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A1)

 

    Consider a set  S  and a binary operation  *  on  S ;  that is,  x*y  is in  S  for each  x  and  y  
in  S .  Assuming that  (x*y)*x = y  for all  x  and  y  in  S ,  prove that  x*(y*x) = y  for all  x  and  
y  in  S .

 

Solution

 

:  The proof resembles the pattern-matching performed by  

 

Macro Preprocessors

 

  in  
Compilers  for  Computer Programming Languages  like  

 

C

 

 .  Matched patterns are underscored:
x*(y*x) =  ((y*x)*y)*(y*x)  =  ((y*x)*y)*(y*x) = y ,  as required.

 

A2)

 

  C

 

1

 

, C

 

2

 

, …, C

 

n

 

  are  n  coins.  For each  k ,  coin  C

 

k

 

  is biased so that,  when tossed,  it falls  

 

Heads

 

  with probability  1/(2k+1) .  If all  n  coins are tossed,  what is the probability that the 
number of  

 

Heads

 

  will be odd?  Express the answer explicitly as a rational function of  n .

 

Solution

 

:  The probability is  P

 

n

 

 := n/(2n+1) ,  as will be confirmed here by induction:  Let  
H

 

k

 

 := 1/(2k+1)  and begin with  P

 

0

 

 = 0  and  P

 

1

 

 =H

 

1

 

 = 1/3 .  For every  n > 0  we find  P

 

n

 

  by first 
flipping the first  n–1  coins,  getting an odd number of  

 

Heads

 

  among  n–1  coins with probability  
P

 

n–1

 

 ,  even with probability  1–P

 

n–1

 

 ,  and then we flip coin  C

 

n

 

  to get an odd number of  

 

Heads

 

  
among  n  coins with probability

P

 

n

 

 = H

 

n

 

(1–P

 

n–1

 

) + (1–H

 

n

 

)P

 

n–1

 

 = H

 

n

 

 + (1–2H

 

n

 

)P

 

n–1

 

 = ( 1 + (2n–1)P

 

n–1

 

 )/(2n+1) .
From this recurrence and the induction hypothesis  P

 

n–1

 

 = (n–1)/(2n–1)  follows  P

 

n

 

 = n/(2n+1)  as 
was claimed.  ( Where did the induction hypothesis come from?  It was a guess generated by 
running the recurrence for several steps to see whether a pattern presented itself.)

 

A3)

 

   For each integer  m  the polynomial   P

 

m

 

(x) := x

 

4

 

 – (2m+4)x

 

2

 

 + (m–2)

 

2

 

 .   For what values 
of  m  is  P

 

m

 

(x)  the product of two nonconstant polynomials with integer coefficients?

 

Solution

 

:  Either  m  is a perfect square,  or  m/2  is a perfect square.  To see why,  observe first 
that the factors of  P

 

m

 

  are monic because  P

 

m

 

  is monic;  observe second that if  P

 

m

 

(x)  has a linear 

factor,  say  (x–k) ,  than  (x+k)  must be a factor too because  P

 

m

 

(–x) = P

 

m

 

(x) ;  and then  (x

 

2

 

–k

 

2

 

)  
must be a factor.  In other words,  P

 

m

 

  factors into monic quadratic factors if it factors at all.

Now two cases must be considered according to whether each quadratic factor shares the sign-

symmetry of  P

 

m

 

  or not.  In the first case,  P

 

m

 

(x) = (x

 

2

 

 – j)(x

 

2

 

 – k)  for some integers  j  and  k  
(not necessarily positive for all we know now);  matching coefficients makes  j+k = 2m+4  and  

jk = (m–2)

 

2

 

 ,  whence follows  {j, k} = {2(1+

 

√

 

m/2)

 

2

 

, 2(1–

 

√

 

m/2)

 

2

 

}  from which we infer that  m/2  
must be a squared integer.  In the second case,  when neither quadratic factor of  P

 

m

 

  shares its 
sign symmetry,  replacing  x  by  –x  in the factorization of  P

 

m

 

