
 

STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 1/15

 

Automatic Step-Size Control for Minimization Iterations

 

=============================================================
                            Prof. W. Kahan
                            Univ. of Calif.
                            Berkeley  CA., USA

 

Abstract:

 

The  "Training"  of  "Deep Learning"  for  "Artificial Intelligence"  is a 
process that minimizes a  "Loss Function"  f(w)  subject to memory 
constraints that allow the computation of  Gradients  G(w) := df(w)/dw 

  

`̀̀̀

 

but 
not the  Hessian  d²f(w)/dw²  nor estimates of it from many stored pairs  
{G(w), w}.  Therefore the process is iterative using  "Gradient Descent"  or 
an accelerated modification of it like  "Gradient Descent Plus Momentum".  
These iterations require choices of one or two scalar  "Hyper-Parameters"  
which cause divergence if chosen badly.  Fastest convergence requires 
choices derived from the  Hessian's  two attributes,  its  "Norm"  and  
"Condition Number",  that can almost never be known in advance.  This 
retards  Training,  severely if the  Condition Number  is big.  A new scheme 
chooses  Gradient Descent's  Hyper-Parameter,  a step-size called  "the 
Learning Rate",  automatically without any prior information about the  
Hessian;  and yet that scheme has been observed always to converge 
ultimately almost as fast as could any acceleration of  Gradient Descent  
with optimally chosen  Hyper-Parameters.  Alas,  a mathematical proof of 
that scheme's efficacy has not been found yet.



 

STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 2/15

 

Automatic Step-Size Control for Minimization Iterations
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

 

Introduction 
~~~~~~~~~~~~ 
We seek a minimizing vector  x  for a smooth function  ƒ(x)  subject to 
memory constraints that allow only the computations of  ƒ(x)  and its 
Gradient  G(x) := dƒ(x)/dx

  

`̀̀̀

 

,  the transposed  Jacobian  array of first 
derivatives.  Limited memory precludes access to the  Hessian  array 
H(x) := d²ƒ(x)/dx²  of second derivatives,  and precludes estimates of H  
from differences among very many stored instances of  { G(x), x } .

Since  ƒ(x)  is not presumed convex,  more than one locally minimizing x  
may exist;  finding the best may entail searches for several.  What 
determines searches' speeds?  How can speeds be improved?  How much?

Questions like those arise during  "Training  of  Deep Learning" (DL) for 
applications of  Artificial Intelligence (AI).  Answers are needed that 
assume no prior knowledge of the  Hessian's  properties.

Choosing Hyper-Parameters 
~~~~~~~~~~~~~~~~~~~~~~~~~
The minimization algorithms treated hereunder include  Gradient Descent (GD) 
and two accelerated versions of it,  Gradient Descent + Momentum (GD+M)  
and  Anadromic Gradient Descent (AGD),  all to be described in detail 
later.  These iterations require choices for parameters called "Tuning 
Constants"  or  "Hyper-Parameters"  that influence the rates of convergence 
of the iterations.  One parameter,  a  "Step-Size",  called a  "Learning 
Rate"  in  DL,  affects all three iterations the same way:

¬  If the step-size is too small,  iterations converge much too slowly. 
⌐  If the step-size is too big,  iterations diverge or never converge. 
≈  If the step-size is almost too big,  iterations converge too slowly 
        because they  "Ricochet",  bouncing around erratically.
     Unfortunately,  the best step-sizes can be almost  "Almost-Too-Big".

Most attempts to choose good values for  Hyper-Parameters  are hindered by 
ignorance of things we cannot be expected to know in advance.  Among these 
are the locations of  "Stationary Points" x  where the  Gradient G(x) = o .  
These include the  Minima  we seek as well as local  Maxima and  Saddle-
Points  (neither maxima nor minima).  How an iterate  x  is situated 
relative to stationary points determines two regimes differing in their 
strategies for choosing good hyper-parameters:

Regime #0:  x  is rather farther from a sought minimum than from other 
~~~~~~~~~~  stationary points.  Hessian  H(x)  varies enough to thwart
            attempts to infer good values for hyper-parameters other
            than step-sizes,  as will be explained in detail below.

Regime #1:  x  is much closer to a minimum than to all other stationary 
~~~~~~~~~~  points.  Now the largest and least eigenvalues of  H(x) ,
            respectively  ºH(x)º  and  1/ºH(x)^(-1)º ,  vary slowly,
            we hope.  They are all that need be estimated to choose the
            best constant values for hyper-parameters.  Rough estimates
             provided below work well enough,  or are not needed at all! 



 

STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 3/15

 

The strategy for  Regime #0  entails watchful responses to the behavior of 
by-products of each  Iteration-Step.  ( DL  calls one an  "Epoch" .) Each 
iteration-step computes  ƒ(x) and G(x)  only once.  They cost far more to 
compute than the watched by-products unless these reveal that a step-size 
was too big;  then the iteration-step must be recomputed with a smaller step-
size determined from the by-products.  To compute step-sizes,  formulas will 
be offered intended to render recomputation rare and convergence fast,  but 
they might not.

A different strategy suits  Regime #1.  First comes a decision that the 
iteration has entered this regime.  As iterates  x  step deeper into Regime 
#1,  the iteration's rate of convergence comes to depend ever more 
exclusively upon how the choices of hyper-parameters relate to the two 
relevant unknown attributes of the  Hessian H(x)  at the minimum:
       its norm  ºHº  and its  Condition Number  Ç := ºHº·ºH^(-1)º . 
Ç  says something about the shape of the level-lines/surfaces/manifolds 
surrounding the minimum.  They almost always resemble ellipsoids,  and
               Ç ≈ ((Largest Diameter)/(Least Diameter))² , 
so  Ç ≥ 1 .  When  Ç  far exceeds that,  the ellipsoids seem very like long
thin cigars or pancakes;  then  H  is called  "Ill Conditioned", and the 
iteration is hyper-sensitive to roundoff and converges slowly at best no 
matter how the hyper-parameters were chosen.  Sometimes Ill Condition can be 
ameliorated by a  "Pre-Conditioning"  change of the coordinates in  x-space;
this topic deserves elaboration but not here.

