Trapdoor Pseudorandom Number Generators,

with Applications to Protocol Design.

Umesh V. Vazirani®
Vijay V. Vazirani

University of California
Berkeley, CA 94720.

Abstract: We define the class of frapdoer
pseudo-random number generators, and intro-
duce a new technique for using these in cryp-
tography. As an application for this technique,
we present a provably secure protocol for
One —pBit Disclosures i.e. for giving a one-bit
message in exchange for receipt.

1. Introduction

The notion of a deterministic random
number generator is certainly a contradiction.
Yet the cryptographically secure pseudo-
random number generators (Shamir [8], Blum
and Micali [4], Yao [10], Blum, Blum and Shub
[1]) have come close to achieving these two
contradictory properties. More precisely:

1) Given a seed, there is an efficient
deterministic algorithm for generating
the pseudo-random sequence.

R) The pseudo-random sequence gen-
erated using a random seed is indistin-
guishable by polynomial time statistical
tests from a truly random sequence.

The one-time pad [1] is, to our knowledge,
the only application in which this powerful com-
bination of properties has been used. In fact,
so far pseudo-random number generator have
been viewed primarily as amplifiers of random-
ness (i.e. given a short random seed as input,
the generator outputs a long sequence that
‘looks’ random).

;I‘his research was supported by NSF-grant 82-04506.
Supported also by IBM Graduate Fellowship.

0272-5428/83/0000/0023$01.00 © 1983 IEEE

23

In this paper, we define a special class of
pseudo-random number generators, which we
call trapdoor generators. Trapdoor generators
are somewhat analogous to trapdoor functions:
the knowledge of a secret key allows one to
efficiently predict the pseudo-random
sequence; however, without knowledge of the
secret key, the sequence cannot be dis-
tinguished from a truly random sequence {we
shall state this more precisely in Section 8).
The z®mod N generator of Blum, Blum and
Shub [1] is an example of a trapdoor generator.
We introduce a new fechnigue to exploit the
deterministic-random properties of trapdoor
generators, and use it to design a provably
secure protocol for One-Bit Disclosures. This
technique appears to be fairly general and
powerful, so we expect it to have more applica-
tions in cryptography.

In [4] Blum and Rabin describe a protocol
for sending certified mail. Briefly, certified
mail is mail in exchange for a receipt. Certified
mail may be used for disclosures, e.g. when dis-
closing information about his latest invention,
the inventor would at least like to get a receipt
that he did so. Consider the following situation:

Alice wants to find out from Bob, who is
an expert siesmologist, whether there
will be an earthquake in San Francisco
in 1984. Bob wishes to send her this
information in exchange for a receipt.

Notice that the crucial part of this message is a
single bit. There are several ways in which a
single bit can be sent using certified mail. e.g.
as the exclusive or of the bits of a suitably
chosen message. The problem with such
schemes is that even though certified mail pro-
tocol may be secure, Alice may be able to
extract the one-bit message without giving Bob
a receipt. Instead, we propose using a One-Bit
Disclosure protocol.

One-bit disclosure has a somewhat different
flavour than certified mail. In certified mail,
the recipient has no idea what the message is
going to be; whether it is going to be useful or
not. However, if the message is only one bit,
then the recipient knows in advance how useful
the message will be.

The idea behind our protocol is that Bob
gives Alice information that makes her more
and more certain about his bit. In exchange he

accumulates receipts about this information.

This may be thought of as sending a fraction of
a bit in exchange for a fraction of the receipt.
We first implement a protocol for one-bit disclo-
sures in the presence of a trusted intermedi-
ary. We then use pseudo-random nurmnber gen-
erators to convert this into a secure protocol
without the need for an intermediary.