(x)  must swap its factors thus:    

P

 

m

 

(x) = (x

 

2

 

 + jx + k)(x

 

2

 

 – jx + k)  for some integers  j  and  k .  Matching coefficients again makes  

j

 

2

 

 – 2k = 2m+4  and  k

 

2

 

 = (m–2)

 

2

 

 ,  whence follows  k = +(m–2)   (but not  –(m–2)  lest  j

 

2

 

 = 8 )  
and  j = 

 

±

 

2

 

√

 

m ,  so  m  must be a squared integer.  In both cases  P

 

m

 

  factors as shown.
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A4)

 

   Triangle  ABC  has area  1 .  Points  E, F, G  lie respectively on sides  BC, CA, AB  in such 
a way that  AE  bisects  BF  at point  R ,  and  BF  bisects  CG  at point  S ,  and  CG  bisects  AE  
at point  T .  Find the area of triangle  RST .

 

Solution

 

:  The area of  RST  is  2/(3+

 

√

 

5)

 

2

 

 = (7 – 3

 

√

 

5)/4 

 

≈

 

 0

 

.

 

072949… ,  gotten by brute force.  
Move the origin to  A  and identify the other letters with column vectors from this origin to the 
corresponding points.  B  and  C  shall be our basis vectors.  For some positive scalars  

 

γ

 

, 

 

φ

 

, 

 

ξ

 

, 

 

τ

 

, 

 

σ

 

  
and  

 

ρ

 

  all less than  1 ,  the specifications of the problem put
G = 

 

γ

 

B ,   F = (1–

 

φ

 

)C ,   E = 

 

ξ

 

C + (1–

 

ξ

 

)B ,
R = (F+B)/2 = (1–

 

ρ

 

)E ,   S = (G+C)/2 = 

 

σ

 

B + (1–

 

σ

 

)F ,   T = E/2 = 

 

τ

 

C + (1–

 

τ

 

)G .
Here  

 

γ

 

, 

 

φ

 

  and  

 

ξ

 

  must be chosen to satisfy the equations involving  R, S  and  T ,  which are …
2R = (1–

 

φ

 

)C + B = 2(1–

 

ρ

 

)(

 

ξ

 

C + (1–

 

ξ

 

)B) ,  whence  1–

 

φ = 2(1–ρ)ξ  and  1 = 2(1–ρ)(1–ξ) .
Eliminate  ρ  to obtain the equation   ξ = (1–φ)/(2–φ) .

2S = γB + C = 2σB + 2(1–σ)(1–φ)C ,  whence  γ = 2σ  and  1 = 2(1–σ)(1–φ) .
Eliminate  σ  to obtain the equation   φ = (1–γ)/(2–γ) .

2T = ξC + (1–ξ)B = 2τC + 2(1–τ)γB ,  whence  ξ = 2τ  and  1–ξ = 2(1–τ)γ .
Eliminate  τ  to obtain the equation   γ = (1–ξ)/(2–ξ) .

Apparently   γ = φ = ξ = 2/(3 + √5) = (3 – √5)/2 ≈ 0.382 ,  the root of  ξ2 – 3ξ + 1 = 0  between  0  
and  1 .  Now the edge-vectors of the triangle  RST  turn out to be …

[R–T, S–T] = [B, C]  /2 ,  whence

Area(RST) = Area(ABC)·det( )/4 = ξ2/2  after simplification.

A5)   Prove that the equation   xn+1 – (x+1)n = 2001   determines its positive integer solutions  x  
and  n  uniquely.

