only polynomial space (but exponential

time).

Finally, we can determine whether a string x of length n is accepted by M by computing the sum of

squared magnitudes at time p(n) of all con�gurations thatM

0

can reach that have a 1 in the start cell and

comparing this sum to 7=12. Clearly the only reachable \accepting" con�gurations of M

0

are those with a

1 in the start cell and blanks in all but the 2p(n) cells within distance p(n) of the start cell. So, using only

polynomial space, we can step through all of these con�gurations computing a running sum of the their

squared magnitudes. 2

Following Valiant's suggestion [43], the upper bound can be further improved to P

]P

. This proof

can be simpli�ed by using a theorem from [9] which shows how any BQP machine can be turned into a

\clean" version M that on input x produces a �nal superposition with almost all of its weight on x;M(x)

where M(x) is a 1 if M accepts x and a 0 otherwise. This means we need only estimate the amplitude of

this one con�guration in the �nal superposition of M .

Now, the amplitude of a single con�guration can be broken down not only into the sum of the amplitudes

of all of the computational paths that reach it, but also into the sum of positive real contributions, the

sum of negative real contributions, the sum of positive imaginary contributions, and the sum of negative

imaginary contributions. We will show that each of these four pieces can be computed using a ]P machine.

Recall that ]P is the set of functions f mapping strings to integers for which there exists a polynomial

p(n) and a language L 2 P such that for any string x, the value f(x) is the number of strings y of length

p(jxj) for which xy is contained in L.

Theorem 8.2.4 If the language L is contained in the class BQTime (T (n)) with T (n) > n, with T (n)

time-constructible, then for any � > 0, there is a QTM M

0

which accepts L with probability 1� � and has

the following property. When run on input x of length n, M

0

runs for time bounded by cT (n), where c is

a polynomial in log 1=�, and produces a �nal superposition in which jxijL(x)i, with L(x) = 1 if x 2 L and

0 otherwise, has squared magnitude at least 1� �.
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Theorem 8.2.5 BQP � P

]P

Proof. Let M = (�; Q; �) be a BQP machine with observation time p(n). Appealing to Theorem 8.2.4

above, we can without loss of generality that M is a `clean BQP machine'. i.e. on any input x, at time

p(jxj), the squared magnitude of the �nal con�guration with output x;M(x) is at least 2=3.

Now as above, we will appeal to Theorem 3.4.3 on page 13 which tells us that if we work with the

QTM M

0

where each amplitude of M is computed to its �rst b = log (288 card(�) card(Q)p(n)) bits, and

we run M

0

on input x, then the squared magnitude at time p(jxj) of the �nal con�guration with output

x;M(x) will be at least 7=12.

We will carry out the proof by showing how to use an oracle for the class ]P to e�ciently compute

with error magnitude less than 1=36 the amplitude of the �nal con�guration x; 1 of M

0

at time T . Since

the true amplitude has magnitude at most 1, the squared magnitude of this approximated amplitude must

be within 1=12 of the squared magnitude of the true amplitude. To see this, just note that if � is the true

amplitude, and k�

0

� �k < 1=36, then

�

�

�
k�k

2

� k�

0

k

2

�

�

�
� k�

0

� �k

2

+ 2k�kk�

0

� �k � 1=36(2+ 1=36) < 1=12

Since the success probability ofM

0

is at least 7=12, comparing the squared magnitude of this approximated

amplitude to 1=2 lets us correctly classify the string x.

We will now show how to approximate the amplitude described above. First, notice that the amplitude

of a con�guration at time T is the sum of the amplitudes of each computational path of length T from the

start con�guration to the desired con�guration. The amplitude of any particular path is the product of the

amplitudes in the transition function ofM

0

used in each step along the path. Since each amplitude consists

of a real part and an imaginary part, we can think of this product as consisting of the sum of 2

T

terms

each of which is either purely real or purely imaginary. So, the amplitude of the desired con�guration at

time T is the sum of these 2

T

terms over each path. We will break this sum into four pieces, the sum of

the positive real terms, the sum of the negative real terms, the sum of the positive imaginary terms, and

the sum of the negative imaginary terms, and we will compute each to within error magnitude less than

1=144 with the aid of a ]P algorithm. Taking the di�erence of the �rst two and the last two will then give

us the amplitude of the desired con�guration to with error of magnitude at most 1=36 as desired.

We can compute the sum of the positive real contributions for all paths as follows. Suppose for some

�xed constant c which is polynomial in T we are given the following three inputs, all of length polynomial

in T : a speci�cation of a T step computational path p of M

0

, a speci�cation t of one of the 2

T

terms,

and an integer w between 0 and 2

cT

. Then it is easy to see that we could decide in deterministic time

polynomial in T whether p is really a path from the start con�guration of M on x to the desired �nal

con�guration, whether the term t is real and positive, and whether the term t

th

term of the amplitude for

path p is greater than w=2

cT

. If we �x a path p and term t satisfying these constraints, then the number

of w for which this algorithm accepts, divided by 2

cT

, is within 1=2

cT

of the value of the t

th

for path p.

So, if we �x only a path p satisfying these constraints, then the number of t; w for which the algorithm

accepts, divided by 2

cT

, is within 1=2

(c�1)T

of the sum of the positive real terms for path p. Therefore,

the number of p; t; w for which the algorithm accepts, divided by 2

cT

, is within N=2

(c�1)T

of the sum of

all of the positive real terms of all of the T step paths of M

0

from the start con�guration to the desired

con�guration. Since there are at most 2card(�)card(Q) possible successors for any con�guration in a legal

path of M , choosing c > 1 +

log 144

T

+

2card(�)card(Q) logT

T

gives N=2

(c�1)T

< 1=144 as desired. Similar

reasoning gives P

]P

algorithms for approximating each of the remaining three sums of terms. 2
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8.3 Oracle QTMs

In this subsection and the next, we will assume without loss of generality that the TM alphabet for each

track is f0; 1;#g. Initially all tracks are blank except that the input track contains the actual input

surrounded by blanks. We will use � to denote f0; 1g.

In the classical setting, an oracle may be described informally as a device for evaluating some Boolean

function f : �

�

! �, on arbitrary arguments, at unit cost per evaluation. This allows to formulate

questions such as \if f were e�ciently computable by a TM, which other functions (or languages) could

be e�ciently computed by TMs?". In this section we de�ne oracle QTMs so that the equivalent question

can be asked in the quantum setting.

An oracle QTM has a special query track on which the machine will place its questions for the oracle.

Oracle QTMs have two distinguished internal states: a pre-query state q

q

and a post-query state q

a

.

A query is executed whenever the machine enters the pre-query state with a single (non-empty) block of

non-blank cells on the query track

5

. Assume that the non-blank region on the query tape is in state jx � bi

when the pre-query state is entered, where x 2 �

�

, b 2 �, and \�" denotes concatenation. Let f be the

Boolean function computed by the oracle. The result of the oracle call is that the state of the query tape

becomes jx � b� f(x)i, where \�" denotes the exclusive-or (addition modulo 2), after which the machine's

internal control passes to the post-query state. Except for the query tape and internal control, other parts

of the oracle QTM do not change during the query. If the target bit jbi was supplied in initial state j0i,

then its �nal state will be jf(x)i, just as in a classical oracle machine. Conversely, if the target bit is

already in state jf(x)i, calling the oracle will reset it to j0i, a process known as \uncomputing", which is

essential for proper interference to take place.

The power of quantum computers comes from their ability to follow a coherent superposition of com-

putation paths. Similarly oracle QTMs derive great power from the ability to perform superpositions of

queries. For example, an oracle for Boolean function f might be called when the query tape is in state

j ; 0i =

P

x

�

x

jx; 0i, where �

x

are complex coe�cients, corresponding to an arbitrary superposition of

queries with a constant j0i in the target bit. In this case, after the query, the query string will be left in

the entangled state

P

x

�

x

jx; f(x)i.

That the above de�nition of oracle QTMs yields unitary evolutions is self-evident if we restrict ourselves

to machines that are well-formed in other respects, in particular evolving unitarily as they enter the pre-

query state and leave the post-query state.