The idea of fractional bits has generated
much interest recently. In [8], Luby, Micali and
Rackoff describe a 'miraculous’ protocol for
exchanging one-bit secrets. Using several
clever ideas they are able to ensure that the
exchange is 'fair’. ie. at every stage Alice has
exactly as much information about Bob's bit as
Bob has about Alice’s. A suitable modification
of their protocol can be used for one-bit disclo-
sures. Our technique yields a simpler protocol
for one-bit disclosures which requires fewer
message exchanges. In another interesting
paper, Tedrick [12] has a different way of view-
ing fractional bits, in the context of Blum's
protocol for exchange of Secret Keys [2]. In
Blum's protocol, Alice and Bob exchange their
secret primes bit by bit along with proofs that
neither is sending ‘junk’ bits. Tedrick views
receiving each additional bit as cutting down
the search space for the prime by half. He pro-
poses that Alice could send a fraction of a bit
by specifying for example that the next 3 bits
of her prime are not 010. This information cuts
down Bob’s search space by only one eighth,
thereby reducing his advantage, if he decides
to stop before giving Alice the corresponding
information about his secret prime. ’

5. OneBit Disclosures with Trusted
Intermediary.

Bob first reveals his one-bit message to the
intermediary (who is trusted by both Bob and
Alice). The intermediary flips a coin biased
Y + ¢ towards Bob’s bit (the bias is mutually
decided on by Alice and Bob), and reports the
flip to both Alice and Bob. In return, Alice gives
Bob a receipt for this fractional information,

24

and Bob checks the receipt. If Alice received m .
1’s and n O's from Bob then she knows that
Bob's bit is 1 with probability 1/ (1 +k™™),

— £ We say that a receipt for

where k =

&
these bits is worth 1/ (1 + k™~™). Actually, Bob
has receipt for all but possibly the last flip that
Alice received. Therefore his receipt is worth
at least 1/ (1 + m-n-sgn{m-n))

1if £>0.
where sgn(x) = {—1 if 2<0.

0 if 2=0.

Notice that without the trusted intermedi-
ary in this protocol, Bob may cheat, i.e. he may
not report the actual flips of the coin, or he
may use a coin with a different bias. In that
case, Alice will misinterpret the information
she receives from Bob, whereas Bob keeps get-
ting Alice’s receipts!

3. Removing the Intermediary.

In this section we show how the protocol of
the previous section can be implemented
without the intermediary, in an abstract set-
ting. Suppose Alice could construct the follow-
ing two coins:

1). Without knowing Bob’s bit, Alice constructs
a coin biased ¥ + & towards either 0 or 1 (Alice
does not know which, though she can make the
two possibilities equiprobable). Moreover, if she
knew which bit the coin was biased towards, she
could determine Bob’s bit.

2). A coin which is biased % + & towards the bit
of Alice’s choice (0 or 1). Moreover, Alice can
predict the flips of this coin.

Alice sends Bob these coins in random
order. These coins have the additional property
that Bob cannot distinguish them. However, he
can flip both coins. Now he simply reports the
flips of the coins to Alice, and in return obtains
a receipt for each flip. If Bob cheats, he will get
caught with probability % since Alice can
predict the flips of the second coin. For con-
venience, we shall refer to the first coin as
Alice’s info-coin, and the second coin as her
control-coin.

Though this protocol seems a figment of the
imagination {or one of Alice’s adventures in
Wonderland), we show how to actually imple-
ment these coins using the deterministic and
remdom properties of trapdoor generators. The
pseudorandom number technique consists
precisely in implementing these coins, thereby
ensuring that the person flipping the %+ ¢
biased coin is forced to report the flips

S

S G N e

- honestly.

4. The Coins and their Flips.

A ‘coin’ will be defined relative to a compo-
site N, which is the product of two large primes
each congruent to 3 (mod 4). Such composites
(Blurm Integers) have several useful crypto-
graphic properties which were first pointed out
by Blum [3]. The properties we shall use are:

1) -1 is a quadratic non-residue and has Jacobi

Symbol! 1, mod N.
2) every quadratic residue has exactly one
square root mod N which is itself a quadratic

residue.

By a coin we mean any number x in Zy hav-

ing Jacobi Symbol 1. Givenane:0=<e=<¥ and

a pseudo-random number generator G, the flips
of a coin are obtained as follows:
Step 1: If x is a non-residue, convert it into a

residue by multiplying by -1 mod N.

Step 2: Obtain the unique square root of x (mod
N) which is a quadratic residue.

Step 3: Feed this square root as a seed to G and
obtain the pseudo-random sequence. {Notice
that if the seed is random, this sequence ‘looks
like’ the flips of a fair coin. This is formalized in

section 6).