Solution:  x = 13  and  n = 2  satisfy the equation.  To show that it has no other positive integer 

solutions we accumulate constraints upon  x  and  n  as follows:  First,  xn+1 – (x+1)n ≡ 0 mod 3 ;  
consequently  x ≡ 1 mod 3  and  n  must be even since trying  x ≡ 0  or  x ≡ –1  or  n  odd leads to 

contradictions.  Of course  x > 1 .  Second,  x  divides  xn+1 – (x+1)n + 1 = 2002 = 2·7·11·13 ;  
consequently  x  must be one of  7, 13, 22, 91, 154, 286  or  2002.  Moreover  x ≡ –1 mod (x+1)  
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and  n+1  is odd,  so  2002 ≡ 0 mod (x+1) ,  which means  x+1  divides  2002  too.  Of the seven 
possibilities listed above for  x ,  only  x = 13  satisfies this last constraint.  Then  n = 2  works,  as 
a few minutes of arithmetic confirm.  Can any other even  n  satisfy that given equation?  Not if  n  

is very big,  since  13n+1 – 14n < 0  for all sufficiently large  n .  A computer or programmable 
calculator could save time otherwise dissipated in thought by testing values of  n  until they got 
sufficiently large;  but that is disallowed,  so let us persist in our analysis.  Suppose  n = 2m+2  

worked for some integer  m > 0 ;  this would mean  2001 = 133 – 142 = 132m+3 – 142m+2 ,  

whence  (142m – 1)142 = (132m – 1)133 .  This last equation would require  133  to divide

142m – 1  =  (1+13)2m – 1  =  2m·13 + m(2m–1)·132 + (…)·133 ,

whence  132  would have to divide  m·(2 + (2m–1)·13) ,  and therefore  m  would have to be a 
multiple of  169 .  But when  m ≥ 169  we must have  n = 2m+2 ≥ 340 ;  and then  (with  x = 13 )

2001 =  xn+1 – (x+1)n  =  xn·(x – (1 + 1/x)n)  ≤  xn·(13 – (1 + 1/13)340)  < 0 .
It can’t happen.

A6)   Can an arc of a parabola inside a circle of radius  1  have length greater than  4 ?

Solution:  YES  is the short answer.  The long answer is tedious and will be only outlined.  In the  

(x,y)-plane where the circle’s equation is  y2 = 1–x2 ,  the parabola in question has the equation  

y2 = 4z2(1+x)  for a very tiny constant  z > 0 .  The arc in question runs from  x = –1  up to  

x = T := 1 – 4z2 .  Let us consider only the upper half of that arc,  the half above the  x-axis,  since 
the lower half is just the upper half’s reflection in the  x-axis.  We shall show that this half-arc’s 
length  L  exceeds  2  for all  z  tiny enough.  In fact,  along this half-arc whereon  y = 2z√1+x ,

L(z) =  ∫–1
T √(1 + (dy/dx)2) dx = ∫–1

T √(1 + z2/(1+x)) dx    at  T = 1 – 4z2 

        =  √(T+1)·√(T+1 + z2) + z2·ln( ( √(T+1) + √(T+1 + z2) )/z )

        =  √(2 – 4z2)·√(2 – 3z2) + z2·ln( ( √(2 – 4z2) + √(2 – 3z2) )/z ) .
L(z) > 2   for all  z  tiny enough because  L(z) → 2  as  z → 0+  and,  differentiating,

     L'(z)/z = 2·ln( ( √(2 – 4z2) + √(2 – 3z2) )/z ) – 8√((2 – 3z2)/(2 – 4z2))  → +∞  as  z → 0+ .

L(z) – 2 :  
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L(z)  need not be obtained explicitly to establish that  L(0) = 2  and determine that  L'(z)/z > 0  for all  z  tiny enough,  
but the foregoing computations of  L  and  L'  require no cleverness and help to satisfy curiosity about how much the 
half-arc length  L(z)  exceeds  2  and for which  z .  Numerical computation indicates that  L(z) > 2  only while  
0 < z < 0.08483287… ,  and  max{L } is  L(0.051546…) = 2.001335… .  The short answer  YES  is barely true.

Alternate Solution:  Due to  Austin Shapiro,  it does not require explicit evaluation of an integral 
unfamiliar to many calculus students.  Instead his solution reduces problem  A6  to a familiar 
divergent series.  Instead of drawing a sufficiently narrow parabolic arc inside the unit circle,  his 
solution fixes the parabola and draws a circle sufficiently big to enclose an arc of that parabola 

longer than twice the circle’s diameter.  The equation of the fixed parabola  P  is  y = x2 .  The 

equation of the circle  Cn  is  x2 + (y–n)2 = n2  for a big positive integer  n  to be determined later.

