
Lecture Notes on the Fast Fourier Transform

1. Motivation: Digital Signal Processing

Consider a signal (any quantity that is a function of time, perhaps pressure in the air)
a�ecting a system (anything that responds to a signal, like a microphone). The outcome of
this interaction is called, naturally, the response of the system to the signal (see Figures (a) and
(b)). The question is, how are we to compute such response digitally? In many applications
(in which often the horizontal axis is not time, but also space, e.g. in image processing) it is of
great interest to compute the system response, thereby simulating the system. The following
is a rough description of how this is done.

First we digitize the signal, by sampling it often enough (Figure (c); how often is a whole
subject in its own). Then we must know how the system behaves. It turns out that, if the
system is time invariant (does not change its behavior over time) and linear (roughly, gives
twice the response to twice the signal), then its behavior is completely captured by its impulse
response |a description of what it does over time if it is given a sudden unit \jerk" at time
zero (see Figures (d) and (e)). If we know that, since any signal is the sum of such jerks
happening at various times, and since we know that the system is time-invariant and linear,
then all we have to do is calculate the responses at various times, and add them to get the
total system response.

To do the algebra, suppose that the signal is the sequence (a0; : : : ; aT�1) of real numbers,
and the system impulse response is (b0; : : : ; bT�1) (assume that they both have the same time
horizon, that is, they both die after T time units. Then at time 0 we have the system response
a0b0 |only the �rst pulse of the signal has arrived, and has only gotten the immediate response
b0. At time 1 we have the system response a0b1 + a1b0, because now a1 gets the immediate
response, while a0 causes the delay-1 response of the system, and the two are added. After
two steps, then the system response is a0b2 + a1b1 + a2b0.

Question: What is the system response after t time units? If t < T , that is, if the signal
keeps arriving at time t, then it is ct =

Pt
i=0 aibt�i. If t � T |that is, if the signal has died

out| then the system response keeps coming, since the system keeps responding to the signal
in the past: The system response is then ct =

PT�1
i=t�T+1 aibt�i. Finally, at t = 2T � 1 we have

c2T�2 = aT�1bT�1, and thereafter ct = 0: the system response has died out.
This sequence of formulas for c0; : : : ; c2T�2 should remind you of something from highschool

algebra: They are precisely the formulas for the coe�cients of the product of two polynomials!

(
T�1X

i=0

aix
i) � (

T�1X

i=0

bix
i) =

2T�2X

i=0

cix
i

This is not a coincidence: We can think of both the signal and the system response as two
polynomials in x, where x can be thought of as a unit delay,, x2 two delays, etc. Then the
product of the two polynomials is, naturally enough, the system response.

Conclusion: It is of great interest to compute very fast the coe�cients ct; t = 0; : : : ; 2T � 2, of
the product of two given polynomials of degree T � 1.

2. The Fast Fourier Transform

Unfortunately, just by looking at the formulas, the number of operations required to compute
the ct's seems to be
(T 2): The number of terms increases from 1 to T and then down to 1
again, for a sum of about T 2: How can we calculate the ct's much faster?

Here is a novel idea: Remember that the ct's are the coe�cient of the polynomial C(x) =P2T�2
i=0 ctx

t = A(x) � B(x), where A(x) =
PT�1

i=0 atx
t, and B(x) =

PT�1
i=0 btx

t. And here is a
scheme for calculating these coe�cients:

1. Calculate the values of A(x) and B(x) at enough points x1; : : : ; xn where n � 2T � 1.
2. Calculate the values of C(x) at these points as C(xi) = A(xi) �B(xi); i = 1; : : : ; n
3. Now that we know at least 2T � 1 values of the 2T � 2-degree polynomial C(x), we can

interpolate and recover the coe�cients. (Recall that there is a unique d-degree polynomial that
goes through d+ 1 points.)

But there are problems with this approach: Although step (2) is easy (it only requires
n multiplications), step (1) seems to still require
(n2) operations, and step (3) seems even
harder. Have we accomplished nothing with this clever manoeuvre?

It turns out that we need another trick: Pick the points x1; : : : ; xn on which to evaluate
A(x) and B(x) so that the n evaluations can be done together very fast. It turns out that the
most clever way to choose these points is to �nd n di�erent points x1; : : : ; xn such that the
equation xn = 1 holds for all of them.

Obviously, there are at most two real numbers that satisfy this equation {1, and perhaps
�1, if n is even. But there are exactly n complex numbers that do: The n complex roots of
unity (see the �gure). They are n points lying, in the complex plane, on the unit circle. And
since on the unit circle raising to the nth power means multiplying the angle by n, all n of
these numbers are mapped to the real unity when raised to the nth power. Let us call then
x1 = 1; x2 = w; x3 = w2; x4 = w3; : : : ; xn = wn�1. What we need to remember from now on
about these numbers is that w is some number satisfying wn = 1 |nothing else. Except one
thing: If we take a root of unity like wi, and add its powers 1+wi+w2i+ : : :+w(n�1)i then we
get 0 |because the powers of wi are just points around the origin, \pulling it in all di�erent
directions." With one exception: If i = 0, then of course the sum is 1 + 1 + : : :+ 1 = n.

We conclude that we want to �nd a fast way to compute these n values:

A(wj) =
n�1X

i=1

aiw
ij ; j = 0; : : : ; n� 1: (1)

In this equation, j varies over 0; : : : ; n�1 to de�ne the n points x1; : : : ; xn on which to evaluate
A(x), and the summation is the value A(xj+1) = A(wj). We also need to remember all the
time that wn = 1 |this is the fact that is going to save us from the
(n2) algorithm.