Step 4: Convert the pseudo-random sequence
into the flips of a % + & biased coin, biased
towards Heads. A bit-efficient method of doing
so is described in section 8.

Step 5: Whenever the coin in Step 4 comes up
Heads, output the correct quadratic residuosity
of x, and whenever it comes up Tails, output the
negation of the residuosity of x.

iLet P be a prime. The Jacobi Symbol of x€Zp

with respect to P is defined as (;;) =
p=l

z 2 (mod P). x is a quadratic residue mod P

g (I

iff (TD_) = 1. _

Let N = Px@, P, Q primes. The Jacobi symbol of

zreZy with respect to N is defined as (—;\i{—) =

(Z)x(Z). The Jacobi Symbol can be computed

in O(| N |?) time even without knowledge of the
factorization of N.

There is an efficient algorithm for flipping a
coin, given the prime factors of N. In section 7
we shall formalize and prove that if x is ran-
domly chosen from Zy, and the prime factors
of N are not known, then the flips of x ‘look like’
the flips of a real coin biased % + ¢ towards the
residuosity of x.

5. A Protocol Without Intermediary,
that Almost Works.

In this section we shall present a protocol
that uses no intermediary and illustrates the
basic ideas of the pseudo-random number tech-
nique; however, we are unable to prove it
secure. In Section 7 we present a more sophis-
ticated version along with a proof.

The following conditions are required before

starting the protocol:
Alice and Bob have already decided on an £ and
a pseudo-random number generator, G. Bob
has a composite Ny which is the product of two
large equal length primes Pz and Qp, each
congruent to 3 (mod 4). Bob knows the prime
factors of Np, and Alice knows Np, but not its
prime factors. Bob's message is the quadratic
residuosity of a random element beZy having
Jacobi Symbol 1. Alice knows b. Even so, under
the Quadratic Residuosity Assumption® [8],
Alice has no advantage in guessing Bob's bit.

2let N = PxQ, P, Q distinct odd primes. Exactly
half the elements of Zy having Jacobi Symbol 1
are quadratic residues mod N. Given N and

x€Zy with (—:;—) = 1, the problem of deciding if x

is a quadratic residue mod N is called the
dratic residuosity problem.
The Quadratic Residuosity Assumption [6] says
that it is computationally infeasible to solve the
quadratic residuosity problem. More precisely,
let T be a probabilistic polynomial time pro-
cedure which on input N and x, each of length
2n, outputs a 0 or 1. Let & be a real number
between 0 and 1, and let t be a positive integer.
Then for n sufficiently large, and all but ¢ frac-
tion of numbers N of length n, N = Px@, P, Q.
distinct, odd primes of length n, the probability
that T is incorrect in guessing the quadratic
residuosity of x mod N on input (N, x), with x

picked uniformly from Zy with (-]xv) is greater
than 1/ nt.

Alice constructs a pair of coins (numbers) u
and v, and sends them to Bob in random order:

1) She chooses a random number 7, from ZE,B,
and picks her info-coin to be:
_ | rExb (mod Ng) with prob. Y.
u= i— r£xb (mod Np) with prob. %.
2) She chooses another random number 73
from Zy,, and picks her control-coin to be:
_ | 74 (mod Ng) with prob. %.
V=1~ 74 (mod Np) with prob. %

Notice that u and v are independent and
equi-distributed among numbers in Zy, having
Jacobi Symbol 1. Bob has no advantage in dis-
tinguishing between u and v since Alice sends
them in random order. Alice knows the qua-
dratic residuosity of v, and the seed for this
coin (i.e. 7§ (mod Ng)). Therefore she can
predict the flips that Bob must report on her
control-coin. So, if Bob cheats he will get
caught with probability %.

Notice that residuosity of b
_ | residuosity of u if u=rfxb (mod Np).
~ |- residussity of u if u=—7rExdb (mod Ng).
The flips of the info-coin will give Alice statisti-
cal information about the residuosity of u, from
which she can obtain statistical information
about Bob’s bit.