A Gauge Function to Watch 
~~~~~~~~~~~~~~~~~~~~~~~~~?
Can an iteration's progress be gauged by how much it diminishes  ƒ(x) ?  By  
GD,  almost.  By accelerated versions,  not likely,  though another function
Æ(x, v)  will be found to be diminished by each iteration if its step-size is
small enough.  To serve as a guide to the choice of a good step-size,  the 
gauge function's rate of decrease for very small step-sizes must be 
computable cheaply;  and then an iteration-step's departure from that rate 
may guide the choice of a better step-size, though it is usually not small 
at all.

Let's see how well that works for un-accelerated  GD :

Gradient Descent 
~~~~~~~~~~~~~~~~
GD  is a  "1st Order"  discretization of the differential equation       
dx(τ)/dτ = -G(x(τ))  in which  gradient  G(x) := dƒ(x)/dx

  

`̀̀̀

 

.  Along every 
trajectory  x(τ)  satisfying this differential equation,
                   dƒ(x(τ))/dτ = -G(x(τ))

  

`̀̀̀

 

•G(x(τ)) ≤ 0 ,
so  ƒ(x(τ))  decreases until the trajectory terminates at a  Stationary Point
xª  where  G(xª) = o . Unless  xª = ∞ ,  it is most likely a  (local) minimum
of  ƒ  since all other kinds of stationary points repel almost all 
trajectories.