Because  Cn  has diameter  2n  and center at  (x, y) = (0, n) ,  circle  Cn  and parabola  P  intersect 
tangentially at  (x, y) = (0, 0) ,  where their common tangent is the  x-axis.  Their two other 
intersections are at  (x, y) = (±√2n–1, 2n–1) .  As  x  runs from  –√2n–1  to  +√2n–1 ,  the point  

(x, y) = (x, x2)  on the arc of  P  within  Cn  runs down from  (–√2n–1, 2n–1)  to  (0, 0)  and back 
up to  (+√2n–1, 2n–1) ,  staying within  Cn  because,  just on that arc,

x2 + (y–n)2 – n2  =  x2 + (x2–n)2 – n2  =  –x2(2n–1 – x2)  ≤ 0 .

Since  P  and  Cn  are each its own reflection in the  y-axis,  we can solve problem  A6  by showing 
that the length  Ln  of the half-arc of  P  within the right-hand  D-shaped  semicircle of  Cn  
exceeds its diameter  2n  when  n  is big enough.  Ln  exceeds the sum of the lengths of secants 
joining consecutive intersections of  P  with  Ck  for  k = 0, 1, 2, …, n  in turn;  consequently

Ln – 2n ≥  √2  +  ∑1≤k≤n–1 √( (√2k+1 – √2k–1)2 + ((2k+1) – (2k–1))2 )  – 2n .
To further reduce the right-hand side the inequality   (√u – √v)/(u–v) = 1/(√u + √v) > 1/√2u + 2v ,  
easily proved valid for all distinct positive  u  and  v ,  is applied twice in succession to obtain

Ln – 2n >  √2  +  ∑1≤k≤n–1 √( (2/√8k)2 + (2)2 )   –  2n  

 =  √2 – 2 +  ∑1≤k≤n–1 (√( 1/(2k) + 4 ) – 2 )
 >  √2 – 2 +  ∑1≤k≤n–1 (1/(2k))/√16 + 1/k  >  √2 – 2 +  (∑1≤k≤n–1 1/k)/√68 .

The last  (∑…)  is the harmonic series and diverges as  n → +∞ ;  therefore  Ln – 2n → +∞  so that  
Ln – 2n > 0  for all sufficiently big  n .  (Actually any  n ≥ 60  is sufficiently big.)  End of proof.

= = = = = = = = = = = = = = = = = = = =



Solutions to  Putnam Exam Problems  for  1 Dec.. 2001

Prof. W. Kahan                                                      page 5/8                                               December 17, 2001 7:58 am

B1)  Let  n  be an even positive integer.  Write the numbers   1, 2, …, n2   into the squares of an  n-
by-n  grid so that the  k-th  row,  from left to right,  is

(k–1)n + 1,   (k–1)n + 2,   …,  (k–1)n + n .
Color the squares of the grid so that half of the squares in each row and in each column are red 
and the other half are black.  (A checkerboard coloring is one possibility.)  Prove that,  for any 
such coloring,  the sum of the numbers on the red squares equals the sum of the numbers on the 
black squares.

Solution:  Let  N(k, j) := (k–1)n + j  be the number written into column  j  of row  k  for  1 ≤ j ≤ n  
and  1 ≤ k ≤ n .  Set  S(k,j) := +1  if red is the color in column  j  of row  k ;  set  S(k, j) := –1  if the 
color is black.  ∑j S(k, j) = 0  for every  k  since each row has as many  +1s  as  –1s ;  similarly  
∑k S(k, j) = 0  for every  j .  Problem  B1  is solved by proving that  ∑j ∑k S(k, j)·N(k, j) = 0 ;
   ∑j ∑k S(k, j)·N(k, j) =  ∑j ∑k S(k, j)·((k–1)n + j)  =  ∑j ∑k S(k, j)·(k–1)n  +  ∑j ∑k S(k, j)· j 

=  ∑k (∑j S(k, j))·(k–1)n  +  ∑j (∑k S(k, j))· j  =  0 + 0   as claimed.