We are going to compute all n values in (1) together, by divide-and-conquer. Assume
that n is a power of two |presumably the next power of two above 2T � 2. Then, we
divide the sequence of coe�cients a0; : : : ; an�1 into two subsequences: The even subsequence
a0; a2; a4; : : : ; an�2, and the odd subsequence a1; a3; a5; : : : ; an�1. Then we can write (1) as

A(wj) =

n

2
�1X

i=0

a2iw
2ij +

n

2
�1X

i=0

a2i+1w
2ij+j

=

n

2
�1X

i=0

a2i(w
2)ij + wj

n

2
�1X

i=0

a2i+1(w
2)ij

Now this equation is just two problems of the same kind applied to sequences of length n
2

(compute the values of a degree n
2 � 1-polynomial at the n

2 -nd roots of 1 |notice that that
is 1; w2; w4; : : : ; w2n�2 are precisely the n=2nd roots of unity). To obtain the A(wj) from the
results of the conquered subproblems, we just multiply the j mod n

2 th result of the second

evaluation by wj and add it to the corresponding j mod n
2 th result of the �rst. The points

on which we need to evaluate the subproblems are just n
2 , because this is the number of the

possible values of (w2)j . This is quintessential divide-and-conquer, with recurrence

T (n) = 2T (
n

2
) + n;

where the O(n) term is the work required to \put together" the results of the conquered
parts (n multiplications and additions). The total complexity of the alorithm is, as we know,
O(n logn).

This algorithm, which computes the values of an n-degree polynomial at the n n-th roots of
unity in O(n logn) time by divide-and conquer is called the Fast Fourier Transform (FFT). It
is perhaps one of the most important and widely used algorithms; it was discovered by Cooley
and Tuc key in the 1950's.

Notice that the FFT, as described so far, only takes care of Step 1 of our scheme: Evaluating
A(x) and B(x) at n points. How are we to carry out Step (3) |recovering the coe�cients of
C(x) from these n values? The amazing fact is that this can be done with another FFT |but
this time w�1 playing the role of w. This is just algebra. Suppose that we apply this \inverse"
FFT to the values of C(wj); j = 1; : : : ; n� 1.

n�1X

j=0

C(wj)w�jk =
n�1X

j=0

(
n�1X

i=0

ciw
ij)w�jk

=
n�1X

i=0

(
n�1X

j=0

ciw
j(i�k))

Consider however the inner sum of the last line, for some �xed values of i and k. If these
values are the same, then the parenthesis contributes n. If they are not, then the powers of
wi�k 6= 1 cancel each other! So, the above sum is just

Pn�1
j=0 C(w

j)w�jk = ck |it recovers the
coe�cients of C(x).

To summarize, the three steps of our signal processing{polynomial multiplication algorithm
now are these:

Step 1: Compute the FFT of a0; : : : ; an�1 top obtain the sequence A0; : : : ; An�1. Repeat with
b0; : : : ; bn�1 top obtain the sequence B0; : : : ; Bn�1.
Step 2: Compute Ci := Ai �Bi; i = 0; : : : ; n� 1 (note that these are complex number multipli-
cations.
Step 3: Compute the inverse FFT (FFT with w�1 in the place of w), and then divide the
results by n, to obtain c0; : : : ; cn�1.

Two last remarks: We often need to solve the system response problem when the input
signal is periodic |that is, it is repeated after n time units (see Figure 1(f)). The system
response then is found by an FFT with half the points (n = T). Can you see why?

Also, since all we needed from w is the equations wn = 1 and
P

wi = 0, we could use any
arithmetical domain where these equations hold |not necessarily the complex numbers with
their slow multiplications. We shall see in good time that there are domains in which we are
computing modulo a large integer, in which such equations hold.

3. The FFT Circuit As with all divide-and-conquer algorithms, it is worthwhile to unravel

the recursion, to see what the algorithm really does. If we do this, the algorithe becomes the

circuit shown in Figure 3. A word of explanation: The nodes are complex variables. The nodes
on the left are the inputs (but in a funny order), and those on the right are the outputs. An
arrow labeled with the integer j (unlabeled arrows are labeled \0") from x to y can be though
of as carrying the value x �wj to y. The two arrows coming into a node (other than the input
nodes) are added together. Under this interpretation, Figure 3 shows the FFT of eight points.

Notice these properties of this circuit:

� There are 3 = logn levels, with n variables each, and four complex operations per
variable (actually, seven real operations), for a total of 7n logn operations.

� There is a unique path between every input node and every output node.

� The path between ai and A(wj) has label sum equal to ij modulo 8 (and it makes sense
to take powers of w modulo 8, since we know that w8 = 1).

� The previous two facts ensure that the circuit correctly computes the FFT.

� Why are the inputs mixed up this weird order? Can you �nd the pattern? (Hint:
Compare the binary representations of the indices of an input and an output that are
opposite one another.)

� Notice how neatly arranged this circuit is for parallel evaluation. Indeed, the FFT is a
natural for parallelism, and can be carried out in log n short paralle stages. Often the
FFT is computed by specialized embedded parallel hardware.

� Each stage of the FFT consists of n
2 \butter
y" operations |a typical butter
y is the

subcircuit shown in bold in Figure 3.

Periodic Signal

Time

Signal System Response

Time

Discrete-time Signal

(a) (b)

(c)

Unit Pulse Signal

(d)

Time

Impulse Response

(e)

Figure 1: Signal and system response

Real

Imaginary Axis

1

7

w

w
2

w
3

w
4

w
5

w
6

w

Figure 2: The eight 8th roots of unity

4

4

4

4

4

6

2

4

2

6

4

5

6

7

1

2

3

a

a

a

a

a

a

a

a

0

7

A(w)

A(w)

A(w)

A(w)

A(w)

A(w)

A(w)

A(w)

0

1

2

3

4

5

6

7

4

2

6

1

5

3

Figure 3: The FFT circuit