Each  GD  iteration-step replaces  x(τ)  by  Euler's  approximation 
~~~~~~~~      new x := x - G(x)·

 

∆

 

τ  ≈  x(τ + 

 

∆

 

τ) ± 

  

OOOO

 

(

 

∆

 

τ²) 
for a sufficiently small step-size  (called "Learning Rate" by  DL)  

 

∆

 

τ > 0 .
It changes the gauge function  ƒ(x)  chosen for  GD  to 
  ƒ(new x) ≈ ƒ(x) - 

 

∆

 

τ·(ºG(x) + G(new x)º² + 4ºG(x)º²)/8  +  

  

OOOO

 

(

 

∆

 

τ)^3 .



 

STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 4/15

 

Here  ºGº² := G

  

`̀̀̀

 

•G ;  and the multiplier of  

 

∆

 

τ  is the rate at which  
ƒ(new x)  decreases for very small step-sizes.  

 

It's not obvious

 

.  That rate 
is easy to compute in the course of preparing for the next step.

However,  whenever a computed  ƒ(new x) ≥ ƒ(x) ,  this  new x  must be 
discarded and recomputed from the saved  x  and  G(x) ,  but now with a new 
step-size  δτ  smaller than  

 

∆

 

τ .

                           How much smaller?

A rough amswer comes from the term  " 

  

OOOO

 

(

 

∆

 

τ)^3 "  in the equation above. It 
is represented by  " ¥(x, 

 

∆

 

τ)·ºG(x)º²·

 

∆

 

τ^3 "  for a presumed slowly varying 
function  ¥(x, 

 

∆

 

τ)  determined from the equation above,  namely
 ƒ(new x) = ƒ(x)-

 

∆

 

τ·(ºG(x)+G(new x)º²+4ºG(x)º²)/8+¥(x,

 

∆

 

τ)·ºG(x)º²·

 

∆

 

τ^3 .
A big leap occurs when we replace  

 

∆

 

τ  by some smaller  δτ  to predict
  ƒ(new x) ≈ ƒ(x)-δτ·(ºG(x)+G(new x)º²+4ºG(x)º²)/8+¥(x,

 

∆

 

τ)·ºG(x)º²·δτ^3 
and ignore the presumed-to-be-small changes in the saved values of  ¥ and  
ºG(x)+G(new x)º² .  A usually slight under-estimate of the best smaller  δτ  
minimizes the last equation's right-hand side:
                                     

 

∆

 

τ
     δτ :=  ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ .
                                    24·( ƒ(new x) - ƒ(x) )
            √(max{ 0.8,  3 + ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ })
                             

 

∆

 

τ·( ºG(x) + G(new x)º² + 4ºG(x)º² )
Then discard saved values of  new x ,  ƒ(new x)  and  G(new x)  etc., and 
recompute a new  new x  using this smaller  δτ  in place of  

 

∆

 

τ .

When  ƒ(new x) < ƒ(x) ,  keep  new x  and adjust the next step's step-size to
δτ  from the foregoing formula.  Now its  " max{ 0.8, ...} " acts to impose 
a bound  1.12 > δτ/

 

∆

 

τ  restricting step-sizes' increases lest too many 
iteration-steps be wasted recomputing  new x  at step-sizes reduced because  
ƒ(new x)  increased.  Recomputing becomes rare as iterates  x  approach any 
stationary point because then  ºG(x)º  and ºG(new x)º  dwindle,  whereupon  
¥(x,

 

∆

 

τ)·ºGº²  tends to fluctuate among positive values:
              ¥(x, 

 

∆

 

τ)·ºG(x)º² ≈ ºH(x)•G(x)º²/8 ± 

  

OOOO

 

(ºG(x)º^3) .

Thus adjusted,  step-sizes  δτ  need not converge in  Regime #1  though 
H(x)  does.  Instead  δτ  tends there to fluctuate around values that have 
been observed to make iterates  x  converge at least as fast as if step-
sizes had all been assigned the same optimal  _constant_  value.

When do iterates  x  get into  Regime #1 ?  A symptom is the rarity of 
recomputations of  new x  while  ºGº  shrinks steadily,  though that happens 
also when iterates approach a saddle-point.  Both this approach and its 
departure can cost many iteration-steps.  Sometimes  (rarely) the 
iteration's approach to a saddle-point is foreshadowed by an occurrence of 
this inequality:
         0 ≥ G(x)

  

`̀̀̀

 

•( G(x) - G(new x) )
           ≈ 

 

∆

 

τ·G(x)

  

`̀̀̀

 

•(H(x) + H(new x))•G(x)/2 ± 

  

OOOO

 

(

 

∆

 

τ·ºG(x)º)^3  ,
because  G

  

`̀̀̀

 

•H•G < 0  whenever  G  enters a cone surrounding all eigen- 
vectors belonging to any negative eigenvalues of  H .  If this happens,  or
if  ºGº  increases,  stay or return in  Regime #0.  To stimulate detection 
of and escape from saddle-points,  occasionally add to  new x  a very small 
random perturbation orthogonal to both  G(new x) and G(x) while  ºG(new x)º  
is small but still far from tiny enough to ignore.



 

STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 5/15

 

As iterates  x  go deeper into  Regime #1,  step-size management gets simpler
because  ºG(x)º  dwindles,  Hessian  H(x)  becomes more nearly constant 
though still unknown,  and  ƒ(new x)  becomes ever better approximated thus:
  ƒ(new x) ≈ ƒ(x) - 

 

∆

 

τ·ºG(x)º² + 

 

∆

 

τ²·G(x)

  

`̀̀̀

 

•H(x)•G(x)/2 ± 

  

OOOO

 

(

 

∆

 

τ·ºG(x)º)^3 .
This approximation suggests that the next iteration-step use
   new 

 

∆

 

τ := 

 

∆

 

τ/max{ 0.25,  2 + 2(ƒ(new x) - ƒ(x))/(ºG(x)º²·

 

∆

 

τ) }
           ≈ min{ 4

 

∆

 

τ,  G(x)

  

`̀̀̀

 

•G(x)/( G(x)

  

`̀̀̀

 

•H(x)•G(x) ± 

 

∆

 

τ·

  

OOOO

 

(ºG(x)º^3 ) } 
as its step-size regardless of whether  ƒ(new x) ≥ ƒ(x) ,  as may occur 
occasionally.  Step-sizes  new 

 

∆

 

τ computed this way can fluctuate chaotically
between  1/ºHº  and  Ç/ºHº .  However,  this  GD  iteration converges, almost
always converging ultimately almost as fast as can accelerated versions like
GD+M  when their hyper-parameters like step-sizes are chosen optimally.  But 
the weasel-words  "almost"  and  "ultimately" here deserve some explanation,
albeit not yet a full explanation.

Why the last formula for  new ∆τ  works so well has not been explained yet 
partly because,  very rarely,  that formula does not work so well by itself.

Here is a  Simple Example:  Minimize the scalar  ƒ(x) := x`̀̀̀•H•x/2  
over integrable functions  x(Θ)  defined only on an interval  1 ≤ Θ ≤ Ç > 1 
whereon  H  is the operator that multiplies by  Θ ;   H•x(Θ) = Θ·x(Θ) . The 
scalar product is an integral over the aforementioned interval:
                           ⌠                             ⌠
         ºxº² = x`̀̀̀•x := ³x(Θ)²·dΘ   and   x`̀̀̀•H•x = ³x(Θ)²·Θ·dΘ .
                           ⌡                             ⌡ 
Of course the minimum is  0 ,  achieved at  x ≡ 0 ,  but we will seek it by  
Gradient Descent  using the gradient  G(x) := dƒ(x)/dx`̀̀̀ = H•x ;  i.e., 
G(x(Θ)) = Θ·x(Θ) .  Each iteration-step of  GD  replaces  x  by
                           new x := x - ∆τ·G(x) ,  
so  new x(Θ) = (1 - ∆τ·Θ)·x(Θ)  for some chosen  ∆τ > 0 .  The next 
iteration's  new ∆τ := (G(x)`̀̀̀•G(x))/( G(x)`̀̀̀•H•G(x) ) accords with the 
foregoing formula for it;  i.e.,
                           ⌠                ⌠