The problem with this protocol is that Alice
may be able to cheat. The cryptographic secu-
rity of the pseudo-random number generator
means that on a randomly chosen seed, the
output of the generator cannot be dis-
tinguished from a truly random sequence by
any polynomial time statistical test. The sta-
tistical test is not given any information about
the seed. However, Alice knows the square of
the seed for the control-coin (it is either u or
-u). Even though the seed cannot be computed
by Alice {because extracting square roots
modulo a composite is as hard as factoring [9]),
she has partial information about it which may
give her some advantage in predicting the out-
put of the pseudo-random number generator,
and therefore obtain more information about
Bob’s bit.

26

6. Trapdoor Generators.

The pseudo-random number generator that
enables us to design the provably secure proto-

‘col is the ‘z® mod N-generator’ [1]. Briefly, let

N be the product of two large primes P and Q,
each congruent to 3 (mod 4). Squaring (mod N)
is a 1-1 onto function on the quadratic residues
(mod N). Let zg be a random quadratic residue
mod N. The z2mod N-generator outputs
bob 1b Doee where b‘i = pa’r"l,ty (x,,;) and
Z; 41 = z (mod N). This sequence is said to be
generated forwards on seed zy. Similarly, the
x22 mod N-generator - can also output
b_ib_gb_g- - - by taking square roots, i.e. b; =
parity (z;) and

x;_, = the unique square root of z; mod N,
which is a quadratic residue. This sequence is
said to be generated backwards on the seed zg.

Blum, Blum and Shub point out that the
22 mod N-generator has several nice proper-
ties that promise many interesting applica-
tions. The properties that make this pseudo-
random number generator especially useful for
our purposes are:

1) Given zg and N, there is an eflicient
deterministic algorithm to generate the
pseudo-random sequence forwards.

2) Given P and Q, there is an eflicient
algorithm for generating the pseudo-

random sequence backwards, i.e.
b.b_sb 5.

3) However, without the knowledge of P
and Q, the backwards generated
sequence cannot be distinguished from
a truly random sequence (by a

polynomial-time statistical test).

We generalize properties 1, 2 and 3, and
define a class of pseudo-random number gen-
erators which we shall call trapdoor generators.
In [5], Blum and Micali give a set of sufficient
conditions for constructing a pseudo-random
number generator using a one-way function f.
In particular, if f is required to be a trapdoor
function, the resulting generator will be a trap-
door generator.

Below, we give a formal definition of trap-
door generators.
Definition: Let V (the set of parameter values)
be a subset of the positive integers. Associated
with each parameter NeV is an integer Ky
called the key of N. For each NeV, let
Xycio, 3!Vl be a set of seeds. The
seed domain, X = {(N,z) | NeV, and z€Xyi.

Definition: A two —way infinite sequence s is
a map from the Integers to {0,1}, ie.
s: Z - {0,1}. Let S be the set of two-way infinite
sequences. For any k€Z, and two-way infinite
sequences s and s', s' is said to be a k shift of
s if for every n€Z, s'(n) = s(n+k).

Definition: A frapdoor generator G is a map
from the set of seeds to the set of two-way
infinite sequences, i.e. G: X~ S, satisfying the
following four properties. Properties 1, 2, and 3
correspond to the three properties of the
z? mod N generator stated above. (let
(N,z)eX, and let G(N,z) =s):

0) For every k€Z, there exists a seed
(N,y)eX such that G(N,y) is a k shift
of G{N,x). Moreover, there is a polyno-
mial time procedure which on input
(N,z), and k in unary, outputs (NV,y).

1) There is a polynomial time pro-
cedure which on input (N,z) and a posi-
tive integer k in wunary, outputs the
first k bits of G(N,xzx), ie
s(0),s(1), - -- s{k—1). This process is
called generating the pseudo-random
sequence forwards on seed (N,z).

2) There is a polynomial time pro-
cedure which on input (N,z), an integer
k in unary, and the key Kpy, outputs
s(—1),s(—2), - - -“s(—k). This process
is called generating the pseudo-random
sequence backwards on seed (N,x).
Comment: Because of properties O, 1
and 2, the k bit backwards generated
sequenle on seed (N,y) is simpply the
reverse of the k bit forwards generated
sequence on seed (N,x).

3) For every non-negative integer t and
positive fraction ¢ no probabilistic poly-
nomial time procedure on input SN ,Z)
of length n and the sequence of n' bits
of G(N,xz) generated backwards has
even an & advantage in predicting the
next bit of the sequence.