Let us de�ne BQTime (T (n))

O

as the sets of languages accepted with probability at least 2=3 by some

oracle QTM M

O

whose running time is bounded by T (n). This bound on the running time applies to

each individual input, not just on the average. Notice that whether or not M

O

is a BQP -machine might

depend upon the oracle O|thus M

O

might be a BQP -machine while M

O

0

might not be one.

We have carefully de�ned oracle QTMs so that the same technique used to reverse a QTM in the

Reversal Lemma can also be used to reverse an oracle QTM.

Lemma 8.3.1 If M is a normal form, unidirectional oracle QTM then there is a normal form oracle

QTM M

0

such that for any oracle O, M

0O

reverses the computation of M

O

while taking two extra time

steps.

Proof. Let M = (�; Q; �) be a normal form, unidirectional oracle QTM with initial and �nal states q

0

and q

f

and with query states q

q

6= q

f

and q

a

. We construct M

0

from M exactly as in the proof of the

5

Since a QTM must be careful to avoid leaving around intermediate computations on its tape, requiring that the query

track contain only the query string adds no further di�culty to the construction of oracle QTMs
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Reversal Lemma. We further give M

0

the same query states q

q

; q

a

as M , but with roles reversed. Since M

is in normal form, and q

q

6= q

f

, we must have q

a

6= q

0

. Recall that the transition function of M

0

is de�ned

so that for q 6= q

0

�

0

(q; �) =

X

p;�

�(p; �; �; q; d

q

)

�

j�ijpij

^

d

p

i

Therefore, since state q

q

always leads to state q

a

in M , state q

a

always leads to state q

q

in M

0

. Therefore

M

0

is an oracle QTM.

Next, note that since the tape head position is irrelevant for the functioning of the oracle, the operation

of the oracle in M

0O

reverses the operation of the oracle in M

O

. Finally, the same argument used in the

Reversal Lemma can be used again here to prove that M

0O

is well-formed and that M

0O

reverses the

computation of M

O

while taking two extra time steps. 2

The above de�nition of a quantum oracle for an arbitrary Boolean function will su�ce for the purposes

of the present paper, but the ability of quantum computers to perform general unitary transformations

suggests a broader de�nition, which may be useful in other contexts. For example, oracles that perform

more general, non-Boolean unitary operations have been considered in computational learning theory [15],

and used to obtain large separations [32] between quantum and classical relativized complexity classes.

See [9] for a discussion of more general de�nitions of oracle quantum computing.

8.4 Fourier Sampling and the power of QTMs

In this section we give evidence that QTMs are more powerful than bounded-error probabilistic TMs. We

de�ne the recursive Fourier sampling problem which on input the program for a boolean function takes on

value 0 or 1. We show that the recursive Fourier sampling problem is in BQP . On the other hand, we

prove that if the boolean function is speci�ed by an oracle, then the recursive Fourier sampling problem

is not in BQTime (n

o(logn)

). This result provided the �rst evidence that QTMs are more powerful than

classical probabilistic TMs with bounded error probability [11].

One could ask what the relevance of these oracle results is, in view of the non-relativizing results on

probabilistically checkable proofs [36, 3]. Moreover, Arora et al. [2] make the case that the fact that the P

versusNP question relativizes does not imply that the question \cannot be resolved by current techniques

in complexity theory". On the other hand, in our oracle results (and also in the subsequent results of [39]),

the key property of oracles that is exploited is their back-box nature, and for the reasons sketched below,

these results did indeed provide strong evidence that BQP 6= BPP (of course, the later results of [36]

gave even stronger evidence). This is because if one assumes that P 6= NP and the existence of one-way

functions (both these hypotheses are unproven, but widely believed by complexity theorists), it is also

reasonable to assume that, in general, it is impossible to (e�ciently) �gure out the function computed by

a program by just looking at its text (i.e. without explicitly running it on various inputs). Such a program

would have to be treated as a black-box. Of course, such assumptions cannot be made if the question at

hand is whether P

?

= NP .

Fourier Sampling: Consider the vector space of complex valued functions f : Z

n

2

! C. There is a

natural inner product on this space given by

(f; g) =

X

x2Z

n

2

f(x)g(x)

�

The standard orthonormal basis for the vector space is the set of delta functions �

y

: Z

n

2

! C, given by

�

y

(y) = 1 and �

y

(x) = 0 for x 6= y. Expressing a function in this basis is equivalent to specifying its values
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at each point in the domain. The characters of the group Z

n

2

yield a di�erent orthonormal basis consisting

of the parity basis functions �

s

: Z

n

2

! C, given by �

s

(x) =

�1

s�x

2

n=2

, where s � x =

P

n

i=1

s

i

x

i

. Given any

function f : Z

n

2

! C, we may write it in the new parity basis as f =

P

s

^

f(s)�

s

, where

^

f : Z

n

2

! C is

given by

^

f(s) = (f; �

s

). The function

^

f is called the discrete Fourier transform or Hadamard transform

of f . Here the latter name refers to the fact that the linear transformation that maps a function f to its

Fourier transform

^

f is the Hadamard matrix H

n

. Clearly this transformation is unitary, since it is just

e�ecting a change of basis from one orthonormal basis (the delta function basis) to another (the parity

function basis). It follows that

P

x

jf(x)j

2

=

P

s

j

^

f(s)j

2

.

Moreover, the discrete Fourier transform on Z

n

2

can be written as the Kronecker product of the trans-

form on each of n copies of Z

2

| the transform in that case is given by the matrix

 

1

p

2

1

p

2

1

p

2

�

1

p

2

!

. This

fact can be used to write a simple and e�cient QTM that e�ects the discrete Fourier transformation in the

following sense: suppose the QTM has tape alphabet f0; 1;#g, and the initially only n tape cells contain

non-blank symbols. Then we can express the initial superposition as

P

x2f0;1g

n

f(x)jxi, where f(x) is the

amplitude of the con�guration with x in the non-blank cells. Then there is a QTM that e�ects the Fourier

transformation by applying the above transform on each of the n bits in the n non-blank cells. This takes

O(n) steps, and results in the �nal con�guration

P

s2f0;1g

n

^

f(s)jsi (Theorem 8.4.1 below). Notice that this

fourier transformation is taking place over a vector space of dimension 2

n

. On the other hand, the result

of the fourier transform |

^

f | resides in the amplitudes of the quantum superposition, and is thus not

directly accessible. We can, however, perform a measurement on the n non-blank tape cells, to obtain

a sample from the probability distribution P such that P [s] = j

^

f(s)j

2

. We shall refer to this operation

as Fourier sampling. As we shall see, this is a very powerful operation. The reason is that each value

^

f(s) depends upon all the (exponentially many values) of f , and it does not seem possible to anticipate

which values of s will have large probability (constructive interference) without actually carrying out an

exponential search.

Given a boolean function g : Z

n

2

! f1;�1g, we may de�ne a function f : Z

n

2

! C of norm 1 by letting

f(x) = g(x)=2

n=2

. Following Deutsch and Josza [22] if g is a polynomial time computable function, there

is a QTM that produces the superposition

P

x2f0;1g

n

g(x)jxi in time polynomial in n. Combining this

with the Fourier sampling operation above, we get a polynomial time QTM that samples from a certain

distribution related to the given polynomial time computable function g (Theorem 8.4.2 below). We shall

call this composite operation Fourier sampling with respect to g.

Theorem 8.4.1 There is a normal form QTM which when run on an initial superposition of n-bit strings

j�i, halts in time 2n+ 4 with its tape head back in the start cell, and produces �nal superposition H

n

j�i.

Proof. We can construct the desired machine using the alphabet f#; 0; 1g and the set of states fq

0

; q

a

; q

b

; q

c

; q

f

g.

The machine will operate as follows when started with a string of length n as input. In state q

0

, the ma-

chine steps right and left and enters state q

b

. In state q

b

, the machine steps right along the input string

until it reaches the # at the end and enters state q

c

stepping back left to the string's last symbol. During

this rightward scan, the machine applies the transformation

 

1

p

2

1

p

2

1

p

2

�

1

p

2

!

to the bit in each cell. In state

q

c

, the machine steps left until it reaches the # to the left of the start cell, at which point steps back right
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and halts. The following gives the quantum transition function of the desired machine.