              new ∆τ  := ( ³x(Θ)²·Θ²·dΘ )/( ³x(Θ)²·Θ^3·dΘ ) .
                           ⌡                ⌡ 
Step-sizes  new ∆τ  usually vary irregularly in the interval  1/Ç < ∆τ < 1 ;
but a peculiar choice of starting values for  ∆τ  and  x(Θ)  can produce 
stepsizes that all stay the same,  thus producing a sequence of iterates  x  
convergent much more slowly than usual.  Such a choice is  ∆τ := 2/(1 + Ç)  
and,  for any  Φ(³ø³) > 0 ,
                  x(Θ)² := Φ( ³Ç + 1 - 2Θ³/(Ç - 1) )/Θ² . 
This amounts to changing from variable  Θ := (Ç + 1 + (Ç - 1)·ø)/2  to ø  
on  -1 ≤ ø ≤ 1 .  Then a long calculation yields  new ∆τ = ∆τ  and, after a 
large number  n  of iterations,  ºG(x)º  shrinks by a factor not much 
smaller than  (1 - 2/(1 + Ç))ⁿ  instead of a usually observed factor 
moderately bigger than  (1 - 2/(1 + √Ç))ⁿ .  The difference is substantial 
when  Ç >> 1 .  End of  Simple Example.

Since  ºHº  and  Ç  are hardly ever known,  a nearly constant sequence of 
step-sizes  new ∆τ  like the  Example's  can rarely be distinguished from 
the same behavior when  Ç  exceeds  1  only a little.  To cope with 
uncertainty,  compute  new ∆τ := ∆τ/2  occasionally.  This thwarts 
misbehavior like the  Example's  without slowing convergence much when the 



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 6/15

formula above for  new ∆τ  is used almost always.  The rapidity of 
convergence attributed to that formula has not been proved yet but has been 
observed for many examples,  some with dimensions over  1000.

Ultimately,  How Fast at Best Can Gradient-Based Iterations Converge? 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Only deep in  Regime #1  can the question be  Answered;  this is what 
"Ultimately"  means.  Our  Answer  depends upon a rarely known attribute of 
the Hessian  H(x) := d²ƒ(x)/dx²  at a minimum  x  of  ƒ(x) ,  namely its 
Condition Number  Ç := ºHº·ºH^(-1)º ;  if huge,  "Fast"  becomes  "Slowly".

"Gradient-Based Iterations"  are those that compute only  ƒ(x)  and its 
gradient  G(x) := dƒ(x)/dx`̀̀̀ at arbitrary points  x ,  storing at most a few 
instances of them;  iterations  GD,  GD+M  and  AGM  are included. "Conjugate
Gradients"  iterations are also included though they compute H•v  too for 
arbitrary vectors  v  and compute optimal hyper-parameters automatically.  
Otherwise Hessian  H  is inaccessible.

"Fast at Best"  means that from no initial points  x  can the average factor 
by which each iteration shrinks  ºG(x)º  exceed the question's  Answer,  and 
from most points  x  the average comes close.  Where an iteration requires 
hyper-parameters to be chosen,  our  Answer  assumes their  best possible 
values  have been chosen.  Most iterative methods' optimal choices require 
knowledge of usually unknown attributes  Ç  and ºHº ,  thus diluting our  
Answer's  pertinence.  Here is our  Answer:

     After a large number  n  of  Gradient-Based Iteration-steps in
     Regime #1,  the factor by which they have reduced  ºG(x)º  can
     not exceed  (1 - 2/(1 + √Ç))ⁿ ,  had all hyper-parameters been
     chosen optimally.  Only if  n/(1 + Ç) >> 1  is  n  big enough.

                    This  Answer  has been  Proved.
                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
As iterates  x  approach a minimum,  our iterations come ever closer to 
resembling some iterations explored in  "Iterative Methods for the Solution 
of a Linear Operator Equation in Hilbert Space - A Survey"  by Major Walter 
M. Patterson 3rd, (1974) Lecture Notes in Mathematics #394 Springer-Verlag, 
Berlin.  Our  Answer's  reduction factor comes from a 1960s  theorem about  
Conjugate Gradients  by  V. Samanskii  cited by Patterson  on  pp.162-3  and 
elaborated subsequently by many others. See  "On Meinardus' Examples for the 
Conjugate Gradient Method"  by Prof. Ren-Cang Li (2007) pp. 335-352 in 
Mathematics of Computation 77777777 #261,  and citations therein.

Our  Answer's  applicability to  GD+M and AGD  iterations comes from a 
tedious computation of optimal constant values of hyper-parameters that 
minimize the magnitudes of extreme eigenvalues of a matrix derived from  H .
These optimal constants depend upon usually unknown values of  ºHº  and  Ç  
and are delicate if  Ç  is huge because then constants slightly different 
from optimal can cause iterations to diverge in  Regime #1.

Our  Answer's  application to  GD  demands  ºHº  and  Ç  and a sequence of 
step-sizes  ∆τ  derived from the zeros of a  Tschebyshev  polynomial whose 
degree exceeds the expected number of iterations needed to shrink  ºG(x)º  
below some preassigned tolerance.  Roundoff degrades the scheme badly if  



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 7/15

Ç >> 1  unless step-sizes are chosen in a proper order.  For an easier way 
see  §10.1.5 of "Matrix Computations" 3rd. ed. (1996) by Profs. G. Golub and 
C. Van Loan and citations therein.

On average,  each  GD  iteration with its   best constant   step-size
∆τ := (2/ºHº)/(1 + 1/Ç)  shrinks  ºG(x)º  by a factor  1 - 2/(1 + Ç) , which 
far exceeds the  Answer's  factor  1 - 2/(1 + √Ç)  when  Ç  is huge.  Then  
∆τ  is almost too big;  GD  diverges for  ∆τ ≥ 2/ºHº .

A Perplexing Miracle: Yet to be explained is  GD's  rapid convergence 
observed in  Regime #1, with no further information about  H ,  when  new ∆τ
is computed from the formula above except  new ∆τ := ∆τ/2  on random 
occasions.  Then convergence seems almost as fast as our  Answer's  fastest 
convergence achievable by any  Gradient-Based Iteration.  It all seems 
miraculous.

Our derivations of formulas for adjusted step-sizes  ∆τ  were based on a 
fictional hypothesis,  namely that all but the leading few terms of an 
expansion in powers of  ∆τ  could be ignored.  In fact,  step-sizes ∆τ  are 
not that small.  However,  step-sizes too often chosen slightly too big can 
cause  GD  iterations to ricochet forever,  bouncing around in an irregular 
way impossible to distinguish from slow convergence at the foregoing  
Answer's  best possible rate for an unknown  Ç >> 1 .

Other Valuable By-Products: Two by-products of  GD  iterations deep in  
Regime #1  are estimates of  ºHº and Ç  from which optimal hyper-parameters 
could be estimated for GD+M  and  AGM,  though the motivation for using them 
is undermined if GD  already converges almost as fast as they could at best.
We'll see.

