
Linear Programming Duality, Network Flows, and Reductions

1. Linear Programming Duality

Recall the max-
ow, min-cut theorem: a cut is a set of nodes containing S but not T , and
the capacity of this cut is the sum of the capacities of the edges going out of this set. The
max-
ow, min-cut theorem says that the capacity of the smallest cut is exactly equal to the
maximum 
ow that can be pushed from S to T . Indeed, it is the existence of such a cut that
establishes that the 
ow that simplex �nds is optimal.

As it turns out, the max-
ow min-cut theorem is a special case of a more general phe-
nomenon called duality. Basically, duality means that a maximization and a minimization
problem have the property that any feasible solution of the min problem is greater than or
equal any feasible solution of the max problem (see Figure). Furthermore, and more impor-
tantly, they have teh same optimum.

Consider the network shown in the Figure below, and the corresponding max-
ow problem.
We know that it can be written as a linear program as follows:
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Figure 1: A simple max-
ow problem

max fSA +fSB
fSA � 3

fSB � 2
fAB � 1

fAT � 1
fBT � 3

fSA �fAB �fAT �0
fSA +fAB �fBT �0

f � 0

P

Consider now the following linear program:

min 3ySA +2ySB +yAB +yAT +3yBT
ySA +uA � 1

ySB +uB � 1
yAB �uA +uB � 0

yAT �uA � 0
yBT �uB � 0

y � 0

D

This LP describes the min-cut problem! To see why, suppose that the uA variable is meant
to be 1 if A is in the cut with S, and 0 otherwise, and similarly for B (naturally, by the
de�nition of a cut, S will always be with S in the cut, and T will never be with S). Each
of the y variables is to be 1 if the corresponding edge contributes to the cut capacity, and 0



otherwise. Then the constraints make sure that these variables behave exactly as they should.
For example, the second constraint states that if A is not with S, then SA must be added to

the cut. The third one states that if A is with S and B is not (this is the only case in which the
sum �uA + uB becomes �1), then AB must contribute to the cut. And so on. Although the
y and u's are free to take values larger than one, they will be \slammed" by the minimization
down to 1 or 0.

Let us now make a remarkable observation: These two programs have strikingly symmet-
ric, dual, structure. Each variable of P corresponds to a constraint of D, and vice-versa.
Equality constraints correpond to unrestricted variables (the u's), and inequality constraints
to restricted variables. Minimization becomes maximization. The matrices are transpose of
one another, and the roles of right-hand side and objective function are interchanged.

Such LP's are called dual to each other. It is mechanical, given an LP, to form its dual:
Transpose the matrix, invert maximization to minimization and vice-versa, interchange the

roles of the right-hand side and the objective function, and introduce a nonnegative variable

for each inequality, and an unrestricted one for each equality.

By the max-
ow min-cut theorem, the two LP's P and D above have the same optimum.
In fact, this is true for general dual LP's! This is the duality theorem, which can be stated as
follows (we shall not prove it; the best proof comes from the simplex algorithm, very much as
the max-
ow min-cut theorem comes from the max-
ow algorithm):

If an LP has a bounded optimum, then so does its dual, and the two optimal values coincide.

2. Matching

It is often useful to compose reductions. That is, we can reduce a problem A to B, and B to
C, and since C we know how to solve, we end up solving A. A good example is the matching
problem.

Suppose that the bipartite graph shown in Figure 6 records the compatibility relation
between four boys and four girls. We seek a maximum matching, that is, a set of edges that is
as large as possible, and in which no two edges share a node. For example, in the �gure below
there is a complete matching (a matching that involves all nodes).

To reduce this problem to max-
ow we do this: We create a new source and a new sink,
connect the source with all boys and all girls with the sinks, and direct all edges of the original
bipartite graph from the boys to the girls. All edges have capacity one. It is easy to see that
the maximum 
ow in this network corresponds to the maximum matching.

Well, the situation is slightly more complicated than was stated above: What is easy to see
is that the optimum integer-valued 
ow corresponds to the optimum matching. We would be at
a loss interpreting as a matching a 
ow that ships .7 units along the edge Al-Eve! Fortunately,
what the algorithm in the previous section establishes is that if the capacities are integers,

then the maximum 
ow is integer. This is because we only deal with integers throughout the
algorithm. Hence integrality comes for free in the max-
ow problem.

Unfortunately, max-
ow is about the only problem for which integrality comes for free. It
is a very di�cult problem to �nd the optimum solution (or any solution) of a general linear
program with the additional constraint that (some or all of) the variables be integers. To
see why, notice that the NP-complete satis�ability problem can be reduced to integer linear

programming as this problem is called: The clause (x1 _ x2 _ x3) can be represented by the
constraints

x1 + (1� x2) + x3 � 1; ; 0 � xi � 1; xiintegers:

Repeating for all clauses of a given Boolean formula, we get an integer linear program in which
�nding any feasible solution is equivalent to solving the original instance of satis�ability!
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Figure 2: Reduction from matching to max-
ow


