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ABSTRACT

We prove that any one-sided error random polynomial time (RP) algorithm can be simulated with a
semi-random source at no more than polynomial factor loss in efficiency. i.e. RP = SRP. This contrasts

with the fact that a semi-random source is too weak to simulate fair coin flips [SV].
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1. Introduction

The successful algorithmic use of randomness for solving some basic computational problems has led to
serious consideration of randomness as a computational resource. Physical sources of randomness suffer from
problems of correlation and therefore cannot provide the kind of perfect randomness assumed in the above
algorithms. This deficiency can be expected to become more acute as algorithms make increasingly sophisti-
cated use of randomness, and their correctness proofs rely more critically on the independence of the random
bits. It is therefore necessary to develop an adequate theory for utilizing a physical source of randomness for
efficient computation. Following up on earlier work in this direction [Bl], a mathematical model for such
sources - the semi-random source - was proposed in [SV]. The simplicity and modest randomness assump-
tions of this model make it a viable starting point for such a theory. In this paper we show that any one-sided
error random polynomial time (RP) algorithm can be efficiently simulated (i.e. with no more than polynomial

factor loss in efficiency) with a semi-random source, thereby proving that RP = SRP.

In the past, one direction of research has explored whether it is possible to dispense with randomization
altogether at no more than a polynomial factor increase in the running time; i.e. ‘Is P = RP?’. Some progress
in this direction has been made by exploiting the fact that polynomial time algorithms cannot distinguish the
difference if they are fed sufficiently high quality pseudo-random strings in place of random strings. Under a
certain hypothesis about the existence of one-way functions, such pseudo-random sequences can be obtained'
from shorter random strings [BM, Ya], and yield a sub-exponential simulation of randomized polynomial time

computations [Ya].

Our approach differs from the above in two ways: firstly we assume that the witness set (i.e. for a given
input, those choices for the random string on which the randomized algorithm gives the correct answer) is an
arbitrary set containing half the n-bit strings; this allows us to obtain a result that is independent of any unpro-
ven complexity-theoretic assumptions. Secondly, we exploit the fact that once the randomized algorithm and
the input string are fixed, so is the witness set. Since the algorithm makes only one-sided errors, it can be simu-
lated efficiently by picking an element of the fixed witness set in polynomially many trials. This requirement is
formulated via the notion of the spread of a probability distribution on a collection of sets of n-bit strings.

Informally, a probability distribution over the collection of k-sized sets of n-bit strings has a large spread if for
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every choice, W, of the witness set, with high probability a set drawn from this distribution does not get
trapped in {0,1}" — W. Our main theorem can now be stated as follows: we show how to efficiently convert
a semi-random probability distribution into one having a large spread; k£ will be bounded by a polynomial in 2.
Since a semi-random distribution cannot be converted into a truly-random one [SV], this shows that the task of

obtaining a distribution having a large spread is easier than that of obtaining a truly-random one.

The notion of spread can be generalized appropriately for algorithms with two-sided error. In [Vad], a
modification of the transformation given here is shown to produce a distribution with large (two-sided) spread
from any semi-random distribution. This shows that any two-sided-error probabilistic polynomial time (BPP)
algorithm can be simulated in polynomial time using a single semi-random source. The solution to this more
general problem has an interesting consequence - the basic transformation can be bootstrapped to achieve a
more efficient simulation, in particular also for RP. In [CG], it was shown that this transformation works even
under more severe assumptions on the distribution produced by the source of randomness. In a different direc-
tion, assuming that the witness set is a random set of n-bit strings, [AR] show that substituting semi-random
strings in place of truly-random strings in the original randomized algorithm still yields a witness with constant
probability.

[Sa] considers the following question: how many truly random bits are required to produce a distribution
(on polynomially longer strings) with large spread. Via a counting argument [Sa] showed that there exist
transformations that can convert a truly random distribution on a short string into a distribution with large
spread. If efficient transformations satisfying this property were found, then the failure probability of any
(one-sided error) randomized algorithm can be made exponentially small without increasing the number of
random bits used. It has been conjectured [Va2] [Va3] that practical pseudo-random number generators are
effective precisely because they achieve such a transformation. Two good candidates for this thesis are the
linear congruential generators and shift register sequence generators. In each case it has been repeatedly
observed that randomized algorithms work very well in practice on the output of these generators. However,
these generators are known to be efficiently distinguishable from truly-random sources (see for example [FKL]
and [P]]), and therefore are not perfect in the sense of [Ya]. A new pseudo-random number generator based on

random walks on expander graphs is given in [AKS]; the output of this generator has provably large spread.



