
Dynamic Programming I

Dynamic Programming is a general technique to design e�cient algorithms for a variety
of problems. The word programming in `dynamic programming' refers to the fact that the
method consists of �lling in a table. We will start with a simple example of a dynamic
programming algorithm, and then give discuss the general technique and setting for dynamic
programming.

String Reconstruction.

We start with the following `toy problem'. Suppose that all the blanks and punctua-
tion marks have been inadvertently deleted from a text �le, so the �le looks something like
"onceuponatimeinafarfarawayland...". We wish to reconstruct the �le, using only an online
dictionary for help. Equivalently, we can restate the problem as follows: given a sequence
of n characters x1; : : : ; xn, and a dictionary of allowable words, �nd a decomposition of the
sequence into words from the dictionary. Let us start by solving the simpler decision problem:
is there a decomposition of the given sequence into words from the dictionary?

Let us start by de�ning T (i) to be 1 if the sequence x1; : : : ; xi can be decomposed into
a sequence of words from the dictionary, and 0 otherwise. The value we are interested in
computing is T (n). We will show that if have already computed the values T (1), : : : , T (j)
then we easily compute T (j + 1) as follows:
T (j + 1) = 1 i� there is a k, 1 � k � j + 1 such that T (k � 1) = 1 and xkxk+1 : : : xj+1 is a
word in the dictionary. To make this de�nition consistent we de�ne T (0) = 0. We can state
the above condition in mathematical notation (identifying 1 with True and 0 with False) as
follows:
T (j + 1) =

W
1�k�j+1[T (k � 1) ^Dict(k; j + 1)]

The algorithm should now be clear. We �ll in the entries of a table T with entries indexed
from 0 to n. T (0) is initialized to 0. After the �rst j entries have been �lled in, the j + 1st

entry is �lled in by looking running through the indices 1 � k � j + 1, and using the above
rule. Assuming that dictionary lookup takes a single step, this algorithm takes O(n) steps to
�ll in each entry in the table, for a grand total of O(n2) steps.

Getting back to our original goal | of �nding a decomposition of x1; : : : ; xn into a se-
quence of words from the dictionary | rather than just determining whether or not such a
decomposition exists. This is easily accomplished as follows: in addition to the table T , we
also store a table B, where if T (i) = 1, then B(i) is the index of the beginning of the word
ending at the xi. The algorithm is modi�ed as follows: when algorithm sets entry T (j+1) = 1,
it sets B(j + 1) = k, where k is an index such that [T (k� 1)^Dict(k; j + 1)].

Naturally, this program just returns a meaningless Boolean, and does not tell us how to
reconstruct the text. Expanding the innermost loop (the last assignment statement) to

fT [i; j] :=true, �rst[i; i+ d] := k; exit forg
where �rst is an array of pointers initialized to nil, gives us also the end of the �rst word of

each substring that is indeed the concatenation of dictionary words. Notice that this improves
the running time, by exiting the for loop after the �rst match; more optimizations are possible.
This is typical of dynamic programming algorithms: Once the basic algorithm has been derived
using dynamic p rogramming, clever modi�cations that exploit the structure of the problem
speed up its running time.

Dynamic Programming versus Divide and Conquer

It is useful to compare and contrast two di�erent paradigms for designing algorithms:
divide and conquer and dynamic programming.
Divide and Conquer: starting with an instance of size n, we break it into a instances of size n=b
each. Moreover we show how to `glue' the solutions to these subproblems together in O(nc)
steps to obtain a solution to our original instance. Why does this outline yield a polynomial



time algorithm? One way to see this is to analyze the recurrence relation. But if we want just
a crude polynomial time bound (i.e. it might give us an O(n3) bound instead of O(n2), for
instance), then we can reason as follows: the total running time of the algorithm is bounded
by the total number of subproblems (as we run through the recursion) times the maximum
gluing cost. Since the maximum gluing cost is O(nc), we just have to show that the total
number of subproblems is bounded by some polynomial in n. Why is this the case? Let us
work out, for example, the case a = 2 and b = 2. At the lowest level of recursion, we have
n subproblems of size 1 each. At the next lowest level, there are n=2 subproblems of size 2
each... The total number of subproblems is therefore n+ n=2 + n=4 + : : : � 2n.
Exercise: Show for any constants of a; b the total number of subproblems is O(nd), where d is
some constant that depends upon a; b.
Dynamic Programming: notice that in the algorithm for string reconstruction, to solve an
instance of size n, we needed the solutions to instances of size n� 1, n� 2, ..., 1. The problem
is that the sizes of the problem instances is no longer dropping by a constant factor in each
iteration. Is the number of subproblems still polynomially bounded?

First let us answer that question assuming no further properties of our instance. For
simplicity let us assume that each instance of size n is broken into two instances | one of size
n � 1 and the other of size n � 2. How many subproblems do we get in all? If S(n) is the
number of subproblems we get when we start from an instance of size n, then we have

S(n) = S(n� 1) + S(n� 2)

But this gives us the Fibonacci numbers | S(n) is exponentially large in n. But then why did
our algorithm for string reconstruction run in polynomial time? Recall that while computing
Fibonacci numbers we ran into the same problem: if we computed them recursively, it took
exponential time. However, if we iteratively worked our way up or memoized, then it took
polynomial time. This was because if we blindly computed recursively then to compute F (n)
we must compute F (n�1) and F (n�2). Now to compute F (n�1) we must compute F (n�2)
and F (n� 3). The recursive algorithm does not notice that F (n� 2) is being computed twice.
Expanding the tree of recursion a few more levels reveals that each number is re-computed a
very large number of times (actually an exponential number of times!).

In general dynamic programming works whenever there is some special property of the
problem that allows us to bound the number of subproblems. Here are a few of the typical
reasons we can bound the number of subproblems:

� The input is x1; x2; : : :xn. A subproblem is x1; x2; : : :xi.

The number of distinct subproblems is n. This was the case for the string reconstruction
problem.

� The input is x1; x2; : : :xn and y1; y2; : : :ym A subproblem is x1; x2; : : :xi and y1; y2; : : :yj .

The number of distinct subproblems is nm. This is the structure for the edit distance
problem, which we will see in the next lecture.

� The input is x1; x2; : : :xn. A subproblem is xi; x2; : : :xj .

The number of distinct subproblems is O(n2). This is because there are n choices for
i, and for each way of choosing i, there are at most n ways of choosing j. This is the
structure for the matrix chain multiplication problem.

The exact number of subproblems is not hard to �gure out either: there are
�
n
2

�
=

n(n � 1)=2 ways of picking distinct i; j. We must add to this the n ways of choosing
i = j for a grand total of n(n + 1)=2.



The moral is that to design a dynamic programming algorithm, you must look for spe-
cial structure | usually a linear structure | that allows us to bound the total number of
subproblems.