# 0 1

q

0

j0ijq

a

ijRi j1ijq

a

ijRi

q

a

j#ijq

b

ijLi

q

b

j#ijq

c

ijLi

1

p

2

j0ijq

b

ijRi+

1

p

2

j1ijq

b

ijRi

1

p

2

j0ijq

b

ijRi �

1

p

2

j1ijq

b

ijRi

q

c

j#ijq

f

ijLi j0ijq

c

ijLi j1ijq

c

ijLi

q

f

j#ijq

0

ijRi j0ijq

0

ijRi j1ijq

0

ijRi

It is can be easily veri�ed that the Completion Lemma can be used to extend this machine to a well-formed

QTM, and that this machine has the desired behavior described above. 2

Theorem 8.4.2 For every polynomial time computable function g : f0; 1g

n

! f�1; 1g, there is a polyno-

mial time, stationary QTM where observing the �nal superposition on input 0

n

gives each n-bit string s

with probability j

^

f(s)j

2

, where f(x) = g(x)=2

n=2

.

Proof. We build a QTM to carry out the following steps.

1. Apply a Fourier transform to 0

n

to produce

P

i2f0;1g

n

1

2

n=2

jii.

2. Compute f to produce

P

i2f0;1g

n

1

2

n=2

jiijf(i)i.

3. Apply a phase-applying machine to produce

P

i2f0;1g

n

1

2

n=2

f(i)jiijf(i)i.

4. Apply the reverse of the machine in Step 2 to produce

P

i2f0;1g

n

1

2

n=2

f(i)jii.

5. Apply another Fourier transform to produce

P

i2f0;1g

n

1

2

n=2

^

f(s)jsi as desired.

We have already constructed above the Fourier transform machine for Steps 1 and 5. Since f can be

computed in deterministic polynomial time, the Synchronization Theorem on page 17 lets us construct

polynomial time QTMs for Steps 2 and 4 which take input jii to output jiijf(i)i and vice versa, with

running time independent of the particular value of i.

Finally, we can apply phase according to f(i) in Step 3 by extending to two tracks the stationary,

normal form QTM with alphabet f#;�1; 1g de�ned by

# -1 1

q

0

j#ijq

1

ijRi -j-1ijq

1

ijRi j1ijq

1

ijRi

q

1

j#ijq

f

ijLi j-1ijq

f

ijLi j1ijq

f

ijLi

q

f

j#ijq

0

ijRi j-1ijq

0

ijRi j1ijq

0

ijRi

Dovetailing these �ve stationary, normal form QTMs gives the desired machine. 2

Remarkably, this quantum algorithm performs Fourier sampling with respect to f while calling the

algorithm for f only twice. To see more clearly why this is remarkable, consider the special case of

the sampling problem where the function f is one of the (unnormalized) parity functions. Suppose f

corresponds to the parity function �

k

; i.e. f(i) = (�1)

i�k

, where i; k 2 f0; 1g

n

. Then the result of fourier

sampling with respect to f is always k. Let us call this promise problem the parity problem: on input

a program that computes f where f is an (unnormalized) parity function, determine k. Notice that the

47



QTM for fourier sampling extracts n bits of information (the value of k) using just two invocations of the

subroutine for computing boolean function f . It is not hard to show that if we f is speci�ed by an oracle,

then in a probabilistic setting, extracting n bits of information must require at least n invocations of the

boolean function. We now show how to amplify this this advantage of quantum computers over probabilistic

computers by de�ning a recursive version of the parity problem: the recursive Fourier sampling problem.

To ready this problem for recursion, we �rst need to turn the parity problem into a problem with range

f�1; 1g. This is easily done by adding a second function g, and requiring the answer g(k) rather than k

itself.

Now, we will make the problem recursive. For each problem instance of size n, we will replace the 2

n

values of f with 2

n

independent recursive subproblems of size n=2, and so on, stopping the recursion with

function calls at the bottom. Since a QTM needs only two calls to f to solve the parity problem, it will

be able to solve an instance of the recursive problem of size n recursively in time T (n) where

T (n) � poly(n) + 4T (n=2) =) T (n) � poly(n)

However, since a PTM needs n calls to f to solve the parity problem, the straightforward recursive solution

to the recursive problem on a PTM will require time T (n) where

T (n) � nT (n=2) =) T (n) � n

logn

To allow us to prove a separation between quantum and classical machines, we will replace the functions

with an oracle. For any \legal" oracle O, any oracle satisfying some special constraints to be described

below, we will de�ne the language R

O

. We will show that there is a QTM which given access to any legal

oracle O, accepts R

O

in time O(n logn) with success probability 1, but that there is a legal oracle O such

that R

O

is not contained in BPTime (n

o(logn)

)

O

.

Our language will consist of strings from f0; 1g

�

with length a power of 2. We will call all such strings

candidates. The decision whether a candidate x is contained in the language will depend on a recursive

tree. If candidate x has length n, then it will have 2

n=2

children in the tree, and in general a node at

level l � 0 (counting from the bottom with leaves at level �1 for convenience) will have 2

2

l

children. So,

the root of the tree for a candidate x of length n is identi�ed by the string x, its 2

n=2

children are each

identi�ed by a string x$x

1

where x

1

2 f0; 1g

n=2

, and, in general, a descendent in the tree at level l is

identi�ed by a string of the form x$x

1

$x

2

$ : : :$x

m

with jxj = n; jx

1

j = n=2; : : : ; jx

m

j = 2

l+1

. Notice that

any string of this form for some n a power of 2 and l

in[0; logn � 1] de�nes a node in some tree. So, we will consider oracles O which map queries over the

alphabet f0; 1; $g to answers f�1;+1g, and we will use each such oracle O to de�ne a function V

O

that

gives each node a value f�1;+1g. The language R

O

will contain exactly those candidates x for which

V

O

(x) = 1.

We will de�ne V

O

for leaves (level 0 nodes) based directly on the oracle O. So, if x is a leaf, then we

let V

O

(x) = O(x).

We will de�ne V

O

for all other nodes by looking at the answer of O to a particular query which is

chosen depending on the values of V

O

for its children. Consider node x at level l � 0. We will insist that

the oracle O be such that there is some k

x

2 f0; 1g

2

l

such that the children of x all have values determined

by their parity with k

x

8y 2 f0; 1g

2

l

V

O

(x$y) = (�1)

y�k

x

and we will then give V

O

(x) the value O(x$k

x

). We will say that the oracle O is legal , if this process allows

us to successfully de�ne V

O

for all nodes whose level is � 0. Any query of the form x$k with x a node at
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level l � 0 and k 2 f0; 1g

2

l

, or of the form x with x a leaf, is called a query at node x. A query which is

located in the same recursive tree as node x, but not in the subtree rooted at x, is called outside of x.

Notice that for any candidate x, the values of V

O

at nodes in the tree rooted at x and the decision whether

x is in R

O

all depend only on the answers of queries located at nodes in the tree rooted at x.

Theorem 8.4.3 There is an oracle QTM M such that for every legal oracle O, M

O

runs in polynomial

time and accepts the language R

O

with probability 1.

Proof. We have built the language R

O

so that it can be accepted e�ciently using a recursive quantum

algorithm. To avoid working through the details required to implement a recursive algorithm reversibly,

we will instead implement the algorithm with a machine that writes down an iteration that \unwraps" the

desired recursion. Then the Looping Lemma will let us build a QTM to carry out this iteration.

First consider the recursive algorithm to compute V

O

for a node x. If x is a leaf, then the value V

O

(x)

can be found by querying the string x$. If x is a node at level l � 0, then calculate V

O

as follows.

1. Split into an equal superposition of the 2

2

l

children of x.

2. Recursively compute V

O

for these children in superposition.

3. Apply phase to each child given by that child's value V

O

.

4. Reverse the computation of Step 2 to erase the value V

O

.

5. Apply the Fourier transform converting the superposition of children of x into a superposition con-

sisting entirely of the single string k

x

.

6. Query x$k

x

to �nd the value V

O

for x.

7. Reverse Steps 1-5 to erase k

x

(leaving only x and V

O

(x)).

