
1 Breadth-First Search

Breadth-�rst search is the variant of search that is guided by a queue, instead of depth-�rst
search's stack (remember, depth-�rst search does use a stack, the one implicit in its recursion).
There is one stylistic di�erence: One does not restart breadth-�rst search, because breadth-
�rst searchonly makes sense in the context of exploring the part of the graph that is reachable
from a particular node (s in the algorithm below). Also, although BFS does not have the
wonderful and subtle properties of depth-�rst search, it does provide useful information of
another kind: Since it tries to be \fair" in its choice of the next node, it visits nodes in order

of increasing distance from s. In fact, our breadth-�rst searchalgorithm below labels each node
with the shortest distance from s, that is, the number of edges in the shortest path from s to
the node. The algorithm is this:

Algorithm dfs(G=(V,E): graph, s: node);

v, w: nodes; Q: queue of nodes, initially fsg;
dist: array[V] of integer, initially 1

dist[s];=0

while Q is not empty do

fv:= eject(Q),

for all edges (v,w) out of v do

fif dist[w] = 1 then

finject(w,Q), dist[w]:=dist[v]+1ggg

For example, applied to the graph in Figure 1, this algorithm labels the nodes (by the array
dist) as shown. Why are we sure that the dist[v] is the shortest-path distance of v from s?
It is certainly true if dist[v] is zero (this happens only at s). And, if it is true for dist[v]
= d, then it can be easily shown to be true for values of dist equal to d+ 1 |any node that
receives this value has an edge from a node with dist d, and from no node with lower dist.
Notice that nodes not reachable from s will not be visited or labeled.

3

s
0 1

1

2

2

2

3

Figure 1: BFS of a directed graph

Breadth-�rst search runs, of course, in linear time, O(jEj) (recall that we assume that
jEj � jV j. The reason is the same as with depth-�rst search: breadth-�rst search visits each
edge exactly once, and does a constant amount of work per edge.

2 Dijkstra's algorithm

What if each edge (v; w) of our graph has a length, a positive integer denoted length(v; w), and
we wish to �nd the shortest from s to all nodes reachable from it?1 breadth-�rst search is still
of help: We can subdivide each edge (u; v) into length(u; v) edges, by inserting length(u; v)�1
\dummy" nodes, and then apply breadth-�rst search to the new graph. This algorithm solves
the shortest-path problem in tom O(

P
(u;v)2E length(u; v)). But, of course, this can be very

large |lengths could be in the thousands or millions.
This breadth-�rst search algorithm will most of the time visit \dummy" nodes; only occa-

sionally will it do something truly interesting, like visit a node of the original graph. There is
a way to simulate it so that we only take notice of these \interesting" steps. We need to guide
breadth-�rst search, instead of by a queue, by a heap or priority queue of nodes. Each entry
in the heap will stand for a projected future \interesting event" |breadth-�rst searchvisiting
for the �rst time a node of the original graph. The priority of each node will be the projected
time at which breadth-�rst search will reach it. These \projected events" are in general unre-
liable, because other future events may \move up" the true time at which breadth-�rst search
will reach the node (see node b in Figure 2). But one thing is certain: The most imminent

future scheduled event is going to happen at precisely the projected time |because there is no
intermediate event to invalidate it and \move it up." And the heap conveniently delivers this
most imminent event to us.

As in all shortest path algorithms we shall see, we maintain two arrays indexed by V . The
�rst array, dist[v], will eventually contain the true distance of v from s. The other array,
prev[v], will contain the last node before v in the shortest path from s to v. At all times

dist[v] will contain a conservative over-estimate of the true shortest distance of v from s.

dist[s] is of course always 0, and all other dist's are initialized to1|the most conservative
overestimate of all: : :

The algorithm is this:

algorithm Dijkstra(G=(V, E, length): graph with positive weights; s: node)

v,w: nodes, dist: array[V] of integer; prev: array[V] of nodes;

H: heap of nodes prioritized by dist;

for all v 2 V do fdist[v] := 1, prev[v] :=nilg
H:=fsg , dist[s] :=0

while H is not empty do

fv := deletemin(H),

for each edge (v,w) in E out of v do

fif dist[w] > dist[v] + length[v,w] then

fdist[w] := dist[v] + length[v,w], prev[w] := v, insert(w,H)ggg

The algorithm, run on the graph in Figure 2, will yield the following heap contents (node:
dist/priority pairs) at the beginning of the while loop: fs : 0g, fa : 2; b : 6g, fb : 5; c : 3g,
fb : 4; e : 7; f : 5g, fe : 7; f : 5; d : 6g, fe : 6; d : 6g, fe : 6g, fg. The �nal distances from s are
shown in Figure 2, together with the shortest path tree from s, the rooted tree de�ned by the
pointers prev.