It follows from Yao's Theorem that no pro-
babilistic polynomial time statistical test can
distinguish between sequences produced by a
trapdoor generator backwards and truly ran-
dom sequences even if the seed is supplied to
the statistical test. The following definition ade-
quately captures the notion of a probabilistic
polynomial time statistical test, for our pur-
poses.

27

Definition {Yao): A probabilistic poly —time sta-
tistical test, T, is a probabilistic poly-time algo-
rithm which on input a (N,z)eX, and a
sequence outputsa Qor a 1.

1) Let «y,, denote the average value of T's
output over all inputs (N, x, S), where [N| = n, x
is a seed, and S is the m-bit pseudo-random
sequence produced by the trapdoor generator
G going backwards on seed x.

2) Let B, m denote the average value of T's
output over all inputs (N, %, S), where |N| = n, x
is a seed, and S is any m-bit sequence.

We say that the generator G passes test T if for
every positive integer t, and polynomial p,
lon pn)Brpm) <1/ nt for all sufficiently large
n.

Theorem 1 (Blum, Blum, Shub): Meodulo the
Quadratic Residuosity = Assumption, the
22 mod N generator passes all probabilistic
polynomial time statistical tests.

7. The Protocol.

The conditions required before starting the
protocol are the same as in Section 5, except
that Alice and Bob have agreed on using the
22 mod N generator run backwards. In the
final paper we shall prove that any trapdoor
generator can be used to design a provably
secure protocol for one-bit disclosure.

Step 1: Bob bitwise flips® to Alice four random
numbers, r, r', s, §', such that 0=r,r ,s,s'<Np,

Step 2: Alice constructs one pair of coins
(numbers) from r and r’, and another pair from
s and s’. The procedure for the construction of
the two pairs is identical. We describe the con-
struction of the first pair below: :
b) Alice's control-coin is:
% (mod Ng) with prob. %.

— r#(mod Np) with prob. %.

Using 73(mod Np) as seed to the z®mod Np-
generator, Alice generates a (k-1) bit pseudo-

u=

3A protocol for flipping a bit is proposed in [11].
Briefly, if Bob flips a bit @ to Alice then

1. a is equally likely tobe O or 1.

2. Alice knows a, but Bob has no idea what a is.

3. Alice can prove to Bob that he flipped @ to
her (she cannot do so for &).

random sequence forwards (k is chosen large
enough by Alice and Bob, so that at the end of
the protocol Alice knows Bob’s bit with high
probability. Since Alice already knows the
pseudo-random sequence (see comment in Sec-
tion B8), and the residuosity of u, she can
predict Bob’s response on this coin.
a) Alice's info-coin is: _

bxr'?(mod Ng) with prob. %.
— bxr'?¥(mod Ng) with prob. %.
Alice now sends Bob u and v in random order.

V=

Step 3: Bob picks one of the two pairs of coins
at random and asks Alice to prove that she con-
structed them according to Step 2. This
involves proving to Bob two of the random
numbers that he flipped to her.

Step 4: Bob flips the other pair of coins (say =,
and zp), running the z®mod Np generator
backwards.

Step 5: Repeat Steps 5a and 5b 0(1/ £?) times:

a) Bob now reveals to Alice one flip of
the z, and z coins.

b) Alice checks Bob’s response on her
control-coin. The other response gives
her fractional information about Bob's
bit. She gives him a signed receipt for
both flips (because she does not want
Bob to figure out which coin is which). A
bit-secure signature scheme for doing
so is described in [6]. The convention
will be that a receipt is invalid if Alice
can demonstrate (by the procedure of
Step 3) that the flip sequence was gen-
erated using her control-coin. So Bob's
only valid receipt is that on Alice’s info-
coin.

In Theorems 2 and 3 we shall prove that if
either Alice or Bob deviated from protocol in
Steps 1-Ba the other would detect this. In
Theorem 3 we shall establish that Alice cannot
get any more information from Bob’'s response
on her info-coin, than she would have if he had
used a ‘real coin’.

Theorem 2: If Alice follows protocol and Bob
cheats in Steps 1-5a then with probability at
least ¥ Alice would detect this in Step 5b.