Notice that the number of steps required in the iteration obeys the recursion discussed above, and hence

is polynomial in the length of x. So, we can use the Synchronization Theorem on page 17 to construct a

polynomial time QTM which, for any particular x, writes a list of the steps which must be carried out.

Therefore, we complete the proof by constructing a polynomial time QTM to carry out any such a list of

step.

Since our algorithm requires us to recursively run both the algorithm and its reverse, we need to see

how to handle each step and its reverse. Before we start, we will �ll out the node x to a description

of a leaf by adding strings of 0's. Then, Steps 1 and 5 at level l � 0 just require applying the Fourier

transform QTM to the 2

l

bit string at level l in the current node description. Since the Fourier transform

is its own reverse, the same machine also reverses Steps 1 and 5. Step 3 is handled by the phase-applying

machine already constructed above as part of the Fourier sampling QTM in Theorem 8.4.2. Again, the

transformation in Step 3 is its own reverse, so the same machine can be used to reverse Step 3. Step

6 and its reverse can be handled by a reversible TM which copies the relevant part of the current node

description, queries the oracle, and then returns the node description from the query tape. Notice that

each of these machines takes time which depends only on the length of its input.

Since we have stationary, normal form QTMs to handle each step at level l and its reverse in time

bounded by a polynomial in 2

l

, we can use the Branching Lemma to construct a stationary, normal form

QTM to carry out any speci�ed step of the computation. Dovetailing with a machine which rotates the

49



�rst step in the list to the end, and inserting the resulting machine into the reversible TM of the Looping

Lemma gives the desired QTM. 2

Computing the function V

O

takes time 
(n

logn

) even for a probabilistic computer allowed a bounded

probability of error. We can see this with the following intuition. First, consider asking some set of

queries of a legal O that determine the value of V

O

for a node x described by the string x

1

$ : : :$x

m

at

level l. There are two ways that the asked queries might �x the value at x. The �rst is that the queries

outside of the subtree rooted at x might be enough to �x V

O

for x. If this happens, we say that V

O

(x)

is �xed by constraint. An example of this is that if we asked all of the queries in the subtrees rooted at

all of the siblings of x, then we have �xed V

O

for all of the siblings, thereby �xing the string k such that

V

O

(x

1

$ : : :$x

m

$y) equals (�1)

y�k

.

The only other way that the value of the node x might be �xed is the following. If the queries �x the

value of V

O

for some of the children of x then this will restrict the possible values for the string k

x

such

that V

O

(x$y) always equals (�1)

y�k

x

, and such that V

O

(x) = O(x$k

x

). If the query x$k

x

for each possible

k

x

has been asked and all have the same answers, then this �xes the value V

O

at x. If the query x$k

x

for

the correct k

x

has been asked, then we call x a hit .

Now notice that �xing the values of a set of children of a level l node x restricts the value of k

x

to a set

of 2

2

l

�c

possibilities where c is the maximum size of a linearly independent subset of the children whose

values are �xed. This can be used to prove that it takes n � n=2 � � �1 = n


(logn)

.

However, this intuition is not yet enough since we are interested in arguing against a probabilistic TM

rather than a deterministic TM. So, we will argue not just that it takes n


(logn)

queries to �x the value

of a candidate of length n, but that if fewer than n


(logn)

queries are �xed, then choosing a random legal

oracle consistent with those queries gives to a candidate of length n the value 1 with probability extremely

close to 1=2. This will give the desired result. To see this, call the set of queries actually asked and the

answers given to those queries a run of the probabilistic TM. We will have shown that if we take any run

on a candidate of length n with fewer than n


(logn)

queries, then the probability that a random legal oracle

agreeing with the run assigns to x the value 1 is extremely close to 1=2. This means that a probabilistic

TM whose running time is n

o(logn=2)

will fail with probability 1 to accept R

O

for a random legal oracle O.

De�nition 8.4.4 A run of size k is de�ned as a pair S; f where S is a set of k query strings and f is map

from S to f0; 1g such that there is at least one legal oracle agreeing with f .

Let r be a run, let y be a node at level l � 2, and let O be a legal oracle at and below y which agrees

with r. Then O determines the string k

y

for which V

O

(y) = O(y$k

y

). If y$k

y

is a query in r, then we say

O makes y a hit for r. Suppressing the dependency on r in the notation, we de�ne P (y) as the probability

that y is a hit for r when we choose a legal oracle at and below y uniformly at random from the set of all

such oracle at and below y which agree with r. Similarly, for x an ancestor of y, we de�ne P

x

(y) as the

probability that y is a hit when a legal oracle is chosen at and below x uniformly at random from the set of

all oracle at and below x which agree with r.

Lemma 8.4.5 P

x

(y) � 2P (y)

Proof. Let S be the set of legal oracles at and below y which agree with r. We can write S as the disjoint

union of S

h

and S

n

where the former is the set of those oracles in S that make y a hit for r. Further

splitting according to the value V

O

(y), we can write S as the disjoint union of four sets, S

h+

; S

h�

; S

n+

; S

n�

.

Using this notation, we have P (y) =

card(S

h

)

card(S

h

)+card(S

n

)

. It is easy to see that, since the oracles in S

n

do

not make y a hit for r, card(S

n+

) = card(S

n�

) = card(S

n

)=2.
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Next consider the set T of all legal oracles de�ned at and below x, but outside y, which agree with

r. Each oracle O 2 T determines by constraint the value V

O

(y), but leaves the string k

y

completely

undetermined. If we again write T as the disjoint union of T

+

and T

�

according to the constrained value

V

O

(y), we notice that the set of legal oracles at and below x is exactly (T

+

� S

+

)[ (T

�

� S

�

). So, we have

P

x

(y) =

card(T

+

)card(S

h+

) + card(T

�

)card(S

h�

)

card(T

+

)card(S

+

) + card(T

�

)card(S

�

)

=

card(T

+

)card(S

h+

) + card(T

�

)card(S

h�

)

card(T

+

)card(S

h+

) + card(T

�

)card(S

h�

) + card(T )card(S

n

)=2

Without loss of generality, let card(T

+

) � card(T

�

). Then since n=(n+ c) with c; n > 0 increases with n,

we have

P

x

(y) �

card(T

+

)card(S

h

)

card(T

+

)card(S

h

) + card(T )card(S

n

)=2

�

card(T

+

)card(S

h

)

card(T

+

)card(S

h

) + card(T

+

)card(S

n

)=2

=

2card(S

h

)

2card(S

h

) + card(S

n

)

� 2P (y)

2

For a positive integer n, we de�ne 
(n) = n(n=2) � � �1. Notice that 
(n) > n

(logn)=2

.

Theorem 8.4.6 Suppose r is a run, y is a node at level l � 2 with q queries from r at or below y, and x

is an ancestor of y. Then P

x

(y) � q=
(n=4) where n = 2

l

.

Proof. We prove the theorem by induction on l.

So, �x a run r and a node y at level 2 with q queries from r at or below y. If q = 0, y can never be a

hit. So, certainly the probability that y is a hit is at most q as desired.

Next, we perform the inductive step. So, assume the theorem holds true for any r and y at level less

than l with l � 2. Then, �x a run r and a node y at level l with q queries from r at or below y. Let

n = 2

l

. We will show that P (y) �

q

2
(n=4)

, and then the theorem will follow from Lemma 8.4.5. So, for the

remainder of the proof, all probabilities are taken over the choice of a legal oracle at and below y uniformly

at random from the set of all those legal oracles at and below y which agree with r.

Now, suppose that q

0

of the q queries are actually at y. Clearly, if we condition on there being no

hits among the children of y, then k

y

will be chosen uniformly among all n-bit strings, and hence the

probability y is a hit would be q

0

=2

n

. If we instead condition on there being exactly c hits among the 2

n

children of y, then the probability that y is a hit must be at most q

0

=2

n�c

. Therefore the probability y is

a hit is bounded above by the sum of q

0

=2

n=2

and the probability that at least n=2 of the children of y are

hits.

