1 Error Correcting Codes

We will work with degree d polynomials over the field $G F(p)$ of numbers $\bmod p$. This means that we consider polynomials of the form $f(x)=c_{0}+c_{1} x+\cdots c_{d} x^{d}$, where the coefficients $c_{0}, c_{1}, \ldots c_{d}$ are chosen from $G F(p)$.

The key property of degree d polynomials that we will use is that given $d+1$ pairs of values $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{d}, b_{d}\right)$ (all from $\left.G F(p)\right)$, there is a unique degree d polynomial $f(x)$ that takes on these values in the sense that $f\left(a_{j}\right)=b_{j}$ for $i=0$ to d.
To construct this polynomial $f(x)$ we use Legendre interpolation: $f(x)=\sum_{j=0}^{d} b_{j} \pi_{k \neq j} \frac{x-a_{k}}{a_{j}-a_{k}}$ Here we may think of $\Delta_{j}(x)=\pi_{k \neq j} \frac{x-a_{k}}{a_{j}-a_{k}}$ as a "delta-function", since it takes on value 1 at a_{j} and 0 at a_{k} for $k \neq j$.

To prove the uniqueness of this polynomial $f(x)$ we used the fact that any polynomial of degree d has at most d roots.

The coding Problem:

Suppose we wish to transmit a sequence of numbers $b_{0}, b_{1}, \ldots b_{d}$ over a noisy communication channel. The numbers are over $G F(p)$, i.e. $\bmod p$. Each number that we choose to transmit over the communication channel has some chance of getting corrupted. What we would like to do is to encode the given sequence $b_{0}, b_{1}, \ldots b_{d}$ into a longer sequence of numbers $\epsilon_{0}, e_{1}, \ldots e_{n-1}$, and transmit this longer sequence over the noisy communication channel. The property of this encoding that we would like to ensure is that even if some constant fraction (say $1 / 4$) of the ϵ_{j} 's are corrupted, the recepient can still reconstruct the original sequence $b_{0}, b_{1}, \ldots b_{d}$.

The procedure for carrying out this encoding is very simple: Consider the unique polynomial $f(x)$ which takes on values $b_{0}, b_{1}, \ldots b_{d}$ at the points $0,1, \ldots d$. i.e. $f(j)=b_{j}$ for $j=0$ to d. Now let $e_{j}=f(j)$ for $j=0$ to $n-1$.

Recovering from errors:

Suppose that there are k errors in the transmitted numbers $\epsilon_{0}, \epsilon_{1}, \ldots e_{n-1}$. i.e. the recepient got the sequence of numbers $f_{0}, f_{1}, \ldots f_{n-1}$ instead, where $f_{j} \neq e_{j}$ for at most k different j 's. Can the recipient recover the original sequence $b_{0}, b_{1}, \ldots b_{d}$ despite these errors? This looks hard because the recipient does not even know which values are correct and which are erroneous. Nevertheless, if $k \leq \frac{n-d-1}{2}$ then it is possible to recover the original sequence $b_{0}, b_{1}, \ldots b_{d}$. Notice that since there is no a priori constraint on how much larger n can be
compared to d, this bound on k can be made arbitrarily close to $n / 2$. i.e. we can recover from nearly 50% of the data being erroneous.

Notice that since at least $\frac{n+d+1}{2}$ of the transmitted numbers are correct, the original polynomial $f(x)$ agrees with at least $\frac{n+d+1}{2}$ of the values that the recipient gets. Now, we claim that any degree d polynomial $g(x)$ that agrees with any $\frac{n+d+1}{2}$ of the received values (not necessarily the uncorrupted ones), must actually be the correct polynomial $f(x)$. To see this notice that only $\frac{n-d-1}{2}$ of the received values are corrupted. So among any choice of $\frac{n+d+1}{2}$ of the received numbers, at least $\frac{n+d+1}{2}-\frac{n+d+1}{2}=d+1$ must be uncorrupted. Now, since a degree d polynomial is uniquely determined by its values at $d+1$ points, it follows that any degree d polynomial consistent with these values must in fact be the polynomial $f(x)$.

The Berlekamp-Welsch decoder:

How do we efficiently reconstruct a polynomial that is consistent with at least $\frac{n+d+1}{2}$ of the received numbers? There is an efficient (and magical) algorithm called the Berlekamp-Welsch decoding algorithm. Details to follow.