B2)  Find all pairs of real numbers  (x, y)  satisfying the system of equations

1/x + 1/(2y) = (x2 + 3y2)(3x2 + y2)    and    1/x – 1/(2y) = 2(y4 – x4) .

Solution:  Adding and subtracting the given equations and multiplying up transforms them into   

2 = x·Q(x2, y2)   and   1 = y·Q(y2, x2)  wherein  Q(x, y) := x2 + 10xy + 5y2 .  Then we find  

2±1 = x·Q(x2, y2) ± y·Q(y2, x2) = (x±y)5 ,  whence follows    x+y = 5√3    and  x–y = 1 .  

Therefore the sole solution-pair  (x, y)  has   x = (5√3 + 1)/2   and   y = (5√3 – 1)/2 .
                                                                       ——————          ———————

B3)  For any positive integer  n  let  s(n)  denote the integer closest to  √n .  Evaluate

∑n=1
∞ (2s(n) + 2–s(n))/2n .

Solution:  The sum is  3 .  Why?  Observe first that  s(n) = m  just when  m(m–1) < n ≤ m(m+1)  

because  (m ± 1/2)2 = m(m ± 1) + 1/4 .  Therefore the range  1 ≤ n < ∞  of summation can be 
broken into disjoint subintervals of the form   T(m)+1 := m(m–1) + 1 ≤ n ≤ m(m+1) = T(m+1)  
for  m = 1, 2, 3, … .  Then the sum in question takes the form

          ∑1
∞ (2s(n) + 2–s(n))/2n = ∑m=1

∞ ∑n=T(m)+1
T(m+1) (2s(n) + 2–s(n))/2n 

     = ∑m=1
∞ ∑n=T(m)+1

T(m+1) (2m + 2–m)/2n 

     =  ∑m=1
∞ (2m + 2–m) ∑n=T(m)+1

T(m+1) 2–n 

     =  ∑m=1
∞ (2m + 2–m) ( 2–T(m) – 2–T(m+1) )   … geom. series’ sum

     =  ∑m=1
∞ (2–m(m–2) – 2–m(m+2))    after some algebra

     =  ∑m=1
∞ 2–m(m–2)  –  ∑M=3

∞ 2–M(M–2)  
     =  2 + 1 ,   as claimed.
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B4)  Let  S  denote the set of rational numbers other than  –1,  0  and  1 .  Define  ƒ :  S → S   by  

ƒ(x) := x – 1/x .  Prove or disprove that   ∩1
∞ ƒ(n)(S) = ∅    wherein the  n-fold  composition  

ƒ(n) := ƒoƒo…oƒ ,   and  ƒ(n)(S)  is the set of all values taken by  ƒ(n)(s)  as  s  ranges over  S .
           ←  n  → 

Solution:  We shall prove that the intersection  ∩1
∞ ƒ(n)(S)  is empty.  The set  S  consists of 

rational numbers  m/n  with integers  n ≠ 0 ,  m ≠ 0 ,  |m| ≠ |n|  and  GCD(|m|, |n|) = 1 .  For all 
such rational numbers define  K(m/n)  to be the sum of the exponents in the prime factorization of  
|m·n| .  For example,  K(–8/45) = 6 .  Observe that  ƒ(m/n) = (m–n)(m+n)/(m·n)  lies in  S  
whenever  m/n  does,  and that   K(ƒ(m/n)) > K(m/n)   because   GCD(|(m–n)(m+n)|, |m·n|) = 1 .  

Therefore every  s  in  ƒ(n)(S)  has  K(s) > n ;  and each  s  in  ƒ(n)(S)  is absent from  ƒ(K(s))(S) .

B5)  Let  µ  and  ß  be given real numbers strictly between  0  and  1/2 ,  and let  g  be a 
continuous real-valued function such that  g(g(x)) = µ·g(x) + ß·x  for all real  x .  Prove that  
g(x) = c·x  for some constant  c .