What is the complexity of this algorithm? The algorithm involves jEj insert operations
and jV j deletemin operations on H , and so the running time depends on the implementation
of the heap H , so let us discuss this implementation. There are many ways to implement a

1What if we are interested only in the shortest path from s to a speci�c node t? As it turns out, all algorithms

known for this problem also give us, as a free byproduct, the shortest path from s to all nodes reachable from

it.

1
s 0

a 2

b 4

c 3

d 6

e 6

f 5

2

6

3 5

1 4

1
3

2 2

2

Figure 2: Shortest paths

heap.2 Even the most unsophisticated one (an amorphous set, say an array or linked list of
node/priority pairs) yields an interesting time bound, O(n2) (see �rst line of the table below).
A binary heap gives O(jEj log jV j).

Which of the two should we use? The answer depends on how dense or sparse our graphs
are. In all graphs, jEj is between jV j and jV j2. If it is
(jV j2), then we should use the lined

list version. If it is anywhere below jV j2

log jV j , we should use binary heaps.

heap implementation deletemin insert jV j�deletemin+jEj�insert

linked list O(jV j) O(1) O(jV j2)
binary heap O(log jV j) O(log jV j) O(jEj log jV j)

d-ary heap O(d log jV jlogd) O(log jV jlog d) O((jV j � d+ jEj) logjV jlogd)

Fibonacci heap O(log jV j) O(1) (amortized) O(jV j log jV j+ jEj)

A more sophisticated data structure, the d-ary heap, performs even better. A d-ary heap is
just like a binary heap, except that the fan-out of the tree is d, instead of 2. In an array
implementation, the child pointers of node i are implemented as d � i : : : � i+ d � 1, while the
parent pointer as b i

d
c. Since the depth of any such tree with jV j nodes is log jV j

log d , it is easy
to see that inserts take this amount of time, while deletemins take d times that |because
deletemins go down the tree, and must look at the children of all nodes visited.

The complexity of our algorithm is therefore a function of d. We must choose d to minimize
it. The right choice is d = jEj

jV j |the average degree! It is easy to see that it is the right choice

because it equalizes the two terms of jEj+ jV j � d. This yields an algorithm that is good for
both sparse and dense graphs. For dense graphs, its complexity is O(jV j2). For sparse graphs
with jEj = O(jV j), it is jV j log jV j. Finally, for graphs with intermediate density, such as
jEj = jV j1+�, where � is the density exponent of the graph, the algorithm is linear!

The fastest known implementation of Dijkstra's algorithm uses a more sophisticated data
structure called Fibonacci heap, which we shall not cover; see Chapter 21 of CLR. The Fi-
bonacci heap has a separate decrease-key operation, and it is this operation that can be carried
out in O(1) amortized time. By \amortized time" we mean that, although each decrease-key
operation may take in the worst case more than constant time, all such operations taken
together have a constant average (not expected) cost.

2In all heap implementations we assume that we have an array of pointers that give, for each node, its

position in the heap, if any. This allows us to always have at most one copy of each node in the heap. Each

time dist[w] is decreased, the insert(w,H) operation �nds w in the heap, changes its priority, and possibly

moves it up in the heap.

3 Negative lengths

Our argument of correctness of our shortest path algorithm was based on the \time metaphor:"
The most imminent event cannot be invalidated, exactly because it is the most imminent. This
however would not work if we had negative edges: If the length of edge (b; a) in Figure 2 were
-5, instead of 5, the �rst event (the arrival of BFS at node a after 2 \time units") would not be
suggesting the correct value of the shortest path from s to a. Obviously, with negative lengths
we need more involved algorithms, which repeatedly update the values of dist.