Proof: The numbers sent by Alice in Step 2 are
independent and equidistributed among
numbers in Zy, having Jacobi Symbol 1. These
numbers are sent in random order, so Bob has
no information about which number correspond

28

to which coin. If Bob tries to cheat by giving
Alice an incorrect bit in Step 5a, then with pro-
bability at least % he would do so on a control-
coin, and Alice would detect this.

Thlis probability of cheating can be reduced
to 1—=—if (j - 1) control-coins an d one info-coin
were used.

Theorem 3: II Bob follows protocol and Alice
cheats in Steps 1-5a then with probability at
least % Bob would detect this in Step 3.

Proof: Alice can cheat only in Step 2 when she
constructs the coins. However, since Bob ran-
domly picks out one of the two pairs of coins
for her to prove in Step 3, Alice will get caught
with probability at least %.

This probability of cheating can be reduced
to 1—1.— if j sets of coins are constructed and

Bob as{(s Alice to prove (j - 1) of them in Step 3.

We would like to prove that Alice cannot
know Bob's bit with any greater certainity than
that given by the Bayesian Probability. We shall
prove a stronger statement: Alice cannot
correctly guess Bob’s bit on a non-negligibly
greater fraction of the pseudo—random
sequences than the truly random sequences
(this guessing probability may be unrelated to
the Bayesian Probability).

Definition: A bit —predictor, M, is a probabilistic
polynomial time algorithm which on input (N, x,
b, r, S), where N is a Blum Integer, x, b, r are
elements of Zy having Jacobi Symbol 1, satisfy-

ing x = Tr?xb (mod N), and S is a binary
sequence, outputs a 0 or a 1 (its guess for the
quadratic residuosity of b mod N).

1) Consider input tuples (N, x, b, r, S) where N
is picked uniformly from n-bit Blum Integers, b
and r are uniformly and independently picked
from elements of Zy having Jacobi symbol 1,
r2xb (mod N) with prob ¥%.
—r2xb (mod N) with prob %’
and S is the unique m-bit sequence of flips of
coin x. Let ay n, denote the probability that M
correctly outputs the residuosity of b on an
input tuple picked from this distribution.
2) Consider input tuples (N, x, b, r, 5), where N
is picked uniformly from n-bit Blum Integers, b
and r are uniformly and independently picked
from elements of Zy having Jacobi symbol 1,
x = { T2xb (mod N) with prob %

—r2xb (mod N) with probd %’

X =

Lﬁ;xi&%ﬁi

and S is picked from the set of m-bit binary
sequences with probability equal to the proba-
pility that S is generated by the flips of a coin
biased ¥ + & towards the quadratic residuosity
of b mod N. Let B, denote the probability
that M correctly outputs the residuosity of b on
an input tuple picked from this distribution.

We shall say that the protocol is fair relative
to bit —predictor M if for every positive integer
t, and polynomial p, |6 p)=Bn.pm) < 1/ 1t for
all sufficiently large n. :

Theorem 4: Modulo the Quadratic Residuosity
Assumnption, the protocol is fair relative to all
probabilistic polynomial time bit-predictors.

Proof: Suppose to the contrary that there is a
bit-predictor, M, relative to which the protocol
is not fair. We shall use M to design a proba-
bilistic polynomial time statistical test T which
the 22 mod N generator fails to pass, thus con-
tradicting Theorem 1. The statistical test T
shall do the following: on input (N, x, S) where
where the length of N is n, and the length of S is
2xp{n), it picks a random number r in Z, '~ hav-
ing Jacobi Symbol 1. It will give as input to M
the tuple (N, y, b, r, S’), where

_ | 72 (mod N) with prod }.
Y= #2 (mod N) with prob %’ ,
r is rendomly chosen from Zy, and
b=yxr—2 (mod N). Notice that T knows the
residuosity of b. S’ is the sequence of length
p(n) biased ¥ + ¢ towards the residuosity of b,
constructed from S (which is of length 2xp(n))
as described in Section 8. If M correctly out-
puts the residuosity of b then T outputs 1, oth-
erwise it outputs 0.