Solution:  Let  ı  denote the identity function  ı(x) = x  and let  gn  denote the  n-fold  composition  
gn(x) = g(gn–1(x))  starting from  g0 = ı  and  g1 = g .  Now the given equation takes the form  
g2 = µ·g1 + ß·g0 ,  whence repeated substitution yields   gn+1 = µ·gn + ß·gn–1 ,  and therefore  

[gn+1, gn] = [gn, gn–1]G = [g, ı]Gn  where  G :=  .  Its eigenvalues are  ç := (√(µ2+4ß) + µ)/2  

and  ¢ := –(√(µ2+4ß) – µ)/2  with   0 < –¢ < ç < 1 ,   0 < ç+¢ = µ < 1/2   and   0 < ß = –¢·ç < 1/2 .

Its eigenvalue/vector decomposition leads to   Gn = · · /(ç–¢)  for all integers  

n ,  positive and negative.  Evidently  Gn → O  as  n → +∞ ,  and consequently so does 

[gn+1(x), gn(x)] = [g(x), x]Gn → [0, 0]  for each real  x .  Because  g  is continuous,  we may take 
the limit in the equation   g(gn(x)) = gn+1(x)   to infer that  g(0) = 0 .  However,  if  x ≠ 0  then  
0 ≠ ß·x = g(g(x)) – µ·g(x)  and therefore  g(x) ≠ 0 ;  and then  gn(x) ≠ 0  for every  n ≥ 0 .

More generally,  g  takes every value in its range just once.  To see why,  suppose  g(x) = g(x') ;  
then  x = (g(g(x)) – µ·g(x))/ß = (g(g(x')) – µ·g(x'))/ß = x' .  Consequently the function inverse to  
g  must be  g–1(y) := (g(y) – µ·y)/ß ;  for any  y  in the range of  g ,  the equation  y = g(x)  has just 
the one solution  x = g–1(y) ,  and this  g–1  is continuous too.  Therefore  g  must be a strictly 
monotonic function,  either strictly increasing or strictly decreasing;  and since  g(0) = 0  we infer 
that the sign of  g(x)/x  must be the same for all  x ≠ 0 .  Now two cases must be considered:

µ 1

β 0

1 1–

¢– ç

ç
n

0

0 ¢
n

ç 1

¢ 1
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In the first case,  g(x)/x < 0  for all  x ≠ 0 .  Then we can infer that  g(x) = ¢·x  as follows:  For any  

x  for which  g(x) – ¢·x ≠ 0  we would find from the eigen-decomposition of  Gn  that

        [gn+1(x), gn(x)]/çn → [g(x), x] · · /(ç–¢) = [ç, 1](g(x) – ¢·x)/(ç–¢) ≠ [0, 0] ,

whence  gn+1(x)/gn(x) → ç > 0 ,  when actually every  gn+1(x)/gn(x) = g(gn(x))/gn(x) < 0 .  This 
contradiction implies that  g(x) = ¢·x  for all  x  if ever  g(x)/x < 0 .

In the second case  g(x)/x > 0  for all  x ≠ 0 .  In this case we wish to let  n → –∞  in the formula  

[gn+1, gn] = [g, ı]Gn ,  interpreting  gn(x) = g–1(gn+1(x))  as the  |n|-fold composition of the inverse 
function  g–1  when  n < 0 .  Before doing so,  let’s find out whether the range of  g ,  the domain 
of  g–1 ,  is the whole real axis.  Because  g  is strictly increasing,  it could be bounded above by a 
finite least upper bound  L  only if  g(x) → L  as  x → +∞ ;  but then taking limits in the equation  
g(g(x)) = µ·g(x) + ß·x  would lead to the contradiction  L ≥ g(L) = µ·L + ∞ .  Similarly we infer 
that  g  is unbounded below.  Therefore the domain of  g–n  is the whole real axis for  –n = –1  and 
then for all  –n ≤ –1 .  Moreover,  the formula  g(y) = µ·y + ß·g–1(y)  that defined  g–1  can be 
composed to yield  g–n+1 = µ·g–n + ß·g–n–1  which,  when rewritten  [g–n+1, g–n] = [g–n, g–n–1]G , 

vindicates the formula   [g1–n, g–n] = [g, ı]G–n   we shall use to deduce that  g(x) = ç·x :  For any  x  

for which  ç·x – g(x) ≠ 0  we would find from the eigen-decomposition of  G–n  that as  n → +∞ 