Rough estimates of  ºHº  come via  H(x) = dG(x)/dx  and its implication     
ºH(x)º ≈ max{ºG(x+δx) - G(x)º/ºδxº}  over all  δx  small enough. Therefore 
each quotient  ºG(x) - G(new x)º/ºx - new xº  under-estimates  ºHº  in the 
neighborhood of  x  and  new x .  The largest such quotient among the past 
several iterations offers a rough estimate of  ºH(x)º  for  x  in the 
neighborhood of the past several iterates in  Regime #1,  provided they are 
not yet so nearly coincident that rounding errors in dwindling gradient 
vectors  G  drown differences between them.

Very rough estimates of  Ç  come from the observation that our formula for 
computing  new ∆τ  appears to make  GD  converge,  in  Regime #1, at almost 
the  Answer's  best possible rate for that condition number. Therefore,  
after some moderately large number  n  of iterations during almost all of 
which  ºGº  has shrunk,  the accumulated shrinkage factor over  n  iterations
tends to over-estimate  (1 - 2/(1+√Ç))ⁿ  a little, thus providing an over-
estimate of  Ç .  Adequate accuracy will require  n/(1+Ç) >> 1 ,  which may 
take longer than anyone is willing to wait.

A use for estimates of  Ç  and  ºHº  more important than to estimate hyper-
parameters is to describe the shape of a local minimum  xª  and distinguish 
it from others,  if any,  that have been or will be found.  The shape is 
inferred from the first few terms of a  Taylor  series
        ƒ(xª + δx) ≈ ƒ(xª) + G(xª)•δx + δx`̀̀̀•H(xª)•δx/2  ±  OOOO(δx^3) .
Gradient  G(xª) = o  at a minimum,  so only the properties of  ƒ(xª) and its 



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 8/15

Hessian  H(xª)  determine the shape of the minimum.  ƒ(xª)  is its Depth.  
The minimum is  Sharp  if  ºH(xª)º  is big,  Broad  if small. The  Condition 
Number  Ç  is the minimum's  Spread,  concentrated near a point if  Ç ≈ 1  
or diffused along a long thin cigar or flat pancake if  Ç >> 1 .  These 
properties affect that minimum's usefulness:

A sharp minimum restricts  xª  tightly in the sense that small changes can 
render  xª  utterly non-minimizing.  A broad minimum tolerates a modest 
range of changes in  xª  and/or  ƒ .  A small spread,  when  Ç is not very 
big,  implies that the direction of a small change in  xª  and/or  the data 
that defines  ƒ  matters far less than its magnitude measured by an 
appropriate norm  º...º .  When  Ç  is huge,  ƒ  takes nearly its minimum 
value along a line segment,  like a narrow valley, or on a platter,  or 
throughout some ramified near-ellipsoid within which accidental little 
imperfections in data or arithmetic determine the location of a computed  
xª ;  and it takes a long time to compute.

Different minima can have different shapes.  Unless  ƒ  is known to have 
some property like convexity that implies at most one minimum, prudence 
demands that others be sought after one is found.

How Significant is a Discretization's  "Order" ? 
We cannot explain it if we use the same name  " x "  for a given  ODE's 
trajectories  x(τ)  and our numerical approximations;  let's call these  X .
These consist of a sequence of points which we shall join to form a 
continuous piecewise differentiable curve.  If  X(t)  is one of these points 
and  X(t + ∆τ)  the next,  we shall connect them with the graph of  
X(t + ø·∆τ)  for  0 ≤ ø ≤ 1  defined as if we had used step-size  ø·∆τ  
instead of  ∆τ .  Our graph of  X(τ)  has kinks at points  X(t) .

Our kinky graph intersects some of our  ODE's  trajectories.  For any  t  
choose  x(τ)  to be the trajectory that intersects at  X(t) ;  thus 
x(t) = X(t) .  Here a  1st Order  discretization's graph has the same 
forward derivative:  dx(τ)/dτ = dX(τ)/dτ+  at  τ = t ,  but generally no 
higher derivative agrees.  In other words,  trajectories and graphs share 
forward tangents at intersections,  but usually not curvatures.

2nd Order discretizations share forward curvatures at intersections as well 
as tangents:  d²x(τ)/dτ² = d²X(τ)/dτ²+  too at  τ = t .

If,  given values for  x˚  and  T > 0 ,  we wished to approximate  x(τ) for  
x(0) := x˚  and  0 ≤ τ ≤ T ,  we would set  X(0) := x˚  and run as many 
steps of our chosen discretization as needed,  perhaps varying the step-
sizes  ∆τ ,  to reach  X(T) .  For tiny steps,  its error would be ...
       x(T) - X(T) ≈ OOOO(max ∆τ)   for a  1st Order discretizarion,
       x(T) - X(T) ≈ OOOO(max ∆τ²)  for a  2nd Order discretizarion. 
A tempting inference is that  2nd Order  would permit longer steps  ∆τ  than
1st  and fewer of them to reach  x(T)  with a tolerable error.

Alas,  that inference could be mistaken for any of three reasons: 

1■  2nd Order  may be better only for  ∆τ  far tinier than  1st  needs. 



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 9/15

2■  2nd Order  may cost much more computing time per step than  1st. 
3■  All trajectories we care about end at the same places,  minima,  so
            small departures along the way don't accumulate.
Despite those three reasons,  a  2nd Order  discretization will turn out 
sometimes to be advantageous because ... 
1■  We eschew very tiny step-sizes  ∆τ  since they retard convergence. 
2■  2nd Order  AGD  costs scarcely more than  1st Order  GD  and  GD+M. 
3■  Although all trajectories we care about end at the same places,
    getting there can take abrupt turns and perhaps tight corkscrews 
    through a high-dimensional space difficult to visualize.

Let's try to visualize trajectories  x(τ)  of GD's ODE  dx/dτ = -G(x) .  As 
they approach a minimum  x(∞) = xª  where  G(xª) = o ,  almost all turn 
abruptly,  though slowly since  ºG(x(τ))º  becomes small there.  To assess 
how abruptly,  suppose  δx(τ) := x(τ) - xª  is so tiny that 
           dδx(τ)/dτ =  -( G(x(τ)) - G(xª) )  ≈  -H(xª)•δx(τ) 
is an approximation adequate to justify another approximation 
             δx(τ) ≈ exp( (t-τ)·H )•δx(t)  for all  τ > t . 
Now consider the components of  δx(τ)  parallel to eigenvectors of  H .  If 
the component belonging to the least eigenvalue  (it's ≥ 0 )  of  H  is 
nonzero,  it decays exponentially slower than any other component.  The 
slowest components belong to the smoothest trajectories that run into  xª ;  
almost all nearby trajectories differ from the smoothest by amounts 
proportional to  ºδx(τ)º^Ç  wherein  Condition Number  Ç  is the ratio of 
the largest over the least eigenvalues of  H .

The bigger is  Ç ,  the more nearly do almost all trajectories come to 