2. Preliminaries

Definition [SV]: A distribution on an infinite sequence of 0/1 random variables x;, x3, - is &

semi—random if for every positive integer i and every 0/1 string s of length i — 1:

d<Pr [x,-=1 le ot Xi-1 =S]Sl—8

1 : :
where 0 <3 < E ,and by the event ‘x; ‘- x;_1 =5 we mean the event that x is the first bit of s, x; the

second bit and so on. A & semi-random source is a source whose output distribution is & semi-random. A

semi-random source is a & semi-random source, for some constant 8,0 < 8 < %—

In order to evaluate the worst-case performance of the algorithm that utilizes a semi-random source, it is
convenient to regard the semi-random source as a process controlled by an adversary which generates a
sequence of 0’s and 1’s by flipping a coin of variable bias. The adversary has infinite computing power, and
complete knowledge of the algorithm and the bit-sequence generated so far. The adversary sets the bias of the
next bit to attenuate the performance of the algorithm. The only restriction is that the bias must be in the range

(6, 1-8). The map T: {0, 1}<® -[8,1-39], where for se{0,1}<°,

T(s)=Prlx s +1=1lxy -+ x5 =5] will be called the strategy of the adversary.

The following theorem shows that a semi-random source cannot be used to simulate a fair coin:

Theorem [SV]: Let f: {0,1}™ — {0,1} denote an arbitrary boolean function. Then there is an adversary

strategy, such that f (x) is at least 1 — J biased when x is generated by a semi-random source with parameter

3.

In contrast, the following theorem states that two independent semi-random sources can be used to arbitrarily

closely simulate a fair coin:
Theorem [Val]: There is an algorithm that converts 0(—817n) bits from two independent semi-random

sources into an n-bit quasi-random (i.e. almost uniformly generated; see [Va] for exact definition) sequence.

Definition [Gi]: A language L is in Random Polynomial Time (RP) if there exists polynomial p, and a deter-



ministic polynomial time two-input algorithm M:
(i) if xe L, M[x, r] accepts for at least half the strings, 7, of length p(1x1).

(ii) if xe L, M [x, r] rejects for each string 7 of length p(I1x1)

Let p(I1x1)=nand W(x) = {re {0,1}* IM[x, r]} accepts. Clearly, if xe L, IW(x)| 22""!. W(x) is

called the witness set and its elements are called witnesses.

Definition: Semi-random Polynomial Time (SRP) is defined analogously. Let & be a constant, 0 <8< —. A

N =

language L is in 3SRP (8 Semi—random Polynomial Time) if there exists a polynomial p and a polynomial
time two input algorithm M:
@i). if xe L, M[x, r} accepts with probability at least %

where 7 is a string of length p(lx ) output by an arbitrary 8 semi-random source.

(ii). if x¢ L, M[x, r] rejects for each string 7 of length

p(lxl).
(Notice that (i) must hold for every & semi-random source).

Now, SRP= N OSRP.
0<8< %

3. The Spread of a Distribution

Since at present no special properties of witness sets of RP languages are known, we will assume that
the witness set is an arbitrary subset of {0, 1}" of cardinality 2"~1. Now, proving RP=SRP is essentially
equivalent to exhibiting a polynomial time algorithm that uses a & semi-random source to generate polynomi-
ally many queries such that with probability at least 1/2, at least one of the query strings is guaranteed to be a
witness. The required properties of the induced probability distribution on the query strings are captured in the

notion of spread:
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Definition: Let U, denote the collection of all multisets of cardinality Kk whose elements are n-bit
sequences, and let D be a probability distribution on U, . Let S denote a set picked from U, ; according to

D. Define spread (D) = min (Prp [SAW % O]}
Wc{0,1)%, 1w =2""1

Informally, a distribution with small spread can get ‘trapped’ in a suitably chosen non-witness set.
Notice that a & semi-random distribution can have an inverse-exponentially small spread. The algorithm men-
tioned above is required to transform each & semi-random distribution into a distribution having an inverse

polynomial spread.