The basic information updated by the negative edge algorithms is the same, however. They
rely on arrays dist and prev, of which dist is always a conservative overestimate of the true
distance from s (and is initialized to 1 for all nodes, except for s for which it is 0). The
algorithms maintain dist so that it is always such a conservative overestimate. This is done
by the same scheme as in our previous algorithm: Whenever \tension" is discovered between
nodes v and w in that dist(w) >dist(v)+length(v; w) |that is, when it is discovered that
dist(v) is a more conservative overestimate than it has to be| then this \tension" is\relieved"
by this code:

procedure update(v,w: edge)

if dist[w] > dist[w] + length[v,w] then

dist[w] := dist[v] + length[v,w], prev[w] := v

One crucial observation is that this procedure is safe, it never invalidates our \invariant" that
dist is a conservative overestimate. Most shortest paths algorithms consist of many updates
of the edges, performed in some clever order. For example, Dijkstra's algorithm updates each
edge in the order in which the \wavefront" �rst reaches it. This works only when we have
nonnegative lengths.

A second crucial observation is the following: Let a 6= s be a node, and consider the shortest
path from s to a, say s; v1; v2; : : : ; vk = a for some k between 1 and jV j � 1. If we perform
update �rst on (s; v1), later on (v1; v2), and so on, and �nally on (vk�1; a), then we are sure
that dist(a) contains the true distance from s to a |and that the true shortest path is encoded
in prev. We must thus �nd a sequence of updates that guarantee that these edges are updated
in this order. We don't care if these or other edges are updated several times in between, all
we need is to have a sequence of updates that contains this particular subsequence.

And there is a very easy way to guarantee this: Update all edges jV j � 1 times in a row!

Here is the algorithm:

algorithm shortest paths(G=(V, E, length): graph with weights; s: node)

dist: array[V] of integer; prev: array[V] of nodes

for all v 2 V do fdist[v] := 1, prev[v] := nilg
for i := 1; : : : ; jV j � 1 do

ffor each edge (v; w) 2 E do update[v,w]g

This algorithm solves the general single-source shortest path problem in O(jV j � jEj) time.

4 Negative Cycles

In fact, if the length of edge (b; a) in Figure 2 were indeed changed to -5, then there would be
a bigger problem with the graph of Figure 2: It would have a negative cycle (from a to b and
back). On such graphs, it does not make sense to even ask the shortest path question. What
is the shortest path from s to c in the modi�ed graph? The one that goes directly from s to
a to c (cost: 3), or the one that goes from s to a to b to a to c (cost: 1), or the one that takes
the cycle twice (cost: -1)? And so on.

The shortest path problem is ill-posed in graphs with negative cycles, it makes no sense
and deserves no answer. Our algorithm in the previous section works only in the absence
of negative cycles. (Where did we assume no negative cycles in our correctness argument?
Answer: When we asserted that a shortest path from s to a exists: : :) But it would be useful
if our algorithm were able to detect whether there is a negative cycle in the graph, and thus
to report reliably on the meaningfulness of the shortest path answers it provides.

This is easily done as follows: After the jV j � 1 rounds of updates of all edges, do a last
round. If anything is changed during this last round of updates |if, that is, there is still
\tension" in some edges| this means that there is no well-de�ned shortest path (because, if
there were, jV j � 1 rounds would be enough to relieve all tension along it), and thus there is
a negative cycle reachable from s.

5 Shortest paths in dags

There are two subclasses of weighted graphs that \automatically" exclude the possibility of
negative cycles: Graphs with nonnegative weights |and we know how to handle this special
case faster| and dags |if there are no cycles, then there are certainly no negative cycles: : :
Here we will give a linear algorithm for single-source shortest paths in dags.

Our algorithm is based on the same principle: We are trying to �nd a sequence of updates,
such that all shortest paths are its subsequences. But in a dag we know that all shortest paths
from s go \from left to right" in the topological order of the dag. All we have to do then is
�rst topologically sort the dag by depth-�rst search, and then visit all edges coming out of
nodes in the topological order:

algorithm shortest paths(G = (V, E, length): dag with lengths; s: node)

dist: array[V] of integer; prev: array[V] of nodes.

for all v 2 V do fdist[v] := 1, prev[v] := nilg
dist[s] := 0

Step 1: topologically sort G by depth-first search

for each v 2 V in the topological order found in Step 1 do

for each edge (v,w) out of v do update(v,w)

This algorithm solves the general single-source shortest path problem for dag's in O(jEj) time.
Two more observations: Step 1 is not really needed, we could just update the edges of G
breadth-�rst. Second, since this algorithm works for any lengths, we can use it to �nd longest

paths in a dag: Just make all edge lengths equal to �1.