Now consider any child z of y. Applying the inductive hypothesis with y and z taking the roles of x

and y, we know that if r has q

z

queries at and below z, then P

y

(z) � q

z

=
(n=8). Therefore the expected

number of hits among the children of y is at most (q � q

0

)=
(n=8). This means that the probability that

at least n=2 of the children of y are hits is at most

(q � q

0

)


(n=8)n=2

=

(q � q

0

)

2
(n=4)
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Therefore,

P (y) �

q � q

0

2
(n=4)

+

q

0

2

n=2

�

q

2
(n=4)

since 2
(n=4) < 2

n=2

for n > 4. 2

Corollary 8.4.7 For any T (n) which is n

o(logn)

, relative to a random legal oracle O, with probability 1,

R

O

is not contained in BPTime (T (n)).

Proof. Fix T (n) which is n

o(logn)

.

We will show that for any probabilistic TMM , when we pick a random legal oracle O, with probability

1, M

O

either fails to run in time cn

o(logn)

or it fails to accept R

O

with error probability bounded by 1=3.

Then since there are a countable number of probabilistic TMs and the intersection of a countable number

of probability 1 events still has probability 1, we conclude that with probability 1, R

O

is not contained in

BPTime (n

o(logn)

).

We prove the corollary by showing that, for large enough n, the probability that M

O

runs in time

greater than T (n) or has error greater than 1=3 on input 0

n

is at least 1=8 for every way of �xing the

oracle answers for trees other than the tree rooted at 0

n

. The probability is taken over the random choices

of the oracle for the tree rooted at 0

n

.

Fix arbitrarily a legal behavior for O on all trees other than the one rooted at 0

n

. Then consider

picking a legal behavior for O for the tree rooted at 0

n

uniformly at random and run M

O

on input 0

n

. We

can classify runs of M

O

on input 0

n

based on the run r that lists the queries the machines asks, and the

answers it receives. If we take all probabilities over both the randomness in M and the choice of oracle O,

then the probability M

O

correctly classi�es 0

n

in time T (n) is

X

r

Pr[r]Pr[correct j r]

where Pr[r] is the probability of run r, where Pr[correct j r] is the probability the answer is correct given

run r, and where r ranges over all runs with at most T (n) queries. Theorem 8.4.6 tells us that if we

condition on any run r with fewer than

1

12


(n=4) queries, then the probability 0

n

is a hit is less than 1=12.

This means that the probability the algorithm correctly classi�es 0

n

, conditioned on any particular run r

with fewer than

1

12


(n=4) queries, is at most 7=12. Therefore, for n large enough that T (n) is less than

1

12


(n), the probability M

O

correctly classi�es 0

n

in time T (n) is at most 7/12. So, for su�ciently large n,

when we choose O, then with probability at least 1=8 M

O

either fails to run in time T (n) or has success

probability less than 2=3 on input 0

n

. 2

A A QTM is well-formed i� its time evolution is unitary

First, we note that the time evolution operator of a QTM always exists. Note that this is true even if the

QTM is not well-formed.

Lemma A.0.8 If M is a QTM with time evolution operator U , then U has an adjoint operator U

�

in the

inner-product space of superpositions of the machine M .
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Proof. Let M be a QTM with time evolution operator U . Then the adjoint of U is the operator U

0

is

the operator whose matrix element in any pair of dimensions i; j is the complex conjugate of the matrix

element of U in dimensions j; i. The operator U

0

de�ned in this fashion still maps all superpositions to

other superpositions (= �nite linear combinations of con�gurations), since any particular con�guration of

M can be reached with non-zero weight from only a �nite number of other con�gurations. It is also easy

to see that for any superpositions �;  

hU

0

�j i = h�jU i

as desired. 2

We include the proofs of the following standard facts for completeness. We will use them in the proof

of the theorem below.

Fact A.0.9 If U is a linear operator on an inner-product space V and U

�

exists, then U preserves norm

i� U

�

U = I.

Proof. For any x 2 V , the square of the norm of Ux is (Ux; Ux) = (x; U

�

Ux). It clearly follows that if

U

�

U = I then U preserves norm. For the converse, let B = U

�

U � I . Since U preserves norm, for every

x 2 V , (x; U

�

Ux) = (x; x). Therefore for every x 2 V , (x;Bx) = 0. It follows that B = 0 and therefore

U

�

U = I . 2

This further implies the following useful fact:

Fact A.0.10 Suppose U is an linear operator in an inner-product space V and U

�

exists. Then

8x 2 V kUxk = kxk $ 8x; y 2 V (Ux; Uy) = (x; y)

Proof. Since kUxk = kxk $ (Ux; Ux) = (x; x), one direction follows by substituting x = y. For the other

direction, if U preserves norm then by fact A.0.9, U

�

U = I . Therefore (Ux; Uy) = (x; U

�

Uy) = (x; y).

2

We need to establish one one additional fact about norm preserving operators, before we can prove our

theorem:

Fact A.0.11 Let V be a countable inner-product space, and let fjiig

i2I

be an orthonormal basis for V .

If U is a norm preserving linear operator on V and U

�

exists, then 8i 2 I kU

�

jiik � 1. Moreover, if

8i 2 I kU

�

jiik = 1 then U is unitary.

Proof. Since U preserves norm, kUU

�

jiik = kU

�

jiik. But the projection of UU

�

jii on jii has norm

jhijUU

�

jiij = kU

�

jiik

2

. Therefore kU

�

jiik � kU

�

jiik

2

, and therefore kU

�

jiik � 1.

Moreover, if kU

�

jiik = 1, then since U is norm preserving, kUU

�

jiik = 1. On the other hand the

projection of UU

�

jii on jii has norm kU

�

jiik

2

= 1. It follows that for j 6= i, the projection of UU

�

jii on

jji must have norm 0. Thus jhjjUU

�

jiij = 0. It follows that UU

�

= I . 2

If V is �nite dimensional, then U

�

U = I implies UU

�

= I , and therefore an operator is norm preserving

if and only if it is unitary. However, if H is in�nite dimensional, then U

�

U = I does not imply UU

�

=
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I .

6

. Nevertheless, the time evolution operators of QTMs have a special structure, and in fact these two

conditions are equivalent for the time evolution operator of a QTM.

Theorem A.0.12 A QTM is well-formed i� its time evolution operator is unitary.

Proof. Let U be the norm preserving time evolution operator of a well-formed QTM M = (�; Q; �).

Consider the standard orthonormal basis for the superpositions ofM given by the set of vectors jci, where

c ranges over all con�gurations ofM (as always, jci is the superposition with amplitude 1 for con�guration

c and 0 elsewhere). We may express the action of U with respect to this standard basis by a countable

dimensional matrix whose c; c

0th

entry u

c;c

0

= hc

0

jU jci. This matrix has some special properties. First, each

row and column of the matrix has only a �nite number of non-zero entries. Secondly, there are only �nitely

many di�erent types of rows, where two rows are of the same type if their entries are just permutations

of each other. We shall show that each row of the matrix has norm 1, and therefore by the Fact A.0.11

above U is unitary. To do so we will identify a set of n columns of the matrix (for arbitrarily large n)

and restrict attention to the �nite matrix consisting of all the chosen rows and all columns with non-zero

entries in these rows. Let this matrix be the m� n matrix B. By construction, B satis�es two properties:

1) it is almost square; m=n � 1+ � for arbitrarily small �. 2) There is a constant a such that each distinct

row type of the in�nite matrix occurs at least m=a times among the rows of B.

Now the sum of the squared norms of the rows of B is equal to the sum of the squared norms of

the columns. The latter quantity is just n (since the columns of the in�nite matrix are orthonormal by

Fact A.0.9 above). If we assume that some row of the in�nite matrix has norm 1�� for � > 0, then we can

choose n su�ciently large and � su�ciently small so that the sum of the squared norms of the rows is at

most m(1�1=a)+m=a(1��) � m�m�=a � n+n��n�=a < n. This gives the required contradiction, and

therefore all rows of the in�nite matrix have norm 1 and therefore by the Fact A.0.11 above U is unitary.