Clearly, ay, zp(n) for T is equal to o) for
M and B, zp(n) for T is equal to Br p(n) %or M.
Since the protocol is not fair relative to bit-
predictor M, there exist an integer t, and a
polynomial p: for infinitely many values of n:
len o) —Brpm)l > 1/nf. But this implies that
for infinitely many values of n:
oty 2p(n)y—Bm 2@yl > 1/m*. Thus the z2 mod N
generator fails to pass test T, contradicting
Theorem 1.

8. Constructing a % + ¢ Biased Coin.

We wish to convert the flips of an unbiased
coin into the flips of a coin biased ¥ + £ towards
0. Let the binary expansion of %+ ¢ be x =
0.zx,x25 --. We shall describe below the
procedure for outputting one flip of the biased
coin.

29

procedure: .
dok = 1 to infinity,
Let fj = next flip of the unbiased coin.
if f = x; then continue.
else if fi < z; then output 0 and HALT.
else if f; > z; then output 1 and HALT.
end
end.

Theorem 5: The above procedure outputs a bit
biased ¥ + ¢ towards 0. The expected number
of flips of the unbiased coin needed to output
one flip of the biased coin is 2.

Proof: Consider an infinite sequence of flips of
the unbiased coin: f; fa fgs -~ and inter-
pret it as the binary number f =0. Fifafas
in the interval [0, 1].

Define bit(f) = {0 1t g{g’ﬁ
Since f € [0,x) with probability %+ & and f €
(x,1] with probability % —&, Dbit{f) is biased
¥ + ¢ towards 0. Moreover, to determine bit(f)
it suffices to find the least k: fj # z, since
bit(f) = 0if fr <z and 1 if f > x;. From ele-
mentary probability theory, the expected value
of k is 2. So on the average we need only two
flips of the unbiased coin for each flip of the
biased coin.

Shannon Coding Theory [11] gives a method
of obtaining more than one flip of the biased
coin for each flip of the unbiased coin on the
average, provided the biased flips are output
block at a time instead of a bit at a time.

Acknowledgements We are extremely indebted
to: Manuel Blum for supervising this research
with his unique sense of judgement; Richard
Karp for showing us the elegant and efficient
procedure of Section 8; Avi Wigderson, whose
knack for weeding out the inessential led us to
a clean definition of trapdoor generators; Claus
Schnorr for some very enlightening discussions
on number-theoretic cryptography; Mike Luby
for sharing his knowledge of random walks;
Clark Thompson for introducing us to the
notion of 'fractional bits' in the context of Com-
munication Complexity in VLSI and to Tom
Tedrick for several useful discussions on frac-
tional bits.

References

1). L. Blum, M. Blum and M. Shub, "A Simple
Secure Pseudo-Random Number Generator,” to
appear in SIAM Journal of Computing.

2). M. Blum, "How to Exchange (Secret) Keys,”
ACM Transactions on Computer Systems (1983).
(1982).

3). M. Blum, "Coin Flipping by Telephone,” in
Proc. of IEEE Spring COMPCON (1982). 4). M.
Blum and M. Rabin, ""Mail Certification by Ran-
domization,” to appear.

5). M. Blum and S. Micali, "How to Generate
Cryptographically Strong Sequences of
Pseudo-Random Bits,” 1982 FOCS.

8). S. Goldwasser and S. Micali, "Probabilistic
Encryption and How to Play Mental Poker Keep-
ing Secret all Partial Information,” 1982 STOC.

7). S. Goldwasser, S. Micali and A. Yao, ""Strong
Signature Schemes,’ 1983 STOC.

8). M. Luby, S. Micali and C. Rackoff, "The
MiRackolLus Exchange of a Secret Bit,” 1983
FOCS.

9). M. 0. Rabin, 'Digital Signatures and Public-
key Functions as Intractable as Factorization,”
MIT/LCS/TR-212 Tech. memo, MIT, 1979.

10). A. Shamir, "On the Generation of Crypto-
graphically Strong Pseudo-Random Sequences,”
1981 ICALP.

11). C. E. Shannon, "A Mathematical Theory of
Communication,” Bell Systems Journal, 27
(1948).

12). T. Tedrick, "How to Exchange Half a Bit,”
CRYPTO '83.

13). A. Yao, "Theory and Applications of Trap-
door Functions,” 1982 FOCS.

30