resemble a twisted letter  " L ".  Moreover,  a microscope focussed on  xª  
would exhibit the same picture of  all  the nearby trajectories regardless 
of magnification.  In other words,  ...
         In any small neighborhood of a minimum  xª  of  ƒ(x) ,
         almost all trajectories bend abruptly,  the more so if
         Ç  is huge,  no matter how small is the neighborhood.
Each step  new X := X - G(X)·∆τ  of  GD  moves from  X  to  new X  along the 
tangent to the trajectory  x(τ)  through  X = x(t)  for some  t . Almost all 
points  X  near  xª  lie on or near the heel of the twisted  L-shaped 
trajectory  x(τ)  through  X ,  so the tangent departs quickly from the 
trajectory.  If  ∆τ  is small enough,  new X  will lie close to the 
trajectory which we wish to follow towards a minimum of  ƒ  in Regime #0.  
In  Regime #1  step-sizes so small retard convergence;  big steps required 
for faster convergence can follow no trajectory closely,  but ricochet,  
bouncing about seemingly randomly.  And slightly bigger steps diverge.  The 
difference between the fastest possible convergence and divergence takes 
many iteration-steps to discern if  Ç  is huge.
          In short,  if a discretization's order matters at all,
          it matters only while the iteration is in  Regime #0.
In  Regime #0  trajectories do turn abruptly to escape from a nearby saddle-
point.  Otherwise a  2nd Order  discretization is advantageous only in so 
far as it hastens an iteration's entry into  Regime #1  near a chosen 
minimum different from others found earlier from sufficiently different 
starting iterates.



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 10/15

Gradient Descent + Momentum
Inspired perhaps by  Conjugate Gradients Iteration,  one way to present GD+M
as an iteration to minimize  ƒ(x)  is this: 
GD+M:            new x := x - α·G(x) + ß·(x - old x) .

Here  Gradient  G(x) := dƒ(x)/dx`̀̀̀ ;  Momentum  is proportional to x - old x ;
and  "Hyper-Parameters"  α > 0 < ß < 1  are two scalars that have to be 
chosen somehow.  (The  DL  community calls  α  "The Learning Rate".)  If  α  
and  ß  are chosen well,  repeated iterations do diminish  ƒ(x) ,  but not 
necessarily with  each  iteration-step. Especially when the level-lines/
surfaces/manifolds enclosing a minimum of  ƒ  resemble very elongated or 
flattened ellipsoids,  an iteration-step may increase  ƒ  yet bring  new x  
closer than  x  to a minimum.

Inspired perhaps by  Hamiltonian  differential equations that describe 
friction-free mechanical systems,  GD+M  has been identified with a 
discretization of such a differential equation to which friction has been 
added.  For some  "Drag"  µ > 0 ,  the differential equation is
                        d²x/dτ² = -G(x) - µ·dx/dτ ; 
i.e.,             dv/dτ = -G(x) - µ·v   &   dx/dτ = v . 
Along every trajectory  [x(τ), v(τ)]  satisfying these equations,  a  Pseudo-
Hamiltonian  function  Æ(x, v) := ƒ(x) + v`̀̀̀•v/2 ,  analogous to total energy
(Potential + Kinetic),  decreases because of the  Drag:
          dÆ(x(τ), v(τ))/dτ = -µ·v(τ)`̀̀̀•v(τ) < 0 so long as  v(τ) Ø o .
Each trajectory terminates at a point  [xª, vª] where  vª = G(xª) = o .  
Unless  xª = ∞ ,  this  Stationary Point  is most likely a  (local)  minimum 
of  ƒ  and of  Æ ,  since every other kind of stationary point repels almost 
all trajectories.

Besides turning abruptly,  trajectories  [x(τ), v(τ)]  turn corkscrews unless
drag  µ ≥ 2√ºH(x)º ,  which is bigger than  µ  is likely to be chosen.  
Larger values of the  Hessian's  Condition Number  Ç  produce tighter 
corkscrews more like tightly wound clock-springs,  and require smaller step-
sizes  ∆τ  lest a discretization go utterly astray.

A simple  "1st-Order"  discretization of the differential equation is
GD+M:    new v := v - ∆τ·(G(x) + µ·v)   &    new x := x + ∆τ·new v . 
         i.e.,  new x := x - G(x)·∆τ² + (1 - µ·∆τ)·(x - old x) .
This last identifies the iteration's
            α ≡ ∆τ² ,  ß ≡ 1 - µ·∆τ ,  and x - old x ≡ ∆τ·v .  
These identifications are slightly problematical:
      Which Hyper-Parameters,  {α, ß}  or  {∆τ, µ},  are best used?
The question seems answered by the choice of the  Pseudo-Hamiltonian
                        Æ(x, v) := ƒ(x) + v`̀̀̀·v/2 
to gauge the iteration's progress.  This choice  Æ  is independent of  
{∆τ, µ}  and hence independent of how they are determined.  A different 
gauge function,  one independent of  {α, ß},  has not been found yet.

For  ∆τ  small enough,  each  GD+M  iteration-step changes  Æ(x, v)  to
            Æ(new x, new v) ≈ Æ(x, v) - ∆τ·µ·ºvº² ± OOOO(∆τ²)
                            ≈ Æ(x, v) - (1-ß)·ºvº² ± OOOO(α) . 
When  Æ(new x, new v) ≥ Æ(x, v)  the last equation does not suggest how best 
to recompute  new x  with a smaller  α  without changing  ß  too. However 
the previous equation suggests replacing  ∆τ  by a much smaller



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 11/15

                                     ∆τ 
         δτ := ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 
               2 + 2( Æ(new x, new v) - Æ(x, v) )/(µ·ºvº²·∆τ)
and then recomputing  new v  and  new x.

When  Æ(new x, new v) < Æ(x, v) ,  a slightly better formula is
                                      ∆τ 
 δτ := ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
       max{0.91,  2 + 2( Æ(new x, new v) - Æ(x, v) )/(µ·ºnew vº²·∆τ) }
to adjust the step-size for the next step.  Restricting  δτ/∆τ < 1.1 
purports to render rare any subsequent iteration-steps whose increased  Æ  
would compel recomputations of  new v  and  new x .  Unfortunately neither 
formula for  δτ  suggests how to adjust the drag  µ ,  partly explaining why 
neither formula has been found to work well.  A further explanation is that 
the term  " ±OOOO(∆τ²) "  is too often negative.

Another version of  GD+M  was introduced in the early  1980s  by  Y. Numerov
and is now widely used;  it will be called  GD+MN  here:
          Choose initial vectors  x  and  u ,  maybe  u := o ,  and then ... 
GD+MN:          Iterate      y := x + (1 - µ·∆τ)·∆τ·u ;  
                         new u := u - (G(y) + µ·u)·∆τ ;
                         new x := x + (new u)·∆τ .
Since  ƒ  and  G  will be computed only once per iteration-step,  the 
iteration can be reduced to its essentials thus:
     Choose an initial  x  and  u  and set  y := x + (1 - µ·∆τ)·∆τ·u ;  then 