To construct the �nite matrix B let k > 2 and �x some contiguous set of k cells on the tape. Consider

the set of all con�gurations S such that the tape head is located within these k cells and such that the

tape is blank outside of these k cells. It is easy to see that the number of such con�gurations n =

k card(�)

k

card(Q). The columns indexed by con�gurations in S are used to de�ne the �nite matrix B

referred to above. The non-zero entries in these columns are restricted to rows indexed by con�gurations

in S together with rows indexed by con�gurations where the tape head is in the cell immediately to the

left or right of the k special cells, and such that the tape is blank outside of these k + 1 cells. The

number of these additional con�gurations over and above S is at most 2 card(�)

k+1

card(Q). Therefore

m = n(1 + 2=kcard(�)). For any � > 0, we can choose k large enough such that m � n(1 + �).

Recall that a row of the in�nite matrix (corresponding to the operator U) is indexed by con�gurations.

We say that a con�guration c is of type q; �

1

; �

2

; �

3

if c is in state q 2 Q and the three adjacent tape cells

centered about the tape head contain the three symbols �

1

; �

2

; �

3

2 �. The entries of a row indexed by

c must be a permutation of the entries of a row indexed by any con�guration c

0

of the same type as c.

This is because a transition of the QTM M depends only on the state of M and the symbol under the tape

head, and since the tape head moves to an adjacent cell during a transition. Moreover, any con�guration

d that yields con�guration c with non-zero amplitude as a result of a single step must have tape contents

identical to those of c in all but these three cells. It follows that there are only a �nite number of such

con�gurations d, and the row indexed by c can have only a �nite number of non-zero entries. A similar

argument shows that each column has only a �nite number of non-zero entries.

Now for given q; �

1

; �

2

; �

3

consider the rows of the �nite matrix B indexed by con�gurations of

type q; �

1

; �

2

; �

3

, and such that the tape head is located at one of the k � 2 non-border cells. Then

6

Consider for example the space of �nite complex linear combinations of positive integers and the linear operator which

maps jii to ji+ 1i.
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jT j = (k� 2)card(�)

k�3

. Each row of B indexed by a con�guration c 2 T has the property that if d is any

con�guration that yields c with non-zero amplitude in a single step, then d 2 S. Therefore the row indexed

by c in the �nite matrix B has the same non-zero entries as the row indexed by c in the in�nite matrix.

Therefore it makes sense to say that row c of B is of the same type as row c of the in�nite matrix. Finally,

the rows of each type constitute a fraction at least jT j=m of all rows of B. Substituting the bounds from

above, we get that this fraction is at least

(k�2)card(�)

k�3

k card(�)

k

card(Q)(1+2=kcard(�))

. Since k � 4, this is at least

1

a

for constant a = 2card(�)

3

card(Q)(1 + 1=2card(�)). This establishes all the properties of the matrix B

used in the proof above. 2

B Reversible TMs are as powerful as deterministic TMs

In this appendix, we prove the Synchronization Theorem of x4.1.

We begin with a few simple facts about reversible TMs. We give necessary and su�cient conditions

for a deterministic TM to be reversible, and we show that, just as for QTMs, a partially de�ned reversible

TM can always be completed to give a well-formed reversible TM. We also give, as an aside, an easy proof

that reversible TMs can e�ciently simulate reversible, generalized TMs.

Theorem B.0.13 A TM or generalized TM M is reversible i� the following two conditions both hold

1. Each state of M can be entered while moving in only one direction. In other words, if �(p

1

; �

1

) =

(�

1

; q; d

1

) and �(p

2

; �

2

) = (�

2

; q; d

2

) then d

1

= d

2

.

2. The transition function � is one-to-one when direction is ignored.

Proof. First we show that these two conditions imply reversibility.

Suppose M = (�; Q; �) is a TM or generalized TM satisfying these two conditions. Then, the following

procedure lets us take any con�guration of M and compute its predecessor if it has one. First, since each

state can be entered while moving in only one direction, the state of the con�guration tells us in which cell

the tape head must have been in the previous con�guration. Looking at this cell, we can see what tape

symbol was written in the last step. Then, since � is one-to-one we know the update rule, if any, that was

used on the previous step, allowing us to reconstruct the previous con�guration.

Next, we show that the �rst property is necessary for reversibility. So, for example, consider a TM

or generalized TM M = (�; Q; �) such that �(p

1

; �

1

) = (�

1

; q; L) and �(p

2

; �

2

) = (�

2

; q; R). Then, we can

easily construct two con�gurations which lead to the same next con�guration: Let c

1

be any con�guration

where the machine is in state p

1

reading a �

1

and where the symbol two cells to the left of the tape head

is a �

2

, and let c

2

be identical to c

1

except that the �

1

and �

2

are changed to �

1

and �

2

, the machine

is in state p

2

, and the tape head is two cells further left. Therefore M is not reversible. Since similar

arguments apply for each pair of distinct directions, the �rst condition in the theorem must be necessary

for reversibility.

Finally, we show that the second condition is also necessary for reversibility. Suppose thatM = (�; Q; �)

is a TM or generalized TM with �(p

1

; �

1

) = �(p

2

; �

2

). Then, any pair of con�gurations which di�er only in

the state and symbol under the tape head, where one has (p

1

; �

1

) and the other (p

2

; �

2

), lead to the same

next con�guration, and again M is not reversible. 2
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Corollary B.0.14 If M is a reversible TM then every con�guration of M has exactly one predecessor.

Proof. Let M = (�; Q; �) be a reversible TM. By the de�nition of reversibility, each con�guration of M

has at most one predecessor.

So, let c be a con�guration of M in state q. Theorem B.0.13 tells us that M can enter state q while

moving its tape head in only one direction d

q

. Since Theorem B.0.13 tells us that, ignoring direction, � is

one-to-one, taking the inverse of � on the state q and the symbol in direction

�

d

q

tells us how to transform

c into its predecessor. 2

Corollary B.0.15 If � is a partial function from Q � � to ��Q� fL;Rg satisfying the two conditions

of Theorem B.0.13 then � can be extended to a total function that still satis�es Theorem B.0.13.

Proof. Suppose � is a partial function from Q � � to � � Q � fL;Rg that satis�es the properties of

Theorem B.0.13. Then, for each q 2 Q let d

q

be the one direction, if any, in which q can be entered, and

let d

q

be (arbitrarily) L otherwise. Then we can �ll in unde�ned values of � with as yet unused triples of

the form (�; q; d

q

) so as to maintain the conditions of Theorem B.0.13. Since there are card(�) card(Q)

such triples there will be exactly enough to fully de�ne �. 2

Theorem B.0.16 If M is a generalized reversible TM, then there is a reversible TM M

0

that simulates

M with slowdown at most 2.

Proof. The idea is to replace any transition that has the tape head stand still with two transitions. The

�rst updates the tape and moves to the right, remembering which state it should enter. The second steps

back to the left and enters the desired state.

So, if M = (�; Q; �) is a generalized reversible TM then we let M

0

be identical to M except that for

each state q with a transition of the form �(p; �) = (�; q; N) we add a new state q

0

and we also add a new

transition rule �(q

0

; �) = �; q; L for each � 2 �. Finally, we replace each transition �(p; �) = (�; q; N) with

the transition �(p; �) = (�; q

0

; R). Clearly M

0

simulates M with slowdown by a factor of at most 2.

To complete the proof, we need to show that M

0

is also reversible.

So, consider a con�guration c of M

0

. We need to show that c has at most one predecessor. If c is in

state q 2 Q and M enters q moving left or right, then the transitions into q in M

0

are identical to those

in M and therefore since M is reversible, c has at most one predecessor in M

0

. Similarly, if c is in one of

the new states q

0

then the transitions into q

0

in M

0

are exactly the same as those into q in M , except that

the tape head moves right instead of staying still. So, again the reversibility of M implies that c has at

most one predecessor. Finally, suppose c is in state q 2 Q where M enters q while standing still. Then,

Theorem B.0.13 tells us that all transitions inM that enter q have direction N . Therefore, all of them have

been removed, and the only transitions entering q in M

0

are the new ones of the form �(q

0

; �) = �; q; L.

Again, this means that c can have only one predecessor. 2

We will prove the Synchronization Theorem in the following way. Using ideas from the constructions

of Bennett [7] and Morita et.al. [33], we will show that given any deterministic TMM there is a reversible

multi-track TM which on input x produces output x;M(x), and whose running time depends only on the

sequence of head movements ofM on input x. Then, since any deterministic computation can be simulated
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e�ciently by an \oblivious" machine whose head movements depend only on the length of its input, we

will be able to construct the desired \synchronized" reversible TM.