     [g1–n(x), g–n(x)]·¢n → [g(x), x] · · /(ç–¢) = [¢, 1](ç·x – g(x))/(ç–¢) ≠ [0, 0] ,

whence  g1–n(x)/g–n(x) → ¢ < 0 ,  when actually every  g1–n(x)/g–n(x) = g(g–n(x))/g–n(x) > 0 .  
This contradiction implies that  g(x) = ç·x  for all  x  if ever  g(x)/x > 0 .  End of proof for  B5.

Of all the problems on this exam,  I think  B5  comes closest to what  Mathematicians  like me do for a living.

B6)  Assume that  a1, a2, a3, …, an, …  is an increasing sequence of positive real numbers such 

that  an/n → 0  as  n → +∞ .  Must there exist infinitely many positive integers  n  such that   
an–j + an+j < 2an  for  j = 1, 2, …,  and  n–1 ?

Solution:  Yes.  To see why,  plot the points  (n, an)  in the  (x, y)-plane and let  C  be the upper 
boundary of the convex hull of all those points.  C  consists of segments of lines lying above all 
those points except for the points that lie on  C .  Could only finitely many of them lie on  C ?  If 
so,  there would be a last point,  say  (N, aN) ,  beyond which  C  would be a semi-infinite line 
segment lying barely above all points  (n, an)  with  n > N .  Therefore this segment’s slope would 

be  s := supn>N (an – aN)/(n–N) > 0 .  But  (an – aN)/(n–N) → 0  as  n → +∞  because  an/n → 0 ,  

so actually  s = maxn>N (an – aN)/(n–N) = (aM – aN)/(M–N)  for some  M > N ,  implying that  
(N, aN)  could not be the last point on  C  after all.  Therefore  C  passes through infinitely many 
boundary vertices  (n, an) .  Each such boundary vertex lies above every line segment joining two 
points  (n–j, an–j)  and  (n+j, an+j)  on or under  C  for  1 ≤ j < n ;  this means  an > (an–j + an+j)/2  
for every  j = 1, 2, …, n–1 ,  as the problem requires.

1 1–

¢– ç

1 0

0 0

ç 1

¢ 1

1 1–

¢– ç

0 0

0 1

ç 1

¢ 1
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I am no exception to the complaint  “Everybody wants to be an editor”.  I have taken the liberty of redrafting some of 
the problems on this year’s  Putnam Exam.  There are several reasons to do so.  One is that I eschew jargon as much 
as possible because several of my students are not yet comfortable with it;  for instance,  I prefer the sequence  “ a1, 
a2, a3, …, an, … ”  to  “ (an)n≥1 ”  and  “n-by-n”  to  “nxn”.  I avoid using an unadorned  “ a ”  as a variable lest it be 
confused with the indefinite article,  and decline to omit  “and”  from  “ for  j = 1, 2, …,  and  n–1 ”  lest someone read  
“or”  in its place.  I use the future tense instead of the present in  “If all  n  coins are tossed,  what is the probability 
that the number of  Heads  will be odd?”  because after the toss the probability is either  0  or  1 .  The last two 
commas in  “Points  E, F, G  lie,  respectively,  on sides …”  are undeserved.  “Prove that there are unique positive 
integers …”  is too easy because every integer is unique.  In  B3  I typed  “s(n)”  instead of using symbols absent from 
some computers’ fonts.  I use  “ := ”  for assignment or definition to distinguish it from the predicate  “ = ”.  And so 
on.  I am a nit-picker;  I would have to be one to solve  B5  fully correctly.                                                W. K.


