
CS170{Spring, 1999 Dags and Topological Sort February 23, 1999

1 Depth-�rst search in directed graphs

In directed graphs, dfs classi�es the edges of the graph into four types:

� Tree edges: these are the edges of the depth-�rst search tree, the pathways whereby

the recursion proceeds. That is, (u; v) is a tree edge if explore(v) was called from

explore(u).

� Forward edges: these go from a vertex to a descendant (other than child) in the depth-

�rst search tree. You can tell such an edge (v; w) because pre[v] < pre[w].

� Back edges: these go from a vertex to an ancestor in the depth-�rst search tree. You

can tell such an edge (v; w) because, at the time it is traversed, pre[v] > pre[w], and

post[w] is unde�ned.

item Cross edges: these go from \right to left," from a newly discovered node to a node

that lies in a part of the tree whose processing has been concluded. You can tell such

an edge (v; w), because, at the time it is traversed, pre[v] > pre[w], and post[w] is

de�ned.

2 Directed acyclic graphs

A cycle in a directed graph is a path (v0; v1; : : : ; vn) such that (vn; v0) is also an edge. A

directed graph is acyclic, or a dag, if it has no cycles.

Claim: A directed graph is acyclic if and only if depth-�rst search on it discovers no backedges.

Proof: If (u; v) is a backedge, then (u; v) together with the path from v to u in the depth-�rst

search tree form a cycle.

Conversely, suppose that the graph has a cycle, and consider the vertex v on the cycle

assigned the largest pre[v] number. Then the edge (v; w) leaving this vertex in the cycle

must be a back edge, since it goes from a higher pre[v] number to a higher pre[w] number.

It is therefore very easy to use depth-�rst search to see if a graph is acyclic: Just check that

no backedges are discovered. But we often want more information about a dag: We may want

to topologically sort it. This means to order the nodes of the graph from left to right so that

all edges go from left to right. (Note: This is possible if and only if the graph must be acyclic.

Can you prove it? One direction is easy; and the topological sorting algorithm described next

provides a proof of the other.) This is interesting when the nodes of the dag are tasks that



must be scheduled, and an edge from u to v says that task u must be completed before v

can be started. The problem of topological sorting asks: in what order should the tasks be

scheduled so that all the precedence constraints are satis�ed.

To topologically sort a dag, we simply do a depth-�rst search, and then arrange the nodes

of the dag in decreasing post[v]. That this simple method correctly topologically sorts the

dag is a consequence of the following simple property of depth-�rst search:

For each edge (u; v) of G, post[u] < post[v] if and only if (u; v) is a back edge.

Proof: If post[u] < post[v] then v is visited before u (otherwise the existence of edge

(u; v) ensures that v must be pushed onto the stack before u can be popped, resulting in

post[u] > post[v] |s contradiction). Furthermore, since v cannot be popped before u, it

must still be on the stack when u is pushed on to it. It follows that v is on the path from the

root to u in the depth �rst search tree, and therefore (u; v) is a back edge.

The other direction is trivial: If (u; v) is a back edge then u is a decsendant of v on the tree,

and therefore post[u] < post[v].

This property proves that our topological sorting method correct. Because take any edge (u; v)

of the dag; since this is a dag, it is not a back edge; hence post[u] > post[v]. Therefore,

our method will list u before v, as it should. We conclude that, using depth-�rst search we

can determine in linear time whether a directed graph is acyclic, and, if it is, to topologically

sort its nodes, also in linear time.

Dags are an important subclass of directed graphs, useful for modeling hierarchies and

causality. Dags are more general than rooted trees and more specialized than directed graphs.

It is easy to see that every dag has a sink (a node with no outgoing edges). Here is why:

Suppose that a dag has no sink; pick any node v1 in this dag. Since it is not a sink, there is

an outgoing edge, say (v1; v2). Consider now v2, it has an outgoing edge (v2; v3). And so on.

Since the nodes of the dag are �nite, this cannot go on forever, nodes must somehow repeat

{and we have discovered a cycle! Symmetrically, every dag also has a source, a node with no

incoming edges. (But the existence of a source and a sink does not of course guarantee the

graph is a dag, it's easy to come up with a counterexample.)

The existence of a source suggests another algorithm for outputting the nodes of a dag in

topological order:

Find a source, output it, and delete it from the graph. Repeat until the graph

is empty.

Can you see why this correctly topologically sorts any dag? What will happen if we run it on

a graph that has cycles? How would you implement it in linear time?