The idea of Bennett's simulation is to run the target machine, keeping a history to maintain reversibility.

Then the output can be copied and the simulation run backwards so that the history is exactly erased

while the input is recovered. Since the target tape head moves back and forth, while the history steadily

grows, Bennett uses a multi-tape TM for the simulation.

The idea of Morita et.al.'s simulation is to use a simulation tape with several tracks, some of which are

used to simulate the tape of the desired machine, and some of which are used to keep the history. Provided

that the machine can move reversibly between the current head position of the target machine and the end

of the history, it can carry out Bennett's simulation with a quadratic slowdown. Morita et.al. work with

TMs with one-way in�nite tapes so that the simulating machine can move between the simulation and the

history by moving left to the end of the tape and then searching back towards the right. In our simulation,

we write down history for every step the target machine takes, rather than just the non-reversible steps.

This means that the end of the history will always be further right than the simulation, allowing us to work

with two-way in�nite tapes. Also, we use reversible TMs that can only move their head in the directions

fL;Rg rather than the generalized reversible TMs used by Bennett and Morita et.al.

De�nition B.0.17 A deterministic TM is oblivious if its running time and the position of its tape head

at each time step depend only on the length of its input.

In carrying out our single tape Bennett constructions we will �nd it useful to �rst build simple reversible

TMs to copy a string from one track to another and to exchange the strings on two tracks. We will copy

strings delimited by blanks in the single tape Bennett construction, but will copy strings with other

delimiters in a later section.

Lemma B.0.18 For any alphabet �, there is a normal form, reversible TM M with alphabet �� � with

the following property. When run on input x; y M runs for 2max(jxj; jyj) + 4 steps, returns the tape head

to the start cell, and outputs y; x.

Proof. We let M have alphabet �� �, state set fq

0

; q

1

; q

2

; q

3

; q

f

g, and transition function de�ned by

(#;#) other (�

1

; �

2

)

q

0

(#;#); q

1

; L (�

1

; �

2

); q

1

; L

q

1

(#;#); q

2

; R

q

2

(#;#); q

3

; L (�

2

; �

1

); q

2

; R

q

3

(#;#); q

f

; R (�

1

; �

2

); q

3

; L

q

f

(#;#); q

0

; R (�

1

; �

2

); q

0

; R

Since each state in M can be entered in only one direction, and its transition function is one-to-one,

M is reversible. Also, it can be veri�ed that M performs the desired computation in the stated number of

steps. 2

Lemma B.0.19 For any alphabet �, there is a normal form, reversible TM M with alphabet �� � with

the following property. When run on input x, M outputs x; x, and when run on input x; x it outputs x. In

either case, M runs for 2jxj+ 4 steps and leaves the tape head back in the start cell.
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Proof. We let M have alphabet �� �, state set fq

0

; q

1

; q

2

; q

3

; q

f

g, and transition function de�ned by the

following where each transition is duplicated for each non-blank � 2 �

(#;#) (�;#) (�; �)

q

0

(#;#); q

1

; L (�;#); q

1

; L (�; �); q

1

; L

q

1

(#;#); q

2

; R

q

2

(#;#); q

3

; L (�; �); q

2

; R (�;#); q

2

; R

q

3

(#;#); q

f

; R (�;#); q

3

; L (�; �); q

3

; L

q

f

(#;#); q

0

; R (�;#); q

0

; R (�; �); q

0

; R

Since each state in M can be entered in only one direction, and its transition function is one-to-one,

M can be extended to a reversible TM. Also, it can be veri�ed that M performs the desired computation

in the stated number of steps. 2

Theorem B.0.20 Let M be an oblivious deterministic TM which on any input x produces output M(x),

with no embedded blanks, with its tape head back in the start cell, and with M(x) beginning in the start

cell. Then there is a reversible TM M

0

which on input x produces output x;M(x) and on input x;M(x),

produces output x. In both cases, M

0

halts with its tape head back in the start cell, and takes time which

depends only on the lengths of x and M(x), and which is bounded by a quadratic polynomial in the running

time of M on input x.

Proof. Let M = (�; Q; �) be an oblivious deterministic TM as stated in the theorem and let q

0

; q

f

be the

initial and �nal states of M .

The simulation will run in three stages.

1. M

0

will simulate M maintaining a history to make the simulation reversible.

2. M

0

will copy its �rst track, as shown in Lemma B.0.19.

3. M

0

runs the reverse of the simulation of M erasing the history while restoring the input.

We will construct a normal form reversible TM for each of the three stages, and then dovetail them

together.

Each of our machines will be a four-track TM with the same alphabet. The �rst track, with alphabet

�

1

= �, will be used to simulate the tape ofM . The second track, with alphabet �

2

= f#; 1g, will be used

to store a single 1 locating the tape head of M . The third track, with alphabet �

3

= f#; $g [ (Q � �),

will be used to write down a list of the transitions taken by M , starting with the marker $. This $ will

help us �nd the start cell when we enter and leave the copying phase. The fourth track, with alphabet

�

4

= �, will be used to write the output of M .

In describing the �rst machine, we will give a partial list of transitions obeying the conditions of

Theorem B.0.13, and then appeal to Corollary B.0.15. Our machines will usually only be reading and

writing one track at a time. So, for convenience we will list a transition with one or more occurrences of

the symbols of the form v

i

and v

0

i

to stand for all possible transitions with v

i

replaced by a symbol from

the appropriate �

i

other than the special marker $, and with v

0

i

replaced by a symbol from �

i

other than

$ and #.

The �rst phase of the simulation will be handled by the machine M

1

with state set given by the union

of sets Q, Q� Q� �� [1; 4], Q� [5; 7], and fq

a

; q

b

g. Its start state will be q

a

and the �nal state q

f

.
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The transitions of M

1

are de�ned as follows. First, we mark the position of the tape head of M in the

start cell, mark the start of the history in cell 1, and enter state q

0

.

q

a

; (v

1

;#;#; v

4

) ! (v

1

; 1;#; v

4

); q

b

; R

q

b

; (v

1

;#;#; v

4

) ! (v

1

;#; $; v

4

); q

0

; R

Then, for each pair p; � with p 6= q

f

and with transition �(p; �) = (�; q; d) in M we include transitions

to go from state p to state q updating the simulated tape ofM while adding (p; �) to the end of the history.

We �rst carry out the update of the simulated tape, remembering the transition taken, and then move to

the end of the history to deposit the information on the transition. If we are in the middle of the history,

we reach the end of the history by walking right until we hit a blank. However, if we are to the left of the

history, then we must �rst walk right over blanks until we reach the start of the history.

p; (�; 1; v

3

; v

4

) ! (�;#; v

3

; v

4

); (q; p; �; 1); d

(q; p; �; 1); (v

1

;#; $; v

4

) ! (v

1

; 1; $; v

4

); (q; p; �; 3); R

(q; p; �; 1); (v

1

;#; v

0

3

; v

4

) ! (v

1

; 1; v

0

3

; v

4

); (q; p; �; 3); R

(q; p; �; 1); (v

1

;#;#; v

4

) ! (v

1

; 1;#; v

4

); (q; p; �; 2); R

(q; p; �; 2); (v

1

;#;#; v

4

) ! (v

1

;#;#; v

4

); (q; p; �; 2); R

(q; p; �; 2); (v

1

;#; $; v

4

) ! (v

1

;#; $; v

4

); (q; p; �; 3); R

(q; p; �; 3); (v

1

;#; v

0

3

; v

4

) ! (v

1

;#; v

0

3

; v

4

); (q; p; �; 3); R

(q; p; �; 3); (v

1

;#;#; v

4

) ! (v

1

;#; (p; �); v

4

); (q; 4); R

When the machine reaches state (q; 4) it is standing on the �rst blank after the end of the history. So,

for each state q 2 Q, we include transitions to move from the end of the history back left to the head

position of M . We enter our walk left state (q; 5) while writing a # on the history tape. So, to maintain

reversibility, we must enter a second left-walking state (q; 6) to look for the tape head marker past the left

end of the history. When we reach the tape head position, we step left and right entering state q.

