
Dynamic Programming III + Linear Programming

2. Transitive Closure and the TSP

The following is an important problem: We are given a Boolean n� n matrix G |or, equiv-
alently, the adjacency matrix of a directed graph G = (V;E). We wish to determine for all
i; j 2 V whether there is a path from i to j.

G =

2
666664

0 1 0 0 1
1 0 0 1 0
0 1 0 0 1
1 1 0 0 0
0 1 0 0 0

3
777775

T (G) =

2
666664

1 1 0 1 1
1 1 0 1 1
1 1 1 1 1
1 1 0 1 1
1 1 0 1 1

3
777775

The matrix |or graph| T (G) that contains the answers to all of these questions is called
the (re
exive) transitive closure of G (see above; notice that it contains all self-loops (i; i)). It
is best computed via a dynamic programming technique of quite broad applicability.

The subproblem de�nition is here quite subtle. We seek all paths from i to j. Such a path
may or may not use intermediate nodes. Those that do not are the edge (i; j), if it exists,
and the self-loop (i; i) if i = j. All other paths must use intermediate nodes. We de�ne a
subproblem by restricting the available pool of intermediate nodes. In particular, let T k(i; j) be
true if and only if there is a path from i to j using intermediate nodes from among 1; 2; : : : ; k
only. That is, we arbitrarily order the nodes of the graph, and allow more and more nodes as
intermediate nodes in the path. The recursive equation is simple to write:

T k(i; j) := T k�1(i; j)_ [T k�1(i; k)^ T k�1(k; j)]:

It expresses this obesrvation: Suppose that we have computed the paths that use intermediate
nodes up to k � 1, and we wish now to also allow k. Consider paths from i to j. There are
two cases: Either such a path uses k, or it does not. If it does not, then T k�1(i; j) must be
true. Otherwise, there must be a path from i to j going through k just once. Thus, there
must be a path from i to k using intermediate nodes up to k� 1, and a path from k to j using
intermediate nodes up to k � 1.

The algorithm (known as the Floyd-Warshall algorithm, is now easy to write:

for i; j := 1 to n do fT (i; j) := G(i; j) or i = jg

for k := 1 to n do
for i; j := 1 to n do
T (i; j) := T (i; j)_ [T (i; k)^ T (k; j)]

Notice that we have omitted the supserscripts k. This results in savings in storage (since we
only need the previous \layer" of T 's to compute the next). This may result in using, for
example, in the computation of T 3(5; 2) the value T 3(3; 2) instead of the correct T 2(3; 2) |
but this does not result in mistakes, only in more \streamlined" computation of the transitive
closure. The complexity is, of course O(n3).

Suppose now that in the above program you change the initialization to fT (i; j) := d(i; j)

and T (i; j) := 0 if i = jg, and in the loop we change _ to min and ^ to +. We get an O(n3)

all-pairs shortest paths algorithm!.
A similar manoeuvre yields an algorithm for transforming any �nite automaton to the

corresponding regular expression.

The traveling salesman problem. Suppose that you are given n cities and the distances dij

between any two cities; you wish to �nd the shortest tour that takes you from your home city
to all cities and back.

Naturally, the TSP can be solved in time O(n!), by enumerating all tours |but this is
very impractical. Since the TSP is one of the NP-complete problems, we have little hope of
developing a polynomial-time algorithm for it. Dynamic programming gives an algorithm of
complexity O(n22n) |exponential, but much faster than n!. The recursive equation is similar
to the one for the transitive closure: The main di�erence between the two problems is that in
the transitive closure intermediate nodes are optional, while in the TSP they are mandatory.

We de�ne the following subproblem: Let S be a subset of the cities containing 1 and at
least one other city, and let j be a city in S other than one. De�ne C(S; j) to be the shortest
path that starts from 1, visits all nodes in S, and ends up in j. The program now writes itself:

for all j do C(f1; jg; j) := d1j
for s := 3 to n do (the size of the subsets considered this round)
for all subsets S of f1; : : : ; ng of size n and containing 1 do
for all j 2 S; j 6= 1 do
fC(S; j) := mini6=j;i2S [C(S � fjg; i)+ dij]g

opt:= minj 6=1[C(f1; 2; : : : ; ng; j) + dj1.

As always, we can also recover the optimum tour by remembering the i's that achieve the
minima. The complexity is O(n22n): The table has n2n entries (one per set and city), and it
takes about n time to �ll each entry.

Linear Programming

1. Introductory example

Suppose that a company produces three products, and wishes to decide the level of production
of each so as to maximize pro�ts. Let x1 be the amount of Product 1 produced in a month, x2
that of Product 2 and x3 of Product 3. Each unit of Product 1 brings to the company a pro�t
of 100, each unit of Product 2 a pro�t of 600, and each unit of Product 3 a pro�t of 1400.
There are limitations on x1, x2, and x3 (besides the obvious one, x1; x2; x3 � 0). First, x1
cannot be more than 200, and x2 more than 300 |presumably because of supply limitations.
Also, the sum of the three must be, because of labor constraints, at most 400. Finally, it turns
out that Products 2 and 3 use the same piece of equipment, with Product 3 three times as
much, and hence we have another constraint x2 + 3x3 � 600. What are the best levels of
production?

We represent the situation by a linear program, as follows:

max100x1 + 600x2 + 1400x3

x1 � 200

x2 � 300

x1 + x2 � 400

x2 + 3x3 � 600

x1; x2; x3 � 0

The set of all feasible solutions of this linear program (that is, all vectors in 3-d space that
satisfy all constraints) is precisely the polyhedron shown in Figure 1.

2

x
1

x 3

optimum

x

Figure 1: The feasible region

We wish to maximize the linear function 100x1 + 600x2 + 400x3 over all points of this
polyhedron. This means that we want to the plane parallel to the one with equation 100x1+
600x2 + 400x3 = 0, touches the polyhedron, and is as far towards the positive orthant as
possible. Obviously, the optimum solution will be a vertex (or the optimum solution will not
be unique, but a vertex will do). Of course, two other possibilities with linear programming are
that (a) the optimum solution may be in�nity, or (b) that there may be no feasible solution.

Such problems are solved by the simplex method devised by George Dantzig in 1947. The
simplex method starts from a vertex (in this case the vertex (0; 0; 0)) and repeatedly looks for
a vertex that is adjacent, and has better objective value. That is, it is a kind of hill-climbing in
the vertices of the polytope. When a vertex is found that has no better neighbor, simplex stops
and declares this vertex to be the optimum. For example, in the �gure one of the possible
paths followed by simplex is shown. There are now implementations of simplex that solve
routinely linear programs with many thousands of variables and constraints.

Of course, there are two other possibilities in a linear program: It could be either that (a)
the optimum solution may be in�nity, or (b) that there may be no feasible solution at all. If
this is the case, simplex will discover it.