GD+MN:     Iterate    new u := u - G(y)·∆τ + µ·∆τ·u ;
                      new y := y + (2-µ·∆τ)·∆τ·(new u) - (1-µ·∆τ)·∆τ·u .
    Only at the end,  new x := new y - (1 - µ·∆τ)·∆τ·(new u) .
GD+MN  is another  1st Order  discretization of the same  2nd Order 
Hamiltonian-like differential equations as  GD+M  discretized.  If  ∆τ  is 
small enough,  each iteration-step of  GD+MN  reduces the  Pseudo- 
Hamiltonian  function  Æ(y, u) ,  used to gauge progress,  to
           Æ(new y, new u) ≈ Æ(y, u) - ∆τ·µ·ºnew uº² ± OOOO(∆τ²) .
This approximation suggests a formula for adjusting  ∆τ  to  δτ  like the one
for  GD+M  above,  but it suffers from the same limitations partly because 
the term  "±OOOO(∆τ²)"  is too often negative.

Surprisingly,  slightly changing  µ  sometimes causes  GD+M  and  GD+MN to 
diverge unless also  ∆τ  is reduced.  This surprise can be explained when 
either iteration is deep enough in  Regime #1  that  Hessian H(x) is almost 
constant.  Then conditions necessary and sufficient for each iteration's 
convergence with constant hyper-parameters can be decribed:

   For  GD+M,   0 < ºHº·α < 2 + 2ß < 4   or   ºHº·∆τ² < 4 - 2µ·∆τ < 4 .

   For  GD+MN  the conditions are more complicated but simplified by what 
      seems to be  Numerov's  stipulation that  0 < µ·∆τ < 1 ;  this leads to
        0 < ∆τ < √(2/ºHº) ,   and if   ∆τ > 2/√(3ºHº)   then also
                  µ > (3ºHº·∆τ/2 - 2/∆τ)/(ºHº·∆τ² - 1) .

When  Ç >> 1  those conditions are almost violated by optimal choices for  
constant  hyper-parameters.  Below are the optimal choices and the average 
factors  Ω  by which each of very many iteration-steps in Regime #1  can be 
expected to reduce  ºG(x)º .  Also exhibited are the values of hyper-
parameters  Y. Numerov  chose for his  GD+MN.



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 12/15

               Y.N's GD+MN        Best  GD+MN          Best  GD+M
               ~~~~~~~~~~~      ~~~~~~~~~~~~~~~      ~~~~~~~~~~~~~~
    ∆τ·√ºHº:       1        <     2/√(3+1/Ç)     <    2/(1 + 1/√Ç)
    µ·∆τ:       2/(1+√Ç)    <   4/(2 + √(3Ç+1))  <   4√Ç/(1 + √Ç)²    < 1 
    Ω:         1 - 1/√Ç     >   1 - 2/√(3Ç+1)    >   1 - 2/(1 + √Ç)

Tabulated below are numerical values of  Ω  for a few choices  Ç :
          Ç     Y.N's Ω(GD+MN)   Best Ω(GD+MN)     Best Ω(GD+M)
        ~~~~    ~~~~~~~~~~~~~~   ~~~~~~~~~~~~~     ~~~~~~~~~~~~ 
         2     0.2928932188     0.2440710539      0.1715728752 
        16         0.75         0.7142857142           0.6 
        225    0.9333333333     0.9230769230          0.875 
       3136    0.9821428571     0.9793814432      0.9649122807

At least in  Regime #1,  GD+M  can converege much faster than  GD+MN  can,  
and as fast as the fastest  Gradient-Based  iteration  (see  Answer  above).

When do iterates enter  Regime #1?  A symptom is dwindling lengths  ºGº  and
ºuº  or  ºvº ;  but they may also portend approaches to a  Saddle- Point,  
which is sometimes foreshadowed by one of these inequalities:
   GD+M:     0 > (new v)`̀̀̀•( G(new x) - G(x) ) 
                ≈ ∆τ·(new v)`̀̀̀•(H(new x)+H(x))•(new v)/2  ±  OOOO(∆τ^5)

   GD+MN:    0 > (new u - u/2)`̀̀̀•( G(new y) - G(y) )
             ≈ ∆τ·(new u - u/2)`̀̀̀•(H(new y)+H(y))•(new u - u/2)  ±  OOOO(∆τ^3)
If one happens,  or if  ºGº  increases,  stay or return in  Regime #0.
Occasionally adding to an iterate a small random vector orthogonal to both  
new G  and  ( new u  or  new v }  often speeds the detection of and departure
from a nearby saddle-point.

Deep in  Regime #1,  convergence goes fastest if  ∆τ  and  µ·∆τ  have their 
optimal values exhibited above;  but these depend upon estimates of the  
Hessian's  norm ºHº  and  condition number  Ç .  An estimate for  ºHº  comes 
from the largest quotient  ºG(x) - G(new x)º/ºx - new xº observed while deep 
in  Regime #1.  Especially if  Ç  is big it almost defies adequately accurate
estimation because  GD+M's  and  GD+MN's  sequence of values  ºGº  tends to 
behave raggedly;  and the sequence of values  Æ ,  though decreasing if every
∆τ  is small enough,  does not often decrease smoothly to zero.  We might as 
well seek a way to manage without any estimate of  Ç .

Whatever way is chosen to adjust  ∆τ ,  perhaps a formula like  GD+M's for  
δτ  above,  any estimate of  ºHº  can serve to correlate  µ  with  ∆τ  just 
as optimal values would be correlated,  if they were known,  provided  ∆τ  is
within range:
   For  GD+M:   µ·∆τ = (2 - √ºHº·∆τ)·√ºHº·∆τ  ≤ 1     if  ∆τ·√ºHº < 2
   For  GD+MN:  µ·∆τ = 2/(1 + 1/√(4-3ºHº·∆τ²)) < 1  if  1 < ∆τ·√ºHº < 2/√3

But why bother with all that when ordinary  GD  works so well as long as its 
formula for  new ∆τ  is used,  all while knowing nothing about the  Hessian?
Almost nothing.  The iteration has to be known to be in Regime #1  before  
GD's  new ∆τ  can be expected to work well.  What is the fasteest way to 
escape from  Regime #0  into  Regime #1 ?  Perhaps GD+M  and  GD+MN  have 
been created in the hope that they might escape sooner than  GD.  It seems 
to be a faint hope since they are all  1st Order  diacretizations of 



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 13/15

differential equations with trajectories that corkscrew and bend abruptly.  
A  2nd Order  discretization might go faster;  it seems worth trying.  That 
is the motivation for  AGD:

Anadromic Gradient Descent
"Anadromic"  is a  Nonce-word  meaning  "Can run back",  derived from the 
same  Greek  roots as  "Anadromous"  which characterizes fish like salmon 
that return from the ocean to spawn in the same fresh-water stream where 
they hatched.  An anadromic discretization of an ordinary differential 
equation shares one of its  "semi-group"  properties:
    If the sequence of steps  ∆τ  or  dτ  is revesed in sign and order,
     x(τ)  returns to its initial value  (except for rounding errors).
Anadromic discretizations are called  "Symmetric"  in Ch. V of the text 
"Geometric Numerical Integration -- Structure-Preserving Algorithms for 
Ordinary Differential Equations" 2d. ed. by  E. Hairer, C. Lubich and G. 
Wanner (2006) Springer-Verlag, Berlin.  The word  "Symmetric"  is 
overworked;  for instance,  differential equations called  "Reversible" in 
the text have been called  "Symmetric"  elsewhere.  And  Hessians  are 
symmetric arrays.

Most discretizations,  GD,  GD+M  and  GD+MN  among them,   are not 
anadromic.  All anadromic discretizations have even  Order,  so at least  2;