(q; 4); (v

1

;#;#; v

4

) ! (v

1

;#;#; v

4

); (q; 5); L

(q; 5); (v

1

;#; v

0

3

; v

4

) ! (v

1

;#; v

0

3

; v

4

); (q; 5); L

(q; 5); (v

1

;#; $; v

4

) ! (v

1

;#; $; v

4

); (q; 6); L

(q; 5); (v

1

; 1; v

0

3

; v

4

) ! (v

1

; 1; v

0

3

; v

4

); (q; 7); L

(q; 5); (v

1

; 1; $; v

4

) ! (v

1

; 1; $; v

4

); (q; 7); L

(q; 6); (v

1

;#;#; v

4

) ! (v

1

;#;#; v

4

); (q; 6); L

(q; 6); (v

1

; 1;#; v

4

) ! (v

1

; 1;#; v

4

); (q; 7); L

(q; 7); (v

1

; v

2

; v

3

; v

4

) ! (v

1

; v

2

; v

3

; v

4

); q; R

Finally, we put M

1

in normal form by including the transition

q

f

; � ! �; q

a

; R

for each � in the simulation alphabet.

It can be veri�ed that each state can be entered in only one direction using the above transitions, and

relying on the fact that M is in normal form, and we don't simulate it's transitions from q

f

back to q

0

, it

can also be veri�ed that the partial transition function described is one-to-one. Therefore, Corollary B.0.15

says that we can extend these transitions to give a reversible TM M

1

. Notice also that the operation of

M

1

is independent of the contents of the fourth track, and that it leaves these contents unaltered.

For the second and third machines, we simply use the copying machine constructed in Lemma B.0.19

above, and the reverse ofM

1

constructed using Lemma 4.2.9 on page 20. Since M

1

operated independently
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of the fourth track, so will its reversal. Therefore, dovetailing these three TMs gives a reversible TM M

0

,

which on input x produces output x; �; �;M(x) with its tape head back in the start cell, and on input

x; �; �;M(x) produces output x.

Notice that the time required byM

1

to simulate a step ofM is bounded by a polynomial in the running

time of M , and depends only on the current head position of M , the direction M moves in the step, and

how many steps have already been carried out. Therefore, the running time of the �rst phase of M

0

de-

pends only on the series of head movements ofM . In fact, since M is oblivious, this running time depends

only the length of x. The same is true of the third phase of M

0

, since the reversal ofM

1

takes exactly two

extra time steps. Finally, the running time of the copying machine depends only on the length of M(x).

Therefore, the running time of M

0

on input x depends only on the lengths of x and M(x) and is bounded

by a quadratic polynomial in the running time of M on x. 2

Theorem B.0.21 Let M

1

be an oblivious deterministic TM which on any input x produces output M

1

(x),

with no embedded blanks, with its tape head back in the start cell, with M

1

(x) beginning in the start cell,

and such that the length of M

1

(x) depends only on the length of x. Let M

2

be an oblivious deterministic

TM with the same alphabet as M

1

which on any input M

1

(x) produces output x, with its tape head back in

the start cell, and with x beginning in the start cell. Then there is a reversible TM M

0

which on input x

produces output M

1

(x). Moreover, M

0

on input x halts with its tape head back in the start cell, and takes

time which depends only on the length of x and which is bounded by a polynomial in the running time of

M

1

on input x and the running time of M

2

on M

1

(x).

Proof. Let M

1

and M

2

be as stated in the theorem with the common alphabet �.

Then the idea to construct the desired M

0

is �rst to run M

1

to compute x;M(x), then to run an

exchange routine to produce M(x); x and �nally to run M

2

to erase the string x, where each of the three

phases starts and ends with the tape head in the start cell. Using the construction in Theorem B.0.20, we

build normal form, reversible TMs to accomplish the �rst and third phases in times which depend only on

the lengths of x and M

1

(x) and bounded by a polynomial in the running times of M

1

on input x and M

2

on input M

1

(x). In Lemma B.0.18 on page 57 we have already constructed a reversible TM that performs

the exchange in time depending only on the lengths of the two strings. Dovetailing these three machines

gives the desired M . 2

Since any function computable in deterministic polynomial time can be computed in polynomial time

by an oblivious generalized deterministic TM, Theorems B.0.20 and B.0.21 together with Theorem 4.1.2

give us the following.

Theorem 4.1.3 (Synchronization Theorem) If f is a function mapping strings to strings which

can be computed in deterministic polynomial time and such that the length of f(x) depends only on the

length of x, then there is a polynomial time, stationary, normal form QTM which given input x, produces

output x; f(x), and whose running time depends only on the length of x.

If f is a function from strings to strings that such that both f and f

�1

can be computed in deterministic

polynomial time, and such that the length of f(x) depends only on the length of x, then there is a polynomial

time, stationary, normal form QTM which given input x, produces output f(x), and whose running time

depends only on the length of x.
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C A reversible looping TM

We prove here the Looping Lemma from x4.2.

Lemma 4.2.10 (Looping Lemma) There is a stationary, normal form, reversible TM M and a

constant c with the following properties. On input any positive integer k written in binary, M runs for

time O(k log

c

k) and halts with its tape unchanged. Moreover, M has a special state q

�

such that on input

k, M visits state q

�

exactly k times, each time with its tape head back in the start cell.

Proof. As mentioned above in x4.2, the di�culty is to construct a loop with a reversible entrance and exit.

We accomplish this as follows. Using the Synchronization Theorem, we can build three-track stationary,

normal form reversible TM M

1

= (�; Q; �) running in time polynomial in log k that on input b; x; k where

b 2 f0; 1g outputs b

0

; x + 1; k where b

0

is the opposite of b if x = 0 or k � 1 (but not both) and b

0

= b

otherwise. Calling the initial and �nal states of this machine q

0

; q

f

, we construct a reversible M

2

that

loops on machine M

1

as follows. We will give M

2

new initial and �nal states q

a

; q

z

, and ensure that it has

the following three properties.

1. Started in state q

a

with a 0 on the �rst track, M

2

steps left and back right, changing the 0 to a 1,

and entering state q

0

.

2. When in state q

f

with a 0 on the �rst track, M

2

steps left and back right into state q

0

.

3. When in state q

f

with a 1 on the �rst track,M

2

steps left and back right, changing the 1 to a 0, and

halts.

So, on input 0; 0; k M

2

will step left and right into state q

0

, changing the tape contents to 1; 0; k. Then

machine M

1

will run for the �rst time changing 1; 0; k to 0; 1; k and halting in state q

f

. Whenever M

2

is

in state q

f

with a 0 on the �rst track, it reenters q

0

to run M

2

again. So, machine M

2

will run k� 1 more

times until it �nally produces 1; k; k. At that point, M

2

changes the tape contents to 0; k; k and halts. So

on input 0; 0; k,M

2

visits state q

f

exactly k times, each time with its tape head back in the start cell. This

means we can construct the desired M by identifying q

f

as q

�

, and dovetailing M

2

before and after with

reversible TMs, constructed using the Synchronization Theorem, to transform k to 0; 0; k and 0; k; k back

to k.

We complete the proof by constructing a normal form, reversible M

2

that satis�es the three properties

above. We give M

2

the same alphabet as M

1

and additional states q

a

; q

b

; q

y

; q

z

. The transition function

forM

2

is the same as that ofM

1

for states in Q�q

f

and otherwise depends only on the �rst track (leaving

the others unchanged) and is given by the following table

# 0 1

q

a

(1; q

b

; L)

q

b

(#; q

0

; R)

q

f

(0; q

b

; L) (0; q

y

; L)

q

y

(#; q

z

; R)

q

z

(#; q

a

; R) (0; q

a

; R) (1; q

a

; R)

It is easy to see that M

2

is is normal form and satis�es the three properties stated above. Moreover, since

M

1

is reversible and obeys the two conditions of Theorem B.0.13, it can be veri�ed that the transition

function of M

2

also obeys the two conditions of Theorem B.0.13. Therefore, according to Theorem B.0.15,

the transition function of M

2

can be completed giving a reversible TM. 2
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