4. Transforming Semi-random Distributions into Distributions with Large Spread

Consider the transformation from k n-bit strings to 2% n-bit strings ¢: Unix = Uy, 2t such that for

S={sy - s}, t(S)={ @Xs,- : XS}, where © denotes bit-wise GF[2] sum.
$;€

Theorem 1: Let k = [—é—logn.] ,and let S ={s1,..., S¢} be a set of k successive n-bit strings output by a

semi-random source. Let D be the distribution on U, + induced by the transformation ¢. Then for every &

and every d semi-random distribution, spread (D ) is at least inverse polynomial in 7.

Remark: For the parameters stated in Theorem 1, ¢ (S) can clearly be computed in time polynomial in 2.

Bijections Induced by Strings:

We first lay the groundwork for the proof of Theorem 1. Associate with each string s€ {0,1}" a bijec-
tion A, : {0,1}" — {0,1}" given by:
h(x) =s5sDx.
Let B, ; denote the collection of all multisets of cardinality / whose elements are bijections on {0, 1 J*, and let
He B, >t be the set of bijections associated with the strings in #(S). To establish large spread of distribution

D, it will suffice to show that the associated distribution on bijections satisfies the condition described below.
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Fix an arbitrary witness at W < {0,1}™ |W|=2""1,
Definition: The effective non—witness set w.r.t. bijections p; - - - p,, on {0,1}" is:

{ x€{0,1}"| p; (x) ¢ W for 1 < i<m)

The significance of the above definition lies in the fact that evaluating the bijections at any point outside
the effective non-witness set yields at least one witness. We shall show that for every choice of W, the effec-
tive non-witness set with respect to the set H of bijections is ¢ with at least inverse polynomial probability.

This will suffice to prove theorem 1, since the strings in ¢ (S) are simply the evaluation of the bijections in H at

0.

_In order to prove the above statement, the following structure of H, inherited from #(S), will be useful:
Let {g1,...8/€ By be the set of bijections associated with S, Ho={I}, and
Hiy=H; U(hogy | he H} for0<i < k. Then H = Hy.

Now let A; denote the effective non-witness set w.r.t. the bijections in H;, for 1 £i<k, and let

Ao ={0,1}" — W. To prove Theorem 1 it will suffice to show that:

VYW Prp [A; = D] is at least inverse polynomial in 7.

First we give a recursive characterization of A; :

Lemma 1: Under the above definitions,
A =AiNgin (A) 0Si <l
Proof: Using the recursive definition of H;:
Ai={xeAlVgeH;,gogn(x)e W}
={xe Ailgin (x) e A; ]

=A; N g (A;) a

As a consequence of Lemma 1, proving that D has a large spread is reduced to analyzing the action of a

"typical” bijection on an arbitrary set A. A vanishingly small fraction of all bijections will leave A invariant
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(i.e. map A onto A). We must prove a stronger statement: for bijections of the form g,(x) = s@®x where s is
picked from a semi-random distribution, the typical bijection "moves" A significantly, i.e. E(IA N g,(A)|) is

much smaller than A.

Say that®an adversary strategy is extreme if it is a function f: {0,1}<¥ — {8, 1 -8}, i.e. the biases are
either § or 1—29, and no intermediate values. By the following lemma, it is sufficient to consider extreme stra-

tegies only.

Lemma 2: Let A< {0,1}" and let A’=(A N g, (A)), where s is a  semi-random sequence. Then there is

an extreme strategy which maximizes E(1A’).

Proof: Let T be an arbitrary strategy. It is easy to see that T can be expressed as a convex combination of
extreme strategies, i.e. for each string s € {0,1}", the probability of generating s under T is a certain convex
combination of the probabilities of generating s under the extreme strategies. Now £ (14 ‘ 1) under T will be
this same convex combination of the expectations of (IA' 1) under the extreme strategies. Since a convex

combination is maximized at an extreme point, the lemma follows.[]

Notation: If A {0,1}", then the fraction 14| will be denoted by 1L (A). Let s be an n-bit 6 semi-random

2’!

lANgs(B)!
n

string, and A, B < {0,1}", then will be denoted by W, (A,B). For x € {0,1}",0x will denote

the string O concatenated with x. Finally let a be the constant .
& y 2(1-3)

1
Lemma 3: Let A < {0,1}", and let s be an n-bit d-semi-random string. Then E (J,(4,4) ) < (IWA) ) =3

Proof: By an induction on 7, we will prove the following stronger statement: let A, B < {0,1}", then
E(Wus(AB)) < p(A)f WB).
The statement is easily verified for n = 1. Assume it is true for n. Let A, B < {0,1}"*1.
Let Ag={xe {0,1}" |0xe A} and A; ={xe {0,1}" | 1 xe A}. Define By and B; analo-

gously. Clearly, L (Ag)+ W (Ay)=2 U (A)and i (Bo)+ WU (By)=2 1 (B).
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By lemma 2 it is sufficient to consider only extreme strategies. Moreover, w.l.0.g., we may assume that

the first bit of s, i.e. 51, is O with probability 1 — 8. Let w denote the last n—1 bits of s.