but not all of them are computationally economical.  AGD  is economical;  it 
costs roughly one scalar division more than  GD+MN :
    Choose initial vectors  x  and  v ,  maybe  v := o ,  and then ... 
AGD:            Iterate      y := x + v·∆τ/2 ;
                         new v := v - (G(y) + µ·v)·∆τ/(1 + µ·∆τ/2) ;
                         new x := y + (new v)·∆τ/2 .
This  AGD  discretizes the same differential equation as  GD+M and GD+MN  do;
 i.e.,             dv/dτ = -G(x) - µ·v   and   dx/dτ = v .
Recall that along its trajectories  Æ(x, v) := ƒ(x) + ºvº²/2  decreases.

If  v ≈ dx(τ)/dτ  and  x ≈ x(τ)  then  y ≈ x(τ+∆τ/2) ,  new x ≈ x(τ+∆τ)  and
new v ≈ dx(τ+∆τ)/dτ .  To verify that  AGD  is anadromic,  suppose that  
new x  and  new v  are known;  then compute in turn
                       y := new x - (new v)·∆τ/2 ;
                       v := new v + (G(y) + µ·(new v))·∆τ/(1 - µ·∆τ/2) ;
                       x := y - v·∆τ/2 
to recover  x  and  v  from the formula for  AGD  except with the sign of  
∆τ  reversed.  Therefore our  AGD  is a  2nd Order  discretization of the 
differential equation;  this inference is partially corroborated by the 
appearance of only even powers of  ∆τ  in the expansion of ...
     { Æ(new x, new v) - Æ(x, v) }/∆τ ≈ -µ·º(v + new v)/2º²  ± OOOO(∆τ²) . 

We never compute this expression numerically because  ƒ  and  G  are to be 
computed only once per iteration-step.  As we did to  GD+MN  abone, we reduce
AGD  to its essentials thus:
          Choose an initial  x  and  v  and set  y := x + v·∆τ/2 ;  then
AGD:       Iterate    new v := v - (G(y) + µ·v)·∆τ/(1 + µ·∆τ/2) ;
                      new y := y + (new v)·∆τ .
    Only at the end,  new x := new y - (new v)·∆τ/2 .
Then only even powers of  ∆τ  appear in the expansion of ...
 { Æ(y, (v + new v)/2) - Æ(old y, (v + old v)/2) }/∆τ ≈ -µ·ºvº²  ± OOOO(∆τ²), 
but only if the same step-size  ∆τ  is used to advance  {y, v}  to 



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 14/15

{new y, new v}  as was used to advance  {old y, old v}  to  {y, v} . This 
constraint will have to be circumvented if step-sizes  ∆τ  are to be varied 
automatically.

Were  AGD  to be used only deep in  Regime #1  where the  Hessian's  Ç  and  
ºHº  are almost constant,  constant hyper-parameters  µ  and  ∆τ would 
provide  AGD  with predictable behaviors.  ∆τ·√ºHº < 2  would be necessary 
and sufficient for convergence.  For fastest convergence the best choices 
would be  ∆τ·√ºHº = 2/√(1 + 1/Ç)  and  µ·∆τ = 4√Ç/(1+Ç) ; and then the 
average factor by which each iteration-step would reduce  ºGº  ultimately 
would be  1 - 2/(1 + √Ç) ,  which is the smallest that the  Answer  above 
allows for any  Gradient-Based  iteration.  Finally, if good estimates for  
ºHº  and  ∆τ  were available then an estimate for  µ  that mimics the 
correlation between optimal choices would be
            µ = √( ºHº·(4 - ºHº·∆τ²) )  provided  ∆τ < 2/√ºHº .

But in  Regime #1  AGD  is not needed since  GD  converges there almost as 
quickly when its formula for  new ∆τ  is invoked almost always,  and with no 
prior knowledge of  Ç  nor  ºHº .  If  AGD  is worth using at all,  it is to 
escape sooner from  Regime #0.  That requires values of  ∆τ  and  µ  that 
adapt to an unpredictable landscape so that our chosen gauge function,  the 
Pseudo-Hamiltonian  Æ(y, (v + new v)/2) ,  declines as much as it can at 
every iteration-step.  That would be ideal.

To that end let's consider this expansion in even powers of  ∆τ  of ...
    { Æ(y, (v + new v)/2) - Æ(old y, (v + old v)/2) }/∆τ  +
         +  µ·{ (3ºvº² + (old v)`̀̀̀•(new v))/4 + ºold v - new vº² }  ≈ OOOO(∆τ²)
because its term  " OOOO(∆τ²) "  tends to positive values as iterates  y 
approach  Regime #1.  If  ∆τ  is small enough that  OOOO(∆τ²) ≈ ¥·∆τ²  for a 
nearly constant  ¥ ,  the expansion suggests changing  ∆τ  to ...
          δτ := ∆τ/√max{ 0.8,  2 + 2∆Æ/(µ·V²·∆τ) }   wherein
          ∆Æ := Æ(y, (v + new v)/2) - Æ(old y, (v + old v)/2)  and 
          V² := (3ºvº² + (old v)`̀̀̀•(new v))/4 + ºold v - new vº² .
     If  ºHº  has been estimated and  δτ < 2/√ºHº  then change  µ  to 
           µ := √( ºHº·(4 - ºHº·δτ²) ) ,  else set  µ := 1/δτ .
What happens next depends upon the sign of  ∆Æ :

If  ∆Æ ≥ 0  then discard  new y ,  new v ,  y ,  v ,  ƒ(y) ,  G(y)  and 
Æ(y, (v + new v)/2) ;  and then from saved  G(old y),  ƒ(old y),  old y  and 
old v  recompute  v,  y,  etc.  thus:
                v := old v  -  (G(old y) + µ·(old v))·δτ/(1 + µ·δτ/2) ;
                y := old y  +  v·δτ ;
                Æ(old y, (v + old v)/2) ;  ƒ(y) ;  G(y) ;
                new v := v - (G(y) + µ·v)·δτ/(1 + µ·δτ/2) ;
                new y := y + (new v)·δτ ;
                Æ(y, (v + new v)/2) ;  ∆Æ ;  V² . 
This recomputation is expensive,  so we have to hope it happens infrequently;
otherwise change  " √max{ 0.8, ..."  to  " √max{ 0.9, ...".

If  ∆Æ < 0  then overwrite  ∆τ := δτ ,  abandon old values and rename 
current and new ones.  For instance,  rename  v  to  old v  and  new v to  
v .  Rather than copy  v  onto  old v  etc.,  change pointers to arrays of 
large dimensions lest more time be spent on memory movement than on 



STEPSIZE.TXT                                                                                       Version dated  September 16, 2019 10:21 am

Prof. W. Kahan,  Univ. of Calif. @ Berkeley     WORK IN PROGRESS CONTINUALLY CHANGING     Page 15/15

arithmetic.

When do iterates  y  escape from  Regime #0 ?  A symptom is dwindling 
lengths  ºGº  and  ºvº ;  but they may also portend approaches to a Saddle-
Point,  which is sometimes foreshadowed by this inequality:
                       0 ≥ v`̀̀̀•( G(y) - G(old y) )
                          ≈ ∆τ·v`̀̀̀•H(x)•v  ± OOOO(∆τ^3) .
If this happens,  or if  ºGº  increases,  stay or return in  Regime #0.  
Occasionally adding to an iterate  y  a small random vector orthogonal to 
both  G  and  v  often speeds the detection of and departure from a nearby 
saddle-point.

What remains to be determined by experiments is whether  AGD  escapes from  
Regime #0  faster than  GD  does using its formula for  δτ .

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Notes still under construction: 
Quit when  ºGº  becomes negligible?  What's  "negligible" ? 
Lots of Examples of  AGD  and  GD  at work and compared with  GD+M . 
What's wrong with  "Stochastic GD" ?