S E(Ws (AB))= E(ps (AB) | 51=0)(1-9)
+E(pus (AB) | 51=1)(3)
=Y E( Wy (Ao, Bo) Hu (A1, B1))(1-8)+ 2 E( W, (Ao, B1)+ 1w (A1, Bo))
SV [U(Ao)S B(Bo) HL(A1) W(B1)'] (1-8) + "2 [L(Ao)* W (B1)* + L (A1 )1 (Bo)] B
=YW (Ao)S R(Bo)' +(2 U (A)—WAo) ) (21 (B)-WBy) ) ] (1-9)+
Ve[W(Ao) (2R(B)—W(Bo)  +(21n(A)—WAo) S 1R(Bo)*]d

Substitutin WAo) =x and K(Bo) =y
7y WB)

E(n (A.B))S2n(A) W(B) { (1-8) [x* y* + (2—x)" (2-y)* ] + B[x*(2—y )* + (2-x)* y°] }.
Via an elementary, though tedious, computation one can show that the function

F(xy)=(1-8) [x® ys H2~x)* (2—y)* ] + 8 [x® (2=y)® H2—x)* y°] atwains its maximum at x=y=l,

under the following conditions: 0<x, y <2, a= 2(11—8) , 0 <8< (for a detailed proof see [VV1] );
the maximum value being 2.

~ E[u; (AB)]SP(A) WB).

This proves the lemma. O

Proof of Theorem 1: Let A;, 0<i </, be the sets defined above w.rt a fixed witness set

Wc {0,1)", IW 1 =2""1. Asa consequence of lemma 3,

&
P [0(Ain) <P A)PI<1-(@a)
-
(21D
S1-(3)
since p(A;) < %

If W(A;) drops by an exponent of (1 +0) at each step,
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WAL < 1 (Ag)+

— L+
—(2)

> Ak=¢'

The probability that p(A;) drops by an exponent of (1+8) at each step is lower bounded by

a- (—;—) 1-8 )k which is inverse polynomial in n. Taking the product of the success probability at each step

is justified by the following property of a & semi-random distribution: let x1, x5, *** be 0/1 random vari-
ables satisfying the 8 semi-random condition, then X;, X;41, * - have a & semi-random distribution even if
they are conditioned on the event x{, X5, * ‘- X;-1 =S, for any string s € {0, 1L

Since W is an arbitrary witness set, the theorem follows. 0

Corollary: RP = SRP.

Proof: By a polynomial number of repetitions of the above scheme, the probability of error can be reduced to
less than 1/2. This is so because Theorem 1 gives a uniform upper bound on the probability of failure of a run
of the algorithm. As in the proof of Theorem 1, by the semi-randomness property, the product of these failure
probabilities is an upper bound on the failure probability of the entire scheme. The overall running time is

polynomial in 7, though & occurs in the exponent. a

5. Discussion

We have introduced a measure for evaluating the distribution produced by a source of randomness for
the purpose of simulating randomized algorithms. This measure, the spread of the distribution, evaluates the

probability of picking a witness for the worst choice of the witness set.

In this paper, we show that distributions with large spread are easier to produce than truly random distri-

butions: semi-random distributions can be transformed into the former, but not the latter. In the same spirit, a
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definition of two-sided spread is given in [Va4] to evaluate the worst-case performance of a probability distri-
bution over all two-sided error randomized algorithms. In that paper, it is shown how to efficiently transform
any semi-random distribution into a distribution with large two-sided spread. An advantage of this stronger
result is that the transformation can be bootstrapped to achieve greater efficiency for simulating one-sided
error randomized algorithms as well. The transformation used there differs in a subtle but crucial way from
the one given here. Those results have been further extended to the problem of estimating the bias of an arbi-

trary population using a semi-random source for picking the samples [VV2]

The spread of the output distribution of a pseudo-random number generator provides a natural measure
of its usefulness in simulating randomized algorithms. Analyzing the spread of generators such as the linear

congruential generator should prove to be an interesting challenge.
